Algebraic Geometry codes in the sum-Rank metric

Elena Berardini and Xavier Caruso

CNRS, Institut dè Mathématiques de Bordeaux

Mathématiques de
Bordeaux
$14^{\text {th }}-16^{\text {th }}$ February 2024
OPEn problems in the (sum-)RAnk metric

To appear in IEEE Transactions on Information Theory https://arxiv.org/abs/2303. 08903

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 899987

Take k a field (think about $k=\mathbb{F}_{q}$), $\boldsymbol{V}=\left(V_{1}, \ldots, V_{s}\right) s$-uple of k-vector spaces

$$
\operatorname{End}_{k}(\boldsymbol{V}):=\operatorname{End}_{k}\left(V_{1}\right) \times \cdots \times \operatorname{End}_{k}\left(V_{s}\right) \simeq M_{n_{1}, n_{1}}(k) \times \cdots \times M_{n_{s}, n_{s}}(k)
$$

The sum-rank distance between $\boldsymbol{\varphi}=\left(\varphi_{1}, \ldots, \varphi_{s}\right), \boldsymbol{\psi}=\left(\psi_{1}, \ldots, \psi_{s}\right) \in \operatorname{End}_{k}(\boldsymbol{V})$ is

$$
d_{\mathrm{srk}}(\varphi, \psi):=\sum_{i=1}^{s} \mathrm{rk}\left(\varphi_{i}-\psi_{i}\right) .
$$

Definition

A code \mathcal{C} in the sum-rank metric is a k-linear subspace of $\operatorname{End}_{k}(\boldsymbol{V})$ endowed with the sum-rank distance. Its length n is $\sum_{i=1}^{s} n_{i}^{2}$. Its dimension κ is $\operatorname{dim}_{k} \mathcal{C}$. Its minimum distance is

$$
d:=\min \left\{d_{s r k}(\boldsymbol{\varphi}, \mathbf{0}) \mid \varphi \in \mathcal{C}, \boldsymbol{\varphi} \neq \mathbf{0}\right\} .
$$

$$
\begin{array}{ccc}
n_{i}=1 \forall i & \rightsquigarrow & \text { codes of length } s \text { in the Hamming metric } \\
s=1 & \rightsquigarrow & \text { codes in the rank metric }
\end{array}
$$

$\ell=$ finite extension of k of degree r (think about $\ell=\mathbb{F}_{q^{r}}$)

$$
\boldsymbol{V}=\left(V_{1}, \ldots, V_{s}\right), s \text {-uple of } \ell \text {-vector spaces } \rightsquigarrow \operatorname{End}_{k}(\boldsymbol{V}) \text { is a } \ell \text {-vector space }
$$

$\rightsquigarrow \ell$-linear codes in the sum-rank metric: ℓ-linear subspaces $\mathcal{C} \subset \operatorname{End}_{k}(\boldsymbol{V})$
$\rightsquigarrow \ell$-variants of the parameters: (taking $\operatorname{dim}_{k} V_{i}=r$)

$$
\left\{\begin{array}{lr}
n_{\ell}:=s r & \ell \text {-length } \\
\kappa_{\ell}:=\operatorname{dim}_{\ell} \mathcal{C} & \ell \text {-dimension } \\
\text { the minimum distance stays unchanged }
\end{array}\right.
$$

Singleton bound

The ℓ-parameters of \mathcal{C} satisfy

$$
d+\kappa_{\ell} \leq n_{\ell}+1 .
$$

Codes with parameters attaining this bound are called Maximum Sum-Rank Distance (MSRD).
$\ell=$ finite extension of k of degree r (think about $\ell=\mathbb{F}_{q^{r}}$)

$$
\boldsymbol{V}=\left(V_{1}, \ldots, V_{s}\right), s \text {-uple of } \ell \text {-vector spaces } \rightsquigarrow \operatorname{End}_{k}(\boldsymbol{V}) \text { is a } \ell \text {-vector space }
$$

$\rightsquigarrow \ell$-linear codes in the sum-rank metric: ℓ-linear subspaces $\mathcal{C} \subset \operatorname{End}_{k}(\boldsymbol{V})$
$\rightsquigarrow \ell$-variants of the parameters: (taking $\operatorname{dim}_{k} V_{i}=r$)

$$
\left\{\begin{array}{lr}
n_{\ell}:=s r & \ell \text {-length } \\
\kappa_{\ell}:=\operatorname{dim}_{\ell} \mathcal{C} & \ell \text {-dimension } \\
\text { the minimum distance stays unchanged }
\end{array}\right.
$$

