Algebraic Geometry codes in the sum-Rank metric

Elena Berardini and Xavier Caruso

CNRS, Institut de Mathématiques de Bordeaux

https://arxiv.org/abs/2303.08903

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 899987

Linear codes and codes in the Hamming metric

k a field (think about $k=\mathbb{F}_{q}$), \mathcal{H} a k-linear vector space endowed with a metric Linear code \mathcal{C} : k-vector subspace of \mathcal{H}
Parameters: length $n=\operatorname{dim}_{k} \mathcal{H}$, dimension $\delta=\operatorname{dim}_{k} \mathcal{C}$, minimum distance d (depends on the metric)
k a field (think about $k=\mathbb{F}_{q}$), \mathcal{H} a k-linear vector space endowed with a metric Linear code \mathcal{C} : k-vector subspace of \mathcal{H}
Parameters: length $n=\operatorname{dim}_{k} \mathcal{H}$, dimension $\delta=\operatorname{dim}_{k} \mathcal{C}$, minimum distance \boldsymbol{d} (depends on the metric)
Codes in the Hamming metric: k-vector subspaces of k^{n} endowed with $d(x, y):=\#\left\{i \mid x_{i} \neq y_{i}\right\}$
k a field (think about $k=\mathbb{F}_{q}$), \mathcal{H} a k-linear vector space endowed with a metric Linear code \mathcal{C} : k-vector subspace of \mathcal{H}
Parameters: length $n=\operatorname{dim}_{k} \mathcal{H}$, dimension $\delta=\operatorname{dim}_{k} \mathcal{C}$, minimum distance d (depends on the metric)
Codes in the Hamming metric: k-vector subspaces of k^{n} endowed with $d(x, y):=\#\left\{i \mid x_{i} \neq y_{i}\right\}$

Reed-Solomon (RS) codes:

k a field (think about $k=\mathbb{F}_{q}$), \mathcal{H} a k-linear vector space endowed with a metric
Linear code \mathcal{C} : k-vector subspace of \mathcal{H}
Parameters: length $n=\operatorname{dim}_{k} \mathcal{H}$, dimension $\delta=\operatorname{dim}_{k} \mathcal{C}$, minimum distance d (depends on the metric)
Codes in the Hamming metric: k-vector subspaces of k^{n} endowed with $d(x, y):=\#\left\{i \mid x_{i} \neq y_{i}\right\}$

Reed-Solomon (RS) codes:

- Optimal parameters: $\delta+d=n+1$ (Singleton bound: $\delta+d \leq n+1$)
Drawback: $n \leqslant q$
k a field (think about $k=\mathbb{F}_{q}$), \mathcal{H} a k-linear vector space endowed with a metric Linear code \mathcal{C} : k-vector subspace of \mathcal{H}
Parameters: length $n=\operatorname{dim}_{k} \mathcal{H}$, dimension $\delta=\operatorname{dim}_{k} \mathcal{C}$, minimum distance d (depends on the metric)
Codes in the Hamming metric: k-vector subspaces of k^{n} endowed with $d(x, y):=\#\left\{i \mid x_{i} \neq y_{i}\right\}$

Reed-Solomon (RS) codes:

\checkmark Optimal parameters: $\delta+d=n+1$ (Singleton bound: $\delta+d \leq n+1$)
Drawback: $n \leqslant q$

Algebraic Geometry (AG) codes:

$\mathcal{C}_{X}(\mathcal{P}, L(D)):=\left\{\left(f\left(P_{1}\right), f\left(P_{2}\right), \ldots, f\left(P_{n}\right)\right) \mid f \in L(D)\right\}$
k a field (think about $k=\mathbb{F}_{q}$), \mathcal{H} a k-linear vector space endowed with a metric
Linear code \mathcal{C} : k-vector subspace of \mathcal{H}
Parameters: length $n=\operatorname{dim}_{k} \mathcal{H}$, dimension $\delta=\operatorname{dim}_{k} \mathcal{C}$, minimum distance d (depends on the metric)
Codes in the Hamming metric: k-vector subspaces of k^{n} endowed with $d(x, y):=\#\left\{i \mid x_{i} \neq y_{i}\right\}$

Reed-Solomon (RS) codes:

