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Error–correcting codes

GOAL: retrieve the data which are lost/corrupted during transmission or storage.

Linear codes: Fq–vector subspaces of Fn
q endowed with a metric. d(x,0)=w(x)=#{xi 6=0}

[n, k, d]q–code: code of length n, dimension k and minimum distance d. d=minx 6=0{w(x)}

dimension↔ information rate

minimum distance↔ correction capacity

}
k + d 6 n + 1 � Singleton, 1964

Reed–Solomon codes �Reed and Solomon, 1960

RSk(x)
def
= {(f (x1), f (x2), f (x3), . . . , f (xn)) | f ∈ Fq[x]<k}

•
x3

•
x2

•
x1

•
xn

Fq dim Fq[x]<k = k ⇒ dimFq RSk(x) = k
zeros(f ) ≤ k− 1 ⇒ d ≥ n− k + 1

Ë Optimal parameters:
k + d = n + 1

" Drawback: n 6 q.

The bigger the q, the less efficient the arithmetic.
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Algebraic Geometry (AG) codes from curves � Goppa, 1980

f ∈ L(G)

curve X

C(X ,P , G)
def
= {(f (P1), f (P2), . . . , f (Pn)) | f ∈ L(G)}

Riemann–Roch space

•
P2

•P1 •
Pn

X a curve, P = {P1, . . . , Pn} ⊂ X (Fq)

Definition

A divisor is a formal sum of points on X
G = ∑P∈X nPP, np ∈ Z. deg(G) = ∑ nP

An element of L(G) is a function with

• same number of zeros and poles

• poles controlled by the P with nP > 0
• zeros controlled by the P with nP < 0

Riemann–Roch theorem

dim C(X ,P , G) = dim L(G) ≥ deg(G) + 1− g

zeros(f ) ≤ deg(G)⇒ d ≥ n− deg(G)

Ë Good parameters: k + d ≥ n + 1− g

Hasse–Weil bound

For X a smooth curve of genus g we have
#X (Fq) ≤ q + 1 + 2g

√
q

Ë Length: we can have n > q
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AG codes from surfaces

f ∈ L(G)

Riemann–Roch space of the surface

surface X

C(X ,P , G)
def
= {(f (P1), f (P2), . . . , f (Pn)) | f ∈ L(G)}

•
•
•

X a surface, P = {P1, . . . , Pn} ⊂ X (Fq)

Definition

A divisor is a formal sum of curves on X
G = ∑C⊂X nCC, nC ∈ Z.

Elements of L(G) are functions with

• poles controlled by the C with nP > 0
• zeros controlled by the C with nP < 0

Riemann–Roch theorem for surfaces

Gives the dimension of AG codes from surfaces

Weil conjectures – Deligne theorem

For X a smooth surface over Fq we have

n ≤ #X (Fq) ∼ q2

zeros(f ) ≤ ∑
sf
i=1 #Ci(Fq)

To bound the minimum distance we need to

• bound sf (see �VZ19, ABHP21a, ABHP21b)

• bound #C(Fq) for C ⊂ X (see �BN22)
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Have you ever seen an AG codes from higher–dimensional varieties? Maybe yes!

Definition (Reed–Muller code)

Let N ≥ 1 and r ≥ 0. We define the Reed–Muller code of order r by

RM(N, r) = {(f (x))x∈FN
q
| f ∈ Fq[X1, . . . , XN]≤r}.

For r ≤ q, dim RM(N, r) = dim Fq[X1, . . . , XN]≤r and the minimum distance d = qN − rqN−1 is
reached by product of linear factors.

Why is it an AG code? (N = 2 AG code from a surface!)

Consider X = PN and P = {(1, x1, . . . , xN) ∈ PN(Fq) | xi ∈ Fq} = AN(Fq) '
(
Fq
)N

.

Let H be the hyperplane of PN defined by X0 = 0. Then, for any integer r ≥ 0

L(rH) =
1

Xr
0
·Fq[X0, . . . , XN]

hom
=r .

Then RM(N, r) = C(PN,P , rH).
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(Non–exhaustive) Bibliography about AG codes from surfaces

• 1954: Reed–Muller codes

• 1986: Projective Reed–Muller (Lachaud) Parameters studied by Sorensen (1991)

• 1991: Restriction of RM Codes to projective algebraic varieties (Aubry)

• 1992: Quadric surfaces (Aubry)

• 2001: General study by Hansen

• 2001: Restrictions of RM codes (Duursma, Renteŕıa, Tapia-Recillas)
Parameters when P is in linearly general position by Ballico and Fontanari (2006)

• 2002: Toric varieties (Hansen)

• 2005: Hermitian surface (Edoukou)

• 2007: Exploring surfaces with small Picard rank (Zarzar)

• 2018: rkPicX = 1 or sectional genus = 0 (Little, Schenck)

• 2019: Hirzebruch surfaces (Nardi)

• 2020: Del Pezzo surfaces with Picard rank one (Blache et al.)