Singleton bound

The ℓ-parameters of \mathcal{C} satisfy

$$
d+\kappa_{\ell} \leq n_{\ell}+1 .
$$

Codes with parameters attaining this bound are called Maximum Sum-Rank Distance (MSRD).
For the k-parameters this reads

$$
r d+\kappa \leq n+r
$$

Algebraic and geometric constructions in the Hamming and rank metric

Reed-Solomon (RS) codes:

Reed-Solomon (RS) codes:

, Optimal parameters: $\kappa+d=n+1$ (Singleton bound: $\kappa+d \leq n+1$)
Drawback: $n \leqslant q$

Reed-Solomon (RS) codes:

\checkmark Optimal parameters: $\kappa+d=n+1$ (Singleton bound: $\kappa+d \leq n+1$)
Drawback: $n \leqslant q$

Algebraic Geometry (AG) codes:

\checkmark Optimal parameters: $\kappa+d=n+1$ (Singleton bound: $\kappa+d \leq n+1$)
Drawback: $n \leqslant q$

Algebraic Geometry (AG) codes:

$\mathcal{C}_{X}(\mathcal{P}, L(D)):=\left\{\left(f\left(P_{1}\right), f\left(P_{2}\right), \ldots, f\left(P_{n}\right)\right) \mid f \in L(D)\right\}$
\checkmark Good parameters: $n+1-g \leq \kappa+d \leq n+1$
\checkmark Longer codes

Reed-Solomon (RS) codes:

\checkmark Optimal parameters: $\kappa+d=n+1$ (Singleton bound: $\kappa+d \leq n+1$)
^ Drawback: $n \leqslant q$

Gabidulin codes:

\checkmark Optimal parameters: MRD codes
Drawback: ??

Algebraic Geometry (AG) codes:

$\mathcal{C}_{X}(\mathcal{P}, L(D)):=\left\{\left(f\left(P_{1}\right), f\left(P_{2}\right), \ldots, f\left(P_{n}\right)\right) \mid f \in L(D)\right\}$
\checkmark Good parameters: $n+1-g \leq \kappa+d \leq n+1$
\checkmark Longer codes

AG codes in the rank metric:
404 Error: Not Found

Algebraic and geometric constructions in the Hamming and rank metric

Reed-Solomon (RS) codes:

Algebraic Geometry (AG) codes:

Equivalent constructions in the sum-rank metric of

- Reed-Solomon codes
\leadsto linearized Reed-Solomon codes (Martínez-Peñas, 2018)
- Algebraic Geometry codes
\leadsto linearized Algebraic Geometry codes (B. \& Caruso, 2023)
Gabidul
- Optimal parameters: MRD codes 404 Error: Not Found
© Drawback: ??

$\ell=\mathbb{F}_{q^{r}}, k=\mathbb{F}_{q}, \operatorname{Gal}(\ell / k)=\langle\Phi\rangle$

($\Phi: \ell \rightarrow \ell$ is the q-Frobenius)

$\ell=\mathbb{F}_{q^{r}}, k=\mathbb{F}_{q}, \operatorname{Gal}(\ell / k)=\langle\Phi\rangle$

The ring of Ore polynomials $\ell[T ; \Phi]$ is the ring of polynomials with coefficients in ℓ, with usual + and

$$
T \times a=\Phi(a) T \quad \forall a \in \ell
$$

Ore polynomials and Linearized Reed-Solomon codes

$\ell=\mathbb{F}_{q^{r}}, k=\mathbb{F}_{q}, \operatorname{Gal}(\ell / k)=\langle\Phi\rangle$

The ring of Ore polynomials $\ell[T ; \Phi]$ is the ring of polynomials with coefficients in ℓ, with usual + and

$$
\begin{aligned}
T \times a= & \Phi(a) T \quad \forall a \in \ell . \\
\mathrm{ev}: \quad \ell[T ; \Phi] & \rightarrow \operatorname{End}_{k}(\ell) \\
P & \mapsto P(\Phi)
\end{aligned}
$$

Ore polynomials and Linearized Reed-Solomon codes

$$
\ell=\mathbb{F}_{q^{r}}, k=\mathbb{F}_{q}, \operatorname{Gal}(\ell / k)=\langle\Phi\rangle
$$

for $c \in \ell$

The ring of Ore polynomials $\ell[T ; \Phi]$ is the ring of polynomials with coefficients in ℓ, with usual + and

$$
\begin{aligned}
T \times a= & \Phi(a) T \quad \forall a \in \ell . \\
\mathrm{ev}_{c}: \quad \ell[T ; \Phi] & \rightarrow \operatorname{End}_{k}(\ell) \\
P & \mapsto P(c \Phi)
\end{aligned}
$$