\checkmark Optimal parameters: $\delta+d=n+1$ (Singleton bound: $\delta+d \leq n+1$)
Drawback: $n \leqslant q$

Algebraic Geometry (AG) codes:

$\mathcal{C}_{X}(\mathcal{P}, L(D)):=\left\{\left(f\left(P_{1}\right), f\left(P_{2}\right), \ldots, f\left(P_{n}\right)\right) \mid f \in L(D)\right\}$
\checkmark Good parameters: $n+1-g \leq \delta+d \leq n+1$
\checkmark Longer codes

General definitions

$$
\begin{aligned}
& \underline{V}=\left(V_{1}, \ldots, V_{s}\right) s \text {-uple of } k \text {-vector spaces } \\
& \qquad \mathcal{H}=\operatorname{End}_{k}(\underline{V}) \quad:=\underset{E_{i=1}}{\operatorname{End}_{k}\left(V_{1}\right) \times \cdots \times \operatorname{End}_{k}\left(V_{s}\right)} \begin{array}{l}
k \text {-linear morphisms } v_{i} \rightarrow V_{i}
\end{array}
\end{aligned}
$$

$$
\left(n_{i}=\operatorname{dim}_{k} V_{i}\right)
$$

General definitions

$$
\begin{aligned}
& \underline{V}=\left(V_{1}, \ldots, V_{s}\right) s \text {-uple of } k \text {-vector spaces } \\
& \qquad \mathcal{H}=\operatorname{End}_{k}(\underline{V}) \quad:=\underset{\operatorname{End}_{k}\left(V_{1}\right) \times \cdots \times \operatorname{End}_{k}\left(V_{s}\right)}{ } \begin{array}{l}
\text { k-linear morphisms } V_{i} \rightarrow V_{i}
\end{array}
\end{aligned}
$$

Definition

Let $\underline{\varphi}=\left(\varphi_{1}, \ldots, \varphi_{s}\right) \in \mathcal{H}$. The sum-rank weight of $\underline{\varphi}$ is $w_{\text {srk }}(\underline{\varphi}):=\sum_{i=1}^{s} r k\left(\varphi_{i}\right)$. The sum-rank distance between $\underline{\varphi}, \underline{\psi} \in \mathcal{H}$ is

$$
d_{s r k}(\underline{\varphi}, \underline{\psi}):=w_{s r k}(\underline{\varphi}-\underline{\psi}) .
$$

General definitions

$$
\begin{aligned}
& \underline{V}=\left(V_{1}, \ldots, V_{s}\right) \text { s-uple of } k \text {-vector spaces } \\
& \qquad \mathcal{H}=\operatorname{End}_{k}(\underline{V}) \quad:=\underset{\operatorname{End}_{k}\left(V_{1}\right) \times \cdots \times \operatorname{End}_{k}\left(V_{s}\right)}{ } \begin{array}{l}
\text { k-linear morphisms } V_{i} \rightarrow V_{i}
\end{array}
\end{aligned}
$$

Definition

Let $\underline{\varphi}=\left(\varphi_{1}, \ldots, \varphi_{s}\right) \in \mathcal{H}$. The sum-rank weight of $\underline{\varphi}$ is $w_{\text {srk }}(\underline{\varphi}):=\sum_{i=1}^{s} r k\left(\varphi_{i}\right)$.
The sum-rank distance between $\underline{\varphi}, \underline{\psi} \in \mathcal{H}$ is

$$
d_{s r k}(\underline{\varphi}, \underline{\psi}):=w_{s r k}(\underline{\varphi}-\underline{\psi}) .
$$

A code \mathcal{C} in the sum-rank metric is a k-linear subspace of \mathcal{H} endowed with the sum-rank distance.