• 2021: Abelian surfaces (Aubry, B., Herbaut, Perret)

• 2021: Surfaces without small genus curves and fibrations (Aubry, B., Herbaut, Perret)

Surfaces
Higher–dimensional varieties
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Why AG codes? Typical asymptotical behavior of linear codes

For an [n, k, d]–code C, we define its rate R def
= k

n and its relative distance δ
def
= d

n .

Good code: R and δ close to 1.

Compromises:

• Singleton bound: R + δ ≤ 1 + 1
n .

• Gilbert-Varshamov bound: with fixed q and n→ +∞
sup

C q−ary
{R(C) | δ(C) = δ} ≥ 1−Hq(δ)

where Hq is the entropy function defined by

Hq(δ)
def
= δ logq(q− 1)− δ logq δ− (1− δ) logq(1− δ).

A random (linear) code of length n and dimension k satisfies k
n ' 1−Hq(δ) with probability

going to 1 when n→ ∞.
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going to 1 when n→ ∞.
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Asymptotical behavior of AG codes: beating the GV bound

AG codes from curves satisfy

k + d ≥ n + 1− g

Denoting by A(q) the Ihara function

A(q) = lim
g→∞

maxGenus(X )=g(#X (Fq))

g

we have the existence of a sequence of codes such that

R + δ ≥ 1− 1
A(q)

= 1− 1
√

q− 1
.

when q is a square

Using a family of curves with many points e.g.

• modular curves �TVZ82

• towers of curves

we get AG codes beating the GV bound!

AG codes from surfaces?
Ë Working with towers of surfaces we could get longer codes
?? Several invariants come into play, things get more difficult!
A fist attempt has been done by Couvreur-Lebacque-Perret �CLP21. The game is still open...
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Encoding and decoding of AG codes

To use an AG code C(X ,P , G) in practice we need to
1 encode:

basis of L(G) + (fast) evaluation at points of P ;

On curves, several algorithms to compute Riemann–Roch spaces:
• Arithmetic method

Hensel–Landberg (1902), Coated (1970), Davenport (1981), Hess (2001)...
• Geometric method

Goppa, Le Brigand–Risler (80’s), Huang–Ierardi (90’s), Khuri–Makdisi (2007), Le
Gluher–Spaenlehauer (2018), Abelard–B.–Couvreur–Lecerf (2022),...

Fast encoding on families of curves with structured P Beelen–Rosenkilde–Solomatov (2020)

On surfaces: é no general method for computing bases of Riemann–Roch spaces
Ë explicit bases for some families (e.g. projective space, Toric surfaces...)

2 decode:

On curves:
• Unique decoding via Error Correcting Pairs Pelikaan (1992)

• List decoding Couvreur–Panaccione (2020), Beelen–Neiger (2023)

On surfaces: é no global decoding algorithm
Ë natural local decoding using curves on the surface
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Globally decoding via local decoding

Consider an AG code C = C(X ,P , G) on a surface X .
Assume we have a family of P–covering curves Ci ⊂ X s.t.

• P ⊆ ⋃ Ci(Fq) (P–covering),

• c ∈ C ⇔ ∀i, c|Ci
∈ C|Ci

def
= C(Ci,P ∩ Ci, G∩ Ci).

The restrictions to the curves Ci completely characterizes C.

•
•

•

•

•
•

•
•
•

•

•

•

•

•

•

•

C1
C2C3

Then we have a procedure to decode a word w with respect to C.

1 Pick a curve Ci at random;

2 Use a decoding algorithm to decode w|Ci
w.r.t. C|Ci

and replace the coordinates in w;

3 Repeat Ê and Ë as many times as necessary so that for each i, w|Ci
∈ C|Ci

(⇒ w ∈ C).

Ë Successfully applied to AG codes from cubic surfaces of P3 �VZ10;

é May fail if too many errors gather on one curve;

é Characterizing codes from restrictions may be really hard.
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Locally recoverable codes

Definition

A code C is said to be locally recoverable (LR) with locality ` if, for each i ∈ {1, . . . , n}, there is
a subset Ji ⊆ {1, . . . , n} \ {i}, #Ji = ` (called the recovery set), such that for any c ∈ C, we can
recover the coordinate ci knowing the values cj for j ∈ Ji.