Ore polynomials and Linearized Reed-Solomon codes

$$
\ell=\mathbb{F}_{q^{r}}, k=\mathbb{F}_{q}, \operatorname{Gal}(\ell / k)=\langle\Phi\rangle
$$

The ring of Ore polynomials $\ell[T ; \Phi]$ is the ring of polynomials with coefficients in ℓ, with usual + and

$$
T \times a=\Phi(a) T \quad \forall a \in \ell .
$$

for $\underline{c}=\left(c_{1}, \ldots, c_{s}\right) \in \ell^{s}$

$$
\begin{aligned}
\mathrm{ev}_{\underline{c}}: \quad \ell[T ; \Phi] & \rightarrow \operatorname{End}_{k}(\ell)^{s} \\
P & \mapsto\left(P\left(c_{1} \Phi\right), \ldots, P\left(c_{s} \Phi\right)\right) .
\end{aligned}
$$

$$
\ell=\mathbb{F}_{q^{r}}, k=\mathbb{F}_{q}, \operatorname{Gal}(\ell / k)=\langle\Phi\rangle
$$

The ring of Ore polynomials $\ell[T ; \Phi]$ is the ring of polynomials with coefficients in ℓ, with usual + and

$$
T \times a=\Phi(a) T \quad \forall a \in \ell
$$

Linearized Reed-Solomon codes
(Martínez-Peñas, 2018)
for $\underline{c}=\left(c_{1}, \ldots, c_{s}\right) \in \ell^{s}$
and $\kappa \in \mathbb{Z}$
consider

$$
\begin{aligned}
\mathrm{ev}_{\underline{c}}: \quad \ell[T ; \Phi]_{<\kappa} & \rightarrow \operatorname{End}_{k}(\ell)^{s} \\
P & \mapsto\left(P\left(c_{1} \Phi\right), \ldots, P\left(c_{s} \Phi\right)\right)
\end{aligned}
$$

We define $\operatorname{LRS}(\kappa, \underline{c})=\operatorname{ev}_{\underline{c}}\left(\ell[T ; \Phi]_{<\kappa}\right)$.

$$
\ell=\mathbb{F}_{q^{r}}, k=\mathbb{F}_{q}, \operatorname{Gal}(\ell / k)=\langle\Phi\rangle
$$

The ring of Ore polynomials $\ell[T ; \Phi]$ is the ring of polynomials with coefficients in ℓ, with usual + and

$$
T \times a=\Phi(a) T \quad \forall a \in \ell
$$

Linearized Reed-Solomon codes

for $\underline{c}=\left(c_{1}, \ldots, c_{s}\right) \in \ell^{s}$ such that $N_{\ell / k}\left(c_{i}\right) \neq N_{\ell / k}\left(c_{j}\right) \forall i \neq j$ and $\kappa \in \mathbb{Z}$ such that $\kappa \leq r s$ consider

$$
\begin{aligned}
\mathrm{ev}_{\underline{c}}: \quad \ell[T ; \Phi]_{<\kappa} & \rightarrow \operatorname{End}_{k}(\ell)^{s} \\
P & \mapsto\left(P\left(c_{1} \Phi\right), \ldots, P\left(c_{s} \Phi\right)\right) .
\end{aligned}
$$

We define $\operatorname{LRS}(\kappa, \underline{c})=\operatorname{ev}_{\underline{c}}\left(\ell[T ; \Phi]_{<\kappa}\right)$. MSRD codes!

$$
\ell=\mathbb{F}_{q^{r}}, k=\mathbb{F}_{q}, \operatorname{Gal}(\ell / k)=\langle\Phi\rangle
$$

The ring of Ore polynomials $\ell[T ; \Phi]$ is the ring of polynomials with coefficients in ℓ, with usual + and

$$
T \times a=\Phi(a) T \quad \forall a \in \ell
$$

Linearized Reed-Solomon codes

for $\underline{c}=\left(c_{1}, \ldots, c_{s}\right) \in \ell^{s}$ such that $N_{\ell / k}\left(c_{i}\right) \neq N_{\ell / k}\left(c_{j}\right) \forall i \neq j$ and $\kappa \in \mathbb{Z}$ such that $\kappa \leq r s$ consider

$$
\begin{aligned}
\mathrm{ev}_{\underline{c}}: \quad \ell[T ; \Phi]_{<\kappa} & \rightarrow \operatorname{End}_{k}(\ell)^{s} \\
P & \mapsto\left(P\left(c_{1} \Phi\right), \ldots, P\left(c_{s} \Phi\right)\right)
\end{aligned}
$$