General definitions

$\underline{V}=\left(V_{1}, \ldots, V_{s}\right) s$-uple of k-vector spaces

$$
\begin{array}{r}
\mathcal{H}=\operatorname{End}_{k}(\underline{V}):=\operatorname{End}_{k}\left(V_{1}\right) \times \cdots \times \operatorname{End}_{k}\left(V_{s}\right) \\
\text { k-vector space of dimension } \sum_{i=1}^{s} n_{i}^{2}
\end{array} \quad \begin{aligned}
& \text { k-linear morphisms } V_{i} \rightarrow V_{i}
\end{aligned}
$$

Definition

Let $\underline{\varphi}=\left(\varphi_{1}, \ldots, \varphi_{s}\right) \in \mathcal{H}$. The sum-rank weight of $\underline{\varphi}$ is $w_{\text {srk }}(\underline{\varphi}):=\sum_{i=1}^{s} r k\left(\varphi_{i}\right)$.
The sum-rank distance between $\underline{\varphi}, \underline{\psi} \in \mathcal{H}$ is

$$
d_{s r k}(\underline{\varphi}, \underline{\psi}):=w_{s r k}(\underline{\varphi}-\underline{\psi})
$$

A code \mathcal{C} in the sum-rank metric is a k-linear subspace of \mathcal{H} endowed with the sum-rank distance. Its length n is $\sum_{i=1}^{s} n_{i}^{2}$. Its dimension δ is $\operatorname{dim}_{k} \mathcal{C}$. Its minimum distance is

$$
d:=\min \left\{w_{\text {srk }}(\underline{\varphi}) \mid \underline{\varphi} \in \mathcal{C}, \underline{\varphi} \neq \underline{0}\right\} .
$$

General definitions

$$
\underline{V}=\left(V_{1}, \ldots, V_{s}\right) s \text {-uple of } k \text {-vector spaces }
$$

$$
\begin{array}{r}
\mathcal{H}=\operatorname{End}_{k}(\underline{V}):=\operatorname{End}_{k}\left(V_{1}\right) \times \cdots \times \operatorname{End}_{k}\left(V_{s}\right) \\
\text { k-vector space of dimension } \sum_{i=1}^{s} n_{i}^{2}
\end{array} \quad \begin{aligned}
& \text { k-linear morphisms } V_{i} \rightarrow V_{i}
\end{aligned}
$$

Definition

Let $\underline{\varphi}=\left(\varphi_{1}, \ldots, \varphi_{s}\right) \in \mathcal{H}$. The sum-rank weight of $\underline{\varphi}$ is $w_{\text {srk }}(\underline{\varphi}):=\sum_{i=1}^{s} r k\left(\varphi_{i}\right)$.
The sum-rank distance between $\underline{\varphi}, \underline{\psi} \in \mathcal{H}$ is

$$
d_{s r k}(\underline{\varphi}, \underline{\psi}):=w_{s r k}(\underline{\varphi}-\underline{\psi})
$$

A code \mathcal{C} in the sum-rank metric is a k-linear subspace of \mathcal{H} endowed with the sum-rank distance. Its length n is $\sum_{i=1}^{s} n_{i}^{2}$. Its dimension δ is $\operatorname{dim}_{k} \mathcal{C}$. Its minimum distance is

$$
d:=\min \left\{w_{\text {srk }}(\underline{\varphi}) \mid \underline{\varphi} \in \mathcal{C}, \underline{\varphi} \neq \underline{0}\right\} .
$$

$$
n_{i}=1 \forall i \rightsquigarrow \text { codes of length } s \text { in the Hamming metric }
$$

$\ell=$ finite extension of k of degree r

$$
\underline{V}=\left(V_{1}, \ldots, V_{s}\right), s \text {-uple of } \ell \text {-vector spaces }\left(\operatorname{dim}_{k} V_{i}=r\right) \rightsquigarrow \mathcal{H}=\operatorname{End}_{k}(\underline{V}) \text { is a } \ell \text {-vector space }
$$

$\ell=$ finite extension of k of degree r

$$
\underline{V}=\left(V_{1}, \ldots, V_{s}\right) \text {, s-uple of } \ell \text {-vector spaces }\left(\operatorname{dim}_{k} V_{i=r}\right) \rightsquigarrow \mathcal{H}=\operatorname{End}_{k}(\underline{V}) \text { is a } \ell \text {-vector space }
$$

$\rightsquigarrow \ell$-linear codes in the sum-rank metric: $\quad \ell$-linear subspaces $\mathcal{C} \subset \mathcal{H}$
$\rightsquigarrow \ell$-variants of the parameters:

$$
\left\{\begin{array}{lr}
n_{\ell}:=s r & \ell \text {-length } \\
\delta_{\ell}:=\operatorname{dim}_{\ell} \mathcal{C} & \ell \text {-dimension } \\
\text { the minimum distance stays unchanged }
\end{array}\right.
$$