Singleton bound for LRCs

A LR code with parameters [n, k, d] and locality ` satisfies d ≤ n− k−
⌈

k
`

⌉
+ 2.

é Reed–Solomon codes of dimension k have locality k (cannot be worse)

Many examples of good LRCs from algebraic geometry

• Reed–Muller codes are locally recoverable of locality ` = q− 1
• Barg, Tamo and Vladuts constructed LR codes on algebraic curves �BTV17

• ... and on surfaces?
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How to achieve local recoverability for codes from surfaces?

From a family of P–covering curves Ci ⊂ X s.t.

• P ⊆ ⋃ Ci(Fq) (P–covering),

• #(P ∩ Ci) = `+ 1;

any AG code C = C(X ,P , G) is LR with locality `, provided
that we know how to correct in the codes C|Ci

.

•
•

•

•

•
•

•
•
•

•

•

•

•

•

•

C1
C2

C3

In most constructions, Ci ' Cj and the restricted codes are equivalent (e.g. G∩ Ci ' G∩ Cj).

Alternative: fix an AG code C′ = C(C,P ′, G′) on the curves C ' Ci and consider

{c ∈ C(X ,P , G) | ∀i, c|Ci
∈ φi(C′)}.

LRCs on ruled surfaces Salgado, Varilly-Alvarado, Voloch �SVAV21

X

B
π

•
•

• • •
•

•
• • ••

•
• • •

•
•

• • • Fibers π−1({P}) ' P1 for every P ∈ B.
Take Ci = {fibers of Fq–points of B covering P}.

→ Design codes from X whose restrictions to the Ci are
Reed–Solomon codes of given degree.
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Quantum codes from classical linear codes: CSS codes

Definition

A quantum error-correcting code Q is a subspace of (Cq)⊗n. The length of Q is n and its
dimension is the dimension as a subspace. We say that Q has minimum distance d if it can
correct all quantum errors of weight less than or equal to b(d− 1)/2c.

Theorem (Calderbank and Shor ’96, Steane ’96)

Let C2 ⊆ C1 ⊆ Fn
q be linear codes of dimension k1 and k2. Let d1 and d⊥2 denote the minimum

distance of C1 and C⊥2 , respectively. Then, there exists a quantum code QC1,C2 , called CSS code,

with dimension k1 − k2 and minimum distance d ≥ min{d1, d⊥2 }.

Remark

Let C be a self-orthogonal [n, k, d]q linear code i.e. C⊆C⊥. Then taking C1 = C⊥ and C2 = C gives

a CSS code of dimension n− 2k and minimum distance d⊥.
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Quantum AG codes

Quantum codes from curves:

G ≤ G′ ⇒ C(X ,P , G) ⊆ C(X ,P , G′)

C(X ,P , G)⊥ = C(X ,P , H) for some H
the orthogonal of an AG code is an AG code

Ë Constructing self-orthogonal AG codes from
curves is “easy”

Ë Many constructions of quantum AG codes
from different families of curves

Asymptotic behavior of quantum AG codes:

Ë Using tower of curves we get
asymptotically good quantum codes �LP17

A quantum version of the Gilbert–Varshamov
bound exists

Ë Quantum AG codes can beat the quantum
GV bound �HMMMF20

Quantum codes from surfaces:

Ë Constructions have been done in particular cases (toric surfaces �Han12)

é Dealing with the dual code is much more difficult in general
the orthogonal of an AG code from a surface is not an AG code from the surface

In a series of papers Couvreur studied the duality theory of AG codes from surfaces.
The game is still open...
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Ë Constructions have been done in particular cases (toric surfaces �Han12)

é Dealing with the dual code is much more difficult in general
the orthogonal of an AG code from a surface is not an AG code from the surface

In a series of papers Couvreur studied the duality theory of AG codes from surfaces.
The game is still open...
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Something to take away?

AG codes from curves
Ë provide long codes with nice properties
Ë can be effectively implemented
Ë have many applications (quantum codes, LRCs, McEliece cryptosystem, Proof of Knowledge...)

(Leen Demuys’s talk!) (Ruben De Smet’s talk!)

AG codes from surfaces
Ë allow to construct longer codes
Ë have a geometric structure richer than curves, which give interesting properties (e.g. locality),
é lack of generic algorithms to encode and decode

We should study AG codes from surfaces and

• rise to the challenge of implementing them;

• exploring families of surfaces giving
good (classical and quantum) codes.

Thank you for your attention!
Questions? elena.berardini@math.u-bordeaux.fr
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