We define $\operatorname{LRS}(\kappa, \underline{c})=\operatorname{ev}_{\underline{c}}\left(\ell[T ; \Phi]_{<\kappa}\right)$. MSRD codes!
$\Rightarrow s \leq \operatorname{Card}(k) \rightsquigarrow$ same problem as Reed-Solomon codes
$\ell=\mathbb{F}_{q^{r}}, k=\mathbb{F}_{q}, \operatorname{Gal}(\ell / k)=\langle\Phi\rangle$
The ring of Ore polynomials $\ell[T ; \Phi]$ is the ring of polynomials with

$$
T \times a=\Phi(a) T \quad \forall a \in \ell
$$

Linearized Reed-Solomon codes
for $\underline{c}=\left(c_{1}, \ldots, c_{s}\right) \in \ell^{s}$ such that $N_{\ell / k}\left(c_{i}\right) \neq N_{\ell / k}\left(c_{j}\right) \forall i \neq j$ and $k \in \mathbb{Z}$ such that $\kappa \leq r s$ consider

$$
\begin{aligned}
\mathrm{ev}_{\underline{c}}: \quad \ell[T ; \Phi]_{<\kappa} & \rightarrow \operatorname{End}_{k}(\ell)^{s} \\
P & \mapsto\left(P\left(c_{1} \Phi\right), \ldots, P\left(c_{s} \Phi\right)\right) .
\end{aligned}
$$

We define $\operatorname{LRS}(\kappa, \underline{c})=\operatorname{ev}_{\underline{c}}\left(\ell[T ; \Phi]_{<\kappa}\right)$. MSRD codes!
$\Rightarrow s \leq \operatorname{Card}(k) \rightsquigarrow$ same problem as Reed-Solomon codes
As in the Hamming case, we can try to overcome the problem using algebraic curves
Main idea: consider Ore polynomials with coefficients in the function field of a curve
π a cover with cyclic Galois group of order r
$K:=k(X), L:=k(Y)$ the field of functions of X and $Y, \operatorname{Gal}(L / K)=\langle\Phi\rangle$

π a cover with cyclic Galois group of order r
$K:=k(X), L:=k(Y)$ the field of functions of X and $Y, \operatorname{Gal}(L / K)=\langle\Phi\rangle$
For $\mathfrak{p} \in X$ we have the decomposition $L_{\mathfrak{p}}:=K_{\mathfrak{p}} \otimes_{K} L \simeq \prod_{\mathfrak{q} \mid \mathfrak{p}} L_{\mathfrak{q}}$.

π a cover with cyclic Galois group of order r
$K:=k(X), L:=k(Y)$ the field of functions of X and $Y, \operatorname{Gal}(L / K)=\langle\Phi\rangle$
For $\mathfrak{p} \in X$ we have the decomposition $L_{\mathfrak{p}}:=K_{\mathfrak{p}} \otimes_{K} L \simeq \prod_{\mathfrak{q} \mid \mathfrak{p}} L_{\mathfrak{q}}$.

For $x \in K^{\times}$, consider the algebra of Ore polynomials with coefficient in L

$$
D_{L, x}:=L[T ; \Phi] /\left(T^{r}-x\right)
$$

and for all $\mathfrak{p} \in X$, the algebras $D_{L_{\mathfrak{p}}, x}:=K_{\mathfrak{p}} \otimes_{K} D_{L, x}=L_{\mathfrak{p}}[T ; \Phi] /\left(T^{r}-x\right)$.

Y	$\mathfrak{q}_{1} \ldots \mathfrak{q}_{m_{\mathfrak{p}}}$	π a cover with cyclic Galois group of order r
π	$\backslash /$	$K:=k(X), L:=k(Y)$ the field of functions of X and $Y, \operatorname{Gal}(L / K)=\langle\Phi\rangle$
X	$V_{\mathfrak{p}}$	For $\mathfrak{p} \in X$ we have the decomposition $L_{\mathfrak{p}}:=K_{\mathfrak{p}} \otimes_{K} L \simeq \prod_{\mathfrak{q} \mid \mathfrak{p}} L_{\mathfrak{q}}$.