$\ell=$ finite extension of k of degree r

$$
\underline{V}=\left(V_{1}, \ldots, V_{s}\right), \text { s-uple of } \ell \text {-vector spaces }\left(\operatorname{dim}_{k} V_{i}=r\right) \rightsquigarrow \mathcal{H}=\operatorname{End}_{k}(\underline{V}) \text { is a } \ell \text {-vector space }
$$

$\rightsquigarrow \ell$-linear codes in the sum-rank metric: $\quad \ell$-linear subspaces $\mathcal{C} \subset \mathcal{H}$
$\rightsquigarrow \ell$-variants of the parameters:

$$
\left\{\begin{array}{lr}
n_{\ell}:=s r & \ell \text {-length } \\
\delta_{\ell}:=\operatorname{dim}_{\ell} \mathcal{C} & \ell \text {-dimension } \\
\text { the minimum distance stays unchanged }
\end{array}\right.
$$

Singleton bound

The ℓ-parameters of \mathcal{C} satisfy

$$
d+\delta_{\ell} \leq n_{\ell}+1
$$

Codes with parameters attaining this bound are called Maximum Sum-Rank Distance (MSRD).

Ore polynomials and Linearized Reed-Solomon codes

ℓ field, $\Phi: \ell \rightarrow \ell$ a ring homomorphism, $\ell^{\Phi=1}=k,[\ell: k]=r$,
ℓ
\downarrow
k

Ore polynomials and Linearized Reed-Solomon codes

ℓ field, $\Phi: \ell \rightarrow \ell$ a ring homomorphism, $\ell^{\Phi=1}=k,[\ell: k]=r$,
The ring of Ore polynomials $\ell[T ; \Phi]$ is the ring whose elements are polynomials with coefficients in ℓ, with usual + and

$$
T \times a=\Phi(a) T \quad \forall a \in \ell .
$$

Ore polynomials and Linearized Reed-Solomon codes

ℓ field, $\Phi: \ell \rightarrow \ell$ a ring homomorphism, $\ell^{\Phi=1}=k,[\ell: k]=r$,
The ring of Ore polynomials $\ell[T ; \Phi]$ is the ring whose elements are polynomials with coefficients in ℓ, with usual + and

$$
T \times a=\Phi(a) T \quad \forall a \in \ell .
$$

$$
\text { ev: } \quad \begin{array}{rlll}
\ell[T ; \Phi] & \rightarrow & \operatorname{End}_{k}(\ell) \\
P & \mapsto & P(\Phi) .
\end{array}
$$

Ore polynomials and Linearized Reed-Solomon codes

ℓ field, $\Phi: \ell \rightarrow \ell$ a ring homomorphism, $\ell^{\Phi=1}=k,[\ell: k]=r$,

The ring of Ore polynomials $\ell[T ; \Phi]$ is the ring whose elements are polynomials with coefficients in ℓ, with usual + and

$$
\begin{aligned}
T \times a= & \Phi(a) T \quad \forall a \in \ell . \\
\mathrm{ev}_{c}: \quad \ell[T ; \Phi] & \rightarrow \quad \operatorname{End}_{k}(\ell) \\
P & \mapsto P(c \Phi) .
\end{aligned}
$$

Ore polynomials and Linearized Reed-Solomon codes

ℓ field, $\Phi: \ell \rightarrow \ell$ a ring homomorphism, $\ell^{\Phi=1}=k,[\ell: k]=r$,

Ore polynomials and Linearized Reed-Solomon codes

ℓ field, $\Phi: \ell \rightarrow \ell$ a ring homomorphism, $\ell^{\Phi=1}=k,[\ell: k]=r$,

The ring of Ore polynomials $\ell[T ; \Phi]$ is the ring whose elements are polynomials with coefficients in ℓ, with usual + and

$$
T \times a=\Phi(a) T \quad \forall a \in \ell .
$$

Linearized Reed-Solomon codes
(Martínez-Peñas, 2018)

$$
\text { for } \underline{c}=\left(c_{1}, \ldots, c_{s}\right) \in \ell^{s}
$$

$$
\text { and } \delta \in \mathbb{Z}
$$

$$
\mathrm{ev}_{\underline{c}}: \quad \ell[T ; \Phi]_{<\delta} \rightarrow \operatorname{End}_{k}(\ell)^{s},
$$

We define $\operatorname{LRS}(\delta, \underline{c})=\operatorname{ev}_{\underline{c}}\left(\ell[T ; \Phi]_{<\delta}\right)$.

Ore polynomials and Linearized Reed-Solomon codes

ℓ field, $\Phi: \ell \rightarrow \ell$ a ring homomorphism, $\ell^{\Phi=1}=k,[\ell: k]=r$,

The ring of Ore polynomials $\ell[T ; \Phi]$ is the ring whose elements are polynomials with coefficients in ℓ, with usual + and

$$
T \times a=\Phi(a) T \quad \forall a \in \ell .
$$

Linearized Reed-Solomon codes

for $\underline{c}=\left(c_{1}, \ldots, c_{s}\right) \in \ell^{s}$ such that $N_{\ell / k}\left(c_{i}\right) \neq N_{\ell / k}\left(c_{j}\right) \forall i \neq j$ and $\delta \in \mathbb{Z}$ such that $\delta \leq r s$ consider

$$
\begin{array}{rll}
\mathrm{ev}_{\underline{c}}: \quad \ell[T ; \Phi]_{<\delta} & \rightarrow & \operatorname{End}_{k}(\ell)^{s} \\
P & \mapsto & \left(P\left(c_{1} \Phi\right), \ldots, P\left(c_{s} \Phi\right)\right) .
\end{array}
$$

We define $\operatorname{LRS}(\delta, \underline{c})=\operatorname{ev}_{\underline{c}}\left(\ell[T ; \Phi]_{<\delta}\right)$. MSRD codes!

Ore polynomials and Linearized Reed-Solomon codes

ℓ field, $\Phi: \ell \rightarrow \ell$ a ring homomorphism, $\ell^{\Phi=1}=k,[\ell: k]=r$,

The ring of Ore polynomials $\ell[T ; \Phi]$ is the ring whose elements are polynomials with coefficients in ℓ, with usual + and

$$
T \times a=\Phi(a) T \quad \forall a \in \ell .
$$

Linearized Reed-Solomon codes

for $\underline{c}=\left(c_{1}, \ldots, c_{s}\right) \in \ell^{s}$ such that $N_{\ell / k}\left(c_{i}\right) \neq N_{\ell / k}\left(c_{j}\right) \forall i \neq j$ and $\delta \in \mathbb{Z}$ such that $\delta \leq r s$ consider

$$
\left.\mathrm{ev}_{\underline{\underline{c}}}: \quad \ell[T ; \Phi]_{<\delta} \quad \rightarrow \operatorname{End}_{k}(\ell)^{s}, \quad\left(c_{1} \Phi\right), \ldots, P\left(c_{s} \Phi\right)\right) .
$$

We define $\operatorname{LRS}(\delta, \underline{c})=\operatorname{ev}_{\underline{c}}\left(\ell[T ; \Phi]_{<\delta}\right)$. MSRD codes!
$\Rightarrow s \leq \operatorname{Card}(k) \rightsquigarrow$ same problem as Reed-Solomon codes
ℓ field, $\Phi: \ell \rightarrow \ell$ a ring homomorphism, $\ell^{\Phi=1}=k,[\ell: k]=r$,
ℓ
\downarrow
k

The ring of Ore polynomials $\ell[T ; \Phi]$ is the ring whose elements are polynomials with coefficients in ℓ, with usual + and

$$
T \times a=\Phi(a) T \quad \forall a \in \ell
$$

Linearized Reed-Solomon codes

for $\underline{c}=\left(c_{1}, \ldots, c_{s}\right) \in \ell^{s}$ such that $N_{\ell / k}\left(c_{i}\right) \neq N_{\ell / k}\left(c_{j}\right) \forall i \neq j$ and $\delta \in \mathbb{Z}$ such that $\delta \leq r s$ consider

$$
\begin{array}{rll}
\mathrm{ev}_{\underline{c}}: \quad \ell[T ; \Phi]_{<\delta} & \rightarrow \operatorname{End}_{k}(\ell)^{s} \\
P & \mapsto & \left.\mapsto\left(c_{1} \Phi\right), \ldots, P\left(c_{s} \Phi\right)\right)
\end{array}
$$