For $x \in K^{\times}$, consider the algebra of Ore polynomials with coefficient in L

$$
D_{L, x}:=L[T ; \Phi] /\left(T^{r}-x\right)
$$

and for all $\mathfrak{p} \in X$, the algebras $D_{L_{\mathfrak{p}}, x}:=K_{\mathfrak{p}} \otimes_{K} D_{L, x}=L_{\mathfrak{p}}[T ; \Phi] /\left(T^{r}-x\right)$.Riemann-Roch spaces of $D_{L, x}$ \rightsquigarrow need to define a valuation for $f \in D_{L, x}$a Riemann's inequalityequivalent of "evaluate at a rational point"

π a cover with cyclic Galois group of order r $K:=k(X), L:=k(Y)$ the field of functions of X and $Y, \operatorname{Gal}(L / K)=\langle\Phi\rangle$ For $\mathfrak{p} \in X$ we have the decomposition $L_{\mathfrak{p}}:=K_{\mathfrak{p}} \otimes_{K} L \simeq \prod_{\mathfrak{q} \mid \mathfrak{p}} L_{\mathfrak{q}}$.

For $x \in K^{\times}$, consider the algebra of Ore polynomials with coefficient in L

$$
D_{L, x}:=L[T ; \Phi] /\left(T^{r}-x\right)
$$

and for all $\mathfrak{p} \in X$, the algebras $D_{L_{p}, x}:=K_{\mathfrak{p}} \otimes_{K} D_{L, x}=L_{\mathfrak{p}}[T ; \Phi] /\left(T^{r}-x\right)$.

The valuation

Define the valuation map $w_{\mathfrak{q}_{j}, x}: D_{L_{p}, x} \rightarrow \frac{1}{r} \mathbb{Z} \sqcup\{\infty\}\left(1 \leq j \leq m_{\mathfrak{p}}\right)$: for $f=f_{0}+f_{1} T+\cdots+f_{r-1} T^{r-1}$,

$$
w_{\mathfrak{q}, x}(f)=\min _{0 \leq i<r}\left(\frac{v_{\mathfrak{q}}\left(f_{i}\right)}{e_{\mathfrak{q}}}+i \cdot \frac{v_{\mathfrak{p}}(x)}{r}\right) \quad e_{\mathfrak{q}}=\text { ramification index of } \mathfrak{q}
$$

π a cover with cyclic Galois group of order r $K:=k(X), L:=k(Y)$ the field of functions of X and $Y, \operatorname{Gal}(L / K)=\langle\Phi\rangle$ For $\mathfrak{p} \in X$ we have the decomposition $L_{\mathfrak{p}}:=K_{\mathfrak{p}} \otimes_{K} L \simeq \prod_{\mathfrak{q} \mid \mathfrak{p}} L_{\mathfrak{q}}$.

For $x \in K^{\times}$, consider the algebra of Ore polynomials with coefficient in L

$$
D_{L, x}:=L[T ; \Phi] /\left(T^{r}-x\right)
$$

and for all $\mathfrak{p} \in X$, the algebras $D_{L_{p}, x}:=K_{\mathfrak{p}} \otimes_{K} D_{L, x}=L_{\mathfrak{p}}[T ; \Phi] /\left(T^{r}-x\right)$.

The valuation

Define the valuation map $w_{\mathfrak{q}_{j}, x}: D_{L_{p}, x} \rightarrow \frac{1}{r} \mathbb{Z} \sqcup\{\infty\}\left(1 \leq j \leq m_{\mathfrak{p}}\right)$: for $f=f_{0}+f_{1} T+\cdots+f_{r-1} T^{r-1}$,

$$
w_{\mathfrak{q}, x}(f)=\min _{0 \leq i<r}\left(\frac{v_{\mathfrak{q}}\left(f_{i}\right)}{e_{\mathfrak{q}}}+i \cdot \frac{v_{\mathfrak{p}}(x)}{r}\right) \quad e_{\mathfrak{q}}=\text { ramification index of } q
$$

For $\mathfrak{p} \in X, e_{\mathfrak{p}} w_{\mathfrak{q}, x}(f) \in \frac{1}{b_{\mathfrak{p}}} \mathbb{Z}$ where $b_{\mathfrak{p}}$ is the denominator of $\rho_{\mathfrak{p}}=\frac{e_{\mathfrak{p}} \cdot v_{\mathfrak{p}}(x)}{r}$ after reduction

Let $E=\sum_{\mathfrak{q} \in Y} n_{\mathfrak{q}} \mathfrak{q} \in \operatorname{Div}(Y) \otimes \mathbb{Q}$, with $n_{\mathfrak{q}} \in \frac{1}{b_{\mathfrak{p}}} \mathbb{Z}$ where $\mathfrak{p}=\pi(\mathfrak{q})$.

Definition (Riemann-Roch spaces of $D_{L, x}$)

The Riemann-Roch space of $D_{L, x}$ associated with E is

$$
\Lambda_{L, x}(E):=\left\{f \in D_{L, x} \mid e_{\mathfrak{q}} w_{\mathfrak{q}, x}(f)+n_{\mathfrak{q}} \geq 0 \text { for all } \mathfrak{q} \in Y\right\} .
$$

$\Rightarrow \Lambda_{\llcorner, x}(E)=\bigoplus_{i=0}^{r-1} L_{Y}\left(E_{i}\right) \cdot T^{i}$, where $E_{i}:=\sum_{\mathfrak{q} \in Y}\left\lfloor n_{\mathfrak{q}}+i \cdot \rho_{\pi(\mathfrak{q})}\right\rfloor \mathfrak{q} \in \operatorname{Div}(Y) \quad(0 \leq i<r)$.

Let $E=\sum_{\mathfrak{q} \in Y} n_{\mathfrak{q}} \mathfrak{q} \in \operatorname{Div}(Y) \otimes \mathbb{Q}$, with $n_{\mathfrak{q}} \in \frac{1}{b_{\mathfrak{p}}} \mathbb{Z}$ where $\mathfrak{p}=\pi(\mathfrak{q})$.

Definition (Riemann-Roch spaces of $D_{L, x}$)

The Riemann-Roch space of $D_{L, x}$ associated with E is

$$
\Lambda_{L, x}(E):=\left\{f \in D_{L, x} \mid e_{\mathfrak{q}} w_{\mathfrak{q}, x}(f)+n_{\mathfrak{q}} \geq 0 \text { for all } \mathfrak{q} \in Y\right\} .
$$

$\Rightarrow \Lambda_{L, x}(E)=\bigoplus_{i=0}^{r-1} L_{Y}\left(E_{i}\right) \cdot T^{i}$, where $E_{i}:=\sum_{\mathfrak{q} \in Y}\left\lfloor n_{\mathfrak{q}}+i \cdot \rho_{\pi(\mathfrak{q})}\right\rfloor \mathfrak{q} \in \operatorname{Div}(Y) \quad(0 \leq i<r)$.
Lemma: We have $\sum_{i=0}^{r-1} \operatorname{deg}_{Y}\left(E_{i}\right)=r \cdot \operatorname{deg}_{Y}(E)-\frac{r^{2}}{2} \sum_{\mathfrak{p} \in X} \frac{b_{\mathfrak{p}}-1}{b_{\mathfrak{p}} e_{\mathfrak{p}}} \operatorname{deg}_{X}(\mathfrak{p})$.

Divisors and Riemann-Roch spaces over Ore polynomial rings
Let $E=\sum_{\mathfrak{q} \in Y} n_{\mathfrak{q}} \mathfrak{q} \in \operatorname{Div}(Y) \otimes \mathbb{Q}$, with $n_{\mathfrak{q}} \in \frac{1}{b_{\mathfrak{p}}} \mathbb{Z}$ where $\mathfrak{p}=\pi(\mathfrak{q})$.

Definition (Riemann-Roch spaces of $D_{L, x}$)

The Riemann-Roch space of $D_{L, x}$ associated with E is

$$
\Lambda_{L, x}(E):=\left\{f \in D_{L, x} \mid e_{\mathfrak{q}} w_{\mathfrak{q}, x}(f)+n_{\mathfrak{q}} \geq 0 \text { for all } \mathfrak{q} \in Y\right\} .
$$

$\Rightarrow \Lambda_{L, x}(E)=\bigoplus_{i=0}^{r-1} L_{Y}\left(E_{i}\right) \cdot T^{i}$, where $E_{i}:=\sum_{\mathfrak{q} \in Y}\left\lfloor n_{\mathfrak{q}}+i \cdot \rho_{\pi(\mathfrak{q})}\right\rfloor \mathfrak{q} \in \operatorname{Div}(Y) \quad(0 \leq i<r)$.
Lemma: We have $\sum_{i=0}^{r-1} \operatorname{deg}_{Y}\left(E_{i}\right)=r \cdot \operatorname{deg}_{Y}(E)-\frac{r^{2}}{2} \sum_{\mathfrak{p} \in X} \frac{b_{\mathfrak{p}}-1}{b_{p} e_{\mathfrak{p}}} \operatorname{deg}_{X}(\mathfrak{p})$.