We define $\operatorname{LRS}(\delta, \underline{c})=\operatorname{ev}_{\underline{c}}\left(\ell[T ; \Phi]_{<\delta}\right)$. MSRD codes!
$\Rightarrow s \leq \operatorname{Card}(k) \rightsquigarrow$ same problem as Reed-Solomon codes
As in the Hamming case, we can try to overcome the problem using algebraic curves Main idea: consider Ore polynomials with coefficients in the function field of a curve

Definition

Let X be a nice curve, K its function field. A divisor on X is a formal finite sum

$$
D=\sum_{\mathfrak{p} \in X} n_{\mathfrak{p}} \mathfrak{p} \quad \text { with } n_{\mathfrak{p}} \in \mathbb{Z} \text { almost all zero. }
$$

The group of divisors on X is denoted by $\operatorname{Div}(X)$.
$D \in \operatorname{Div}(X)$ is positive, $D \geq 0$, if $n_{\mathfrak{p}} \geq 0 \forall \mathfrak{p}$. The degree of D is $\operatorname{deg}_{X}(D)=\sum_{\mathfrak{p} \in X} n_{\mathfrak{p}} \operatorname{deg}_{X}(\mathfrak{p})$.

Definition

Let X be a nice curve, K its function field. A divisor on X is a formal finite sum

$$
D=\sum_{\mathfrak{p} \in X} n_{\mathfrak{p}} \mathfrak{p} \quad \text { with } n_{\mathfrak{p}} \in \mathbb{Z} \text { almost all zero. }
$$

The group of divisors on X is denoted by $\operatorname{Div}(X)$.
$D \in \operatorname{Div}(X)$ is positive, $D \geq 0$, if $n_{\mathfrak{p}} \geq 0 \forall \mathfrak{p}$. The degree of D is $\operatorname{deg}_{X}(D)=\sum_{\mathfrak{p} \in X} n_{\mathfrak{p}} \operatorname{deg}_{x}(\mathfrak{p})$.
The Riemann-Roch space associated with D is

$$
L_{X}(D):=\left\{x \in K^{\times} \mid(x)+D \geq 0\right\} \cup\{0\},
$$

where $(x)=\sum_{\mathfrak{p} \in X} v_{\mathfrak{p}}(x) \mathfrak{p}$ is the principal divisor associated to a nonzero function $x \in K$.

Definition

Let X be a nice curve, K its function field. A divisor on X is a formal finite sum

$$
D=\sum_{\mathfrak{p} \in X} n_{\mathfrak{p}} \mathfrak{p} \quad \text { with } n_{\mathfrak{p}} \in \mathbb{Z} \text { almost all zero. }
$$

The group of divisors on X is denoted by $\operatorname{Div}(X)$.
$D \in \operatorname{Div}(X)$ is positive, $D \geq 0$, if $n_{\mathfrak{p}} \geq 0 \forall \mathfrak{p}$. The degree of D is $\operatorname{deg}_{X}(D)=\sum_{\mathfrak{p} \in X} n_{\mathfrak{p}} \operatorname{deg}_{x}(\mathfrak{p})$.
The Riemann-Roch space associated with D is

$$
L_{x}(D):=\left\{x \in K^{\times} \mid(x)+D \geq 0\right\} \cup\{0\}
$$

where $(x)=\sum_{\mathfrak{p} \in X} v_{\mathfrak{p}}(x) \mathfrak{p}$ is the principal divisor associated to a nonzero function $x \in K$.

Riemann-Roch theorem

Let K_{X} denotes a canonical divisor on X. For any divisor $D \in \operatorname{Div}(X)$ we have

$$
\operatorname{dim}_{k} L_{x}(D)=\operatorname{deg}_{x}(D)+1-g_{x}+\operatorname{dim}_{k} L_{x}\left(K_{X}-D\right),
$$

π a Galois cover with cyclic Galois group of order r $L:=k(Y)$ the fields of functions of $Y, \operatorname{Gal}(L / K)=\langle\Phi\rangle$

π a Galois cover with cyclic Galois group of order r $L:=k(Y)$ the fields of functions of $Y, \operatorname{Gal}(L / K)=\langle\Phi\rangle$ For $\mathfrak{p} \in X$ we have the decomposition $L_{\mathfrak{p}}:=K_{\mathfrak{p}} \otimes_{K} L \simeq \prod_{\mathfrak{q} \mid \mathfrak{p}} L_{\mathfrak{q}}$.