Riemann's inequality for $\Lambda_{L, x}(E)$

The space $\Lambda_{L, x}(E)$ is finite dimensional over k and

$$
\operatorname{dim}_{k} \Lambda_{L, x}(E) \geq r \cdot \operatorname{deg}_{Y}(E)-\frac{r^{2}}{2} \sum_{\mathfrak{p} \in X} \frac{b_{\mathfrak{p}}-1}{b_{\mathfrak{p}} e_{\mathfrak{p}}} \operatorname{deg}_{X}(\mathfrak{p})-r \cdot\left(g_{Y}-1\right) .
$$

Let $\mathfrak{p} \in X$ rational, $t_{\mathfrak{p}}$ a uniformizer $\left(K_{\mathfrak{p}} \simeq k((t))\right), x \in K^{\times}$

Let $\mathfrak{p} \in X$ rational, $t_{\mathfrak{p}}$ a uniformizer $\left(K_{\mathfrak{p}} \simeq k((t))\right), x \in K^{\times}$ under some hypotheses on \times get

$$
\begin{array}{rll}
\bar{\varepsilon}_{\mathfrak{p}}: \quad \Lambda_{L_{p}, x}(E) & \xrightarrow{\simeq} \operatorname{End}_{\mathcal{O}_{K_{\mathfrak{p}}}}\left(\mathcal{O}_{L_{p}}\right) & \xrightarrow{r e d} \operatorname{End}_{k}\left(\mathcal{O}_{L_{\mathfrak{p}}} / t_{\mathfrak{p}} \mathcal{O}_{L_{\mathfrak{p}}}\right)=: \operatorname{End}_{k}\left(V_{\mathfrak{p}}\right) \\
f & \mapsto f\left(u_{\mathfrak{p}} \Phi\right) & \mapsto f\left(u_{\mathfrak{p}} \Phi\right) \bmod t_{\mathfrak{p}}
\end{array}
$$

Code's construction

Let $\mathfrak{p} \in X$ rational, $t_{\mathfrak{p}}$ a uniformizer $\left(K_{p} \simeq k((t))\right), x \in K^{\times}$
under some hypotheses on \times get

$$
\begin{aligned}
\bar{\varepsilon}_{\mathfrak{p}}: \quad \Lambda_{L_{\mathfrak{p}}, x}(E) & \xrightarrow{\simeq} \operatorname{End}_{\mathcal{O}_{K_{\mathfrak{p}}}\left(\mathcal{O}_{L_{\mathfrak{p}}}\right)} \xrightarrow{\text { red }} \operatorname{End}_{k}\left(\mathcal{O}_{L_{\mathfrak{p}}} / t_{\mathfrak{p}} \mathcal{O}_{L_{\mathfrak{p}}}\right)=: \operatorname{End}_{k}\left(V_{\mathfrak{p}}\right) \\
f\left(u_{\mathfrak{p}} \Phi\right) & f\left(u_{\mathfrak{p}} \Phi\right) \bmod t_{\mathfrak{p}}
\end{aligned}
$$

Linearized Algebraic Geometry codes

Let $E=\sum_{\mathfrak{q} \in Y} n_{\mathfrak{q}} \mathfrak{q} \in \operatorname{Div}_{\mathbb{Q}}(Y)$. Chose $x \in K$ and $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}$ rational places on X such that the hypotheses hold. Consider

$$
\begin{array}{rlll}
\alpha: \quad \Lambda_{L, x}(E) & \longrightarrow & \prod_{i=1}^{s} \operatorname{End}_{k}\left(V_{\mathfrak{p}_{i}}\right) \\
f & \mapsto & \left(\bar{\varepsilon}_{\mathfrak{p}_{1}}(f), \ldots, \bar{\varepsilon}_{\mathfrak{p}_{s}}(f)\right) .
\end{array}
$$

The code $\mathcal{C}\left(x ; E ; \mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}\right)$ is defined as the image of α.