π a Galois cover with cyclic Galois group of order r $L:=k(Y)$ the fields of functions of $Y, \operatorname{Gal}(L / K)=\langle\Phi\rangle$

For $\mathfrak{p} \in X$ we have the decomposition $L_{\mathfrak{p}}:=K_{\mathfrak{p}} \otimes_{K} L \simeq \prod_{\mathfrak{q} \mid \mathfrak{p}} L_{\mathfrak{q}}$.
For $x \in K^{\times}$, consider the algebra

$$
D_{L, x}:=L[T ; \Phi] /\left(T^{r}-x\right)
$$

and for all $\mathfrak{p} \in X$, the algebras $D_{L_{\mathfrak{p}}, x}:=K_{\mathfrak{p}} \otimes_{K} D_{L, x}=L_{\mathfrak{p}}[T ; \Phi] /\left(T^{r}-x\right)$.

π a Galois cover with cyclic Galois group of order r $L:=k(Y)$ the fields of functions of $Y, \operatorname{Gal}(L / K)=\langle\Phi\rangle$

For $\mathfrak{p} \in X$ we have the decomposition $L_{\mathfrak{p}}:=K_{\mathfrak{p}} \otimes_{K} L \simeq \prod_{\mathfrak{q} \mid \mathfrak{p}} L_{\mathfrak{q}}$.
For $x \in K^{\times}$, consider the algebra

$$
D_{L, x}:=L[T ; \Phi] /\left(T^{r}-x\right)
$$

and for all $\mathfrak{p} \in X$, the algebras $D_{L_{\mathfrak{p}}, x}:=K_{\mathfrak{p}} \otimes_{K} D_{L, x}=L_{\mathfrak{p}}[T ; \Phi] /\left(T^{r}-x\right)$.
\square principal divisors associated to $f \in D_{L, x}$ \rightsquigarrow need to define a valuation
\square Riemann-Roch spaces of $D_{L, x}$a Riemann-Roch theoremequivalent of "evaluate at a rational point"

π a Galois cover with cyclic Galois group of order r $L:=k(Y)$ the fields of functions of $Y, \operatorname{Gal}(L / K)=\langle\Phi\rangle$
For $\mathfrak{p} \in X$ we have the decomposition $L_{\mathfrak{p}}:=K_{\mathfrak{p}} \otimes_{K} L \simeq \prod_{\mathfrak{q} \mid \mathfrak{p}} L_{\mathfrak{q}}$.

For $x \in K^{\times}$, consider the algebra

$$
D_{L, x}:=L[T ; \Phi] /\left(T^{r}-x\right)
$$

and for all $\mathfrak{p} \in X$, the algebras $D_{L_{\mathfrak{p}}, x}:=K_{\mathfrak{p}} \otimes_{K} D_{L, x}=L_{\mathfrak{p}}[T ; \Phi] /\left(T^{r}-x\right)$.
Define the valuation map $w_{\mathfrak{q}_{j}, x}: D_{L_{\mathfrak{p}}, x} \rightarrow \frac{1}{r} \mathbb{Z} \sqcup\{\infty\}\left(1 \leq j \leq m_{\mathfrak{p}}\right)$: for $f=f_{0}+f_{1} T+\cdots+f_{r-1} T^{r-1}$,

$$
w_{\mathfrak{q}, x}(f)=\min _{0 \leq i<r}\left(\frac{v_{\mathfrak{q}}\left(f_{i}\right)}{e_{\mathfrak{q}}}+i \cdot \frac{v_{\mathfrak{p}}(x)}{r}\right),
$$

where $e_{\mathfrak{q}}$ denotes the ramification index of \mathfrak{q}.