Code's parameters

We study the parameters of the k-linear code \mathcal{C} in $\prod_{i=1}^{s} \operatorname{End}_{k}\left(V_{\mathfrak{p}_{i}}\right)$.
The length is $n=s r^{2}$

Theorem (B. \& Caruso, 2023)

Assume $\operatorname{deg}_{Y}(E)<$ sr. Assume the previous hypotheses and that $D_{L, x}$ contains no nonzero divisors. Then, the dimension κ and the minimum distance d of $\mathcal{C}\left(x ; E ; \mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}\right)$ satisfy

$$
\begin{aligned}
& \kappa \geq r \cdot \operatorname{deg}_{Y}(E)-r \cdot\left(g_{Y}-1\right)-\frac{r^{2}}{2} \sum_{\mathfrak{p} \in X} \frac{b_{\mathfrak{p}}-1}{b_{\mathfrak{p}} e_{\mathfrak{p}}} \operatorname{deg}_{X}(\mathfrak{p}), \\
& d \geq \operatorname{sr}-\operatorname{deg}_{Y}(E) .
\end{aligned}
$$

Singleton bound:

$$
r d+\kappa \leq n+r
$$

We have:

$$
r d+\kappa \geq n+r-\left(r \cdot g_{Y}+\frac{r^{2}}{2} \sum_{\mathfrak{p} \in X} \frac{b_{\mathfrak{p}}-1}{b_{p} e_{\mathfrak{p}}} \operatorname{deg}_{X}(\mathfrak{p})\right)
$$

We study the parameters of the k-linear code \mathcal{C} in $\prod_{i=1}^{s} \operatorname{End}_{k}\left(V_{\mathfrak{p}_{i}}\right)$.
The length is $n=s r^{2}$

Theorem (B. \& Caruso, 2023)

Assume $\operatorname{deg}_{Y}(E)<$ sr. Assume the previous hypotheses and that $D_{L, x}$ contains no nonzero divisors. Then, the dimension κ and the minimum distance d of $\mathcal{C}\left(x ; E ; \mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}\right)$ satisfy

$$
\begin{aligned}
& \kappa \geq r \cdot \operatorname{deg}_{Y}(E)-r \cdot\left(g_{Y}-1\right)-\frac{r^{2}}{2} \sum_{\mathfrak{p} \in X} \frac{b_{\mathfrak{p}}-1}{b_{\mathfrak{p}} e_{\mathfrak{p}}} \operatorname{deg}_{X}(\mathfrak{p}), \\
& d \geq s r-\operatorname{deg}_{Y}(E)
\end{aligned}
$$

Singleton bound:

$$
r d+\kappa \leq n+r
$$

We have:

$$
r d+\kappa \geq n+r-\left(r \cdot g_{Y}+\frac{r^{2}}{2} \sum_{\mathfrak{p} \in X} \frac{b_{p}-1}{b_{p} e_{p}} \operatorname{deg}_{X}(\mathfrak{p})\right)
$$

$X=\mathbb{P}_{k}^{1}, Y=\mathbb{P}_{\ell}^{1}, E=\frac{\kappa}{r} \cdot \infty \in \operatorname{Div}_{\mathbb{Q}}(Y) \rightsquigarrow$ linearized Reed-Solomon codes! Our lower bounds \Rightarrow MSRD codes

Theorem

We assume that q is a square. For all real numbers $R, \delta \in(0,1)$ such that

$$
R<1-\delta-\frac{2}{\sqrt{q}-1}+\frac{1}{r(\sqrt{q}-1)}
$$

there exists a ℓ-linear LAG code with rate at least R and relative minimum distance at least δ. We compare to the sum-rank version of the Gilbert-Varshamov bound :

\checkmark We have Algebraic Geometry codes in the sum-rank metric, of length $s r^{2}$
\checkmark The s in the length is the number of rational places \rightsquigarrow can take $s>q$
\checkmark We beat the sum-rank metric version of the Gilbert-Varshamov bound
\checkmark We have Algebraic Geometry codes in the sum-rank metric, of length $s r^{2}$
\checkmark The s in the length is the number of rational places \rightsquigarrow can take $s>q$
\checkmark We beat the sum-rank metric version of the Gilbert-Varshamov bound

- decoding problem: work in progress with X. Caruso and F. Drain (our Ph.D student) (decoding algorithm for linearized Reed-Solomon codes \checkmark)
- duality theorem for the $\operatorname{codes} \mathcal{C}\left(x ; E ; \mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}\right)$: work in progress with X . Caruso (require to develop the theory of differential forms and residues in our framework)

Grazie per l'attenzione!