π a Galois cover with cyclic Galois group of order r $L:=k(Y)$ the fields of functions of $Y, \operatorname{Gal}(L / K)=\langle\Phi\rangle$
For $\mathfrak{p} \in X$ we have the decomposition $L_{\mathfrak{p}}:=K_{\mathfrak{p}} \otimes_{K} L \simeq \prod_{\mathfrak{q} \mid \mathfrak{p}} L_{\mathfrak{q}}$.

For $x \in K^{\times}$, consider the algebra

$$
D_{L, x}:=L[T ; \Phi] /\left(T^{r}-x\right)
$$

and for all $\mathfrak{p} \in X$, the algebras $D_{L_{\mathfrak{p}}, x}:=K_{\mathfrak{p}} \otimes_{K} D_{L, x}=L_{\mathfrak{p}}[T ; \Phi] /\left(T^{r}-x\right)$.
Define the valuation map $w_{\mathfrak{q}_{j}, x}: D_{L_{\mathfrak{p}}, x} \rightarrow \frac{1}{r} \mathbb{Z} \sqcup\{\infty\}\left(1 \leq j \leq m_{\mathfrak{p}}\right)$: for $f=f_{0}+f_{1} T+\cdots+f_{r-1} T^{r-1}$,

$$
w_{\mathfrak{q}, x}(f)=\min _{0 \leq i<r}\left(\frac{v_{\mathfrak{q}}\left(f_{i}\right)}{e_{\mathfrak{q}}}+i \cdot \frac{v_{\mathfrak{p}}(x)}{r}\right)
$$

where $e_{\mathfrak{q}}$ denotes the ramification index of \mathfrak{q}.

$$
\Lambda_{L_{p}, x}:=\left\{f \in D_{L_{p}, x} \mid w_{\mathfrak{q}_{j}, x}(f) \geq 0\right\}
$$

π a Galois cover with cyclic Galois group of order r $L:=k(Y)$ the fields of functions of $Y, \operatorname{Gal}(L / K)=\langle\Phi\rangle$
For $\mathfrak{p} \in X$ we have the decomposition $L_{\mathfrak{p}}:=K_{\mathfrak{p}} \otimes_{K} L \simeq \prod_{\mathfrak{q} \mid \mathfrak{p}} L_{\mathfrak{q}}$.

For $x \in K^{\times}$, consider the algebra

$$
D_{L, x}:=L[T ; \Phi] /\left(T^{r}-x\right)
$$

and for all $\mathfrak{p} \in X$, the algebras $D_{L_{\mathfrak{p}}, x}:=K_{\mathfrak{p}} \otimes_{K} D_{L, x}=L_{\mathfrak{p}}[T ; \Phi] /\left(T^{r}-x\right)$.
Define the valuation map $w_{\mathfrak{q}_{j}, x}: D_{L_{p}, x} \rightarrow \frac{1}{r} \mathbb{Z} \sqcup\{\infty\}\left(1 \leq j \leq m_{p}\right)$: for $f=f_{0}+f_{1} T+\cdots+f_{r-1} T^{r-1}$,

$$
w_{\mathfrak{q}, x}(f)=\min _{0 \leq i<r}\left(\frac{v_{\mathfrak{q}}\left(f_{i}\right)}{e_{\mathfrak{q}}}+i \cdot \frac{v_{\mathfrak{p}}(x)}{r}\right)
$$

where $e_{\mathfrak{q}}$ denotes the ramification index of \mathfrak{q}.

$$
\Lambda_{L_{p}, x}:=\left\{f \in D_{L_{\mathfrak{p}}, x} \mid w_{\mathfrak{q}_{j}, x}(f) \geq 0\right\}
$$

For $\mathfrak{p} \in X, e_{\mathfrak{p}} w_{\mathfrak{q}, x}(f) \in \frac{1}{b_{\mathfrak{p}}} \mathbb{Z}$ where $b_{\mathfrak{p}}$ is the denominator of $\rho_{\mathfrak{p}}=\frac{e_{\mathfrak{p}} \cdot v_{\mathfrak{p}}(x)}{r}$ after reduction

Definition (Riemann-Roch spaces of $D_{L, x}$)

Let $E=\sum_{\mathfrak{q} \in Y} n_{\mathfrak{q}} \mathfrak{q} \in \operatorname{Div}_{\mathbb{Q}}(Y):=\operatorname{Div}(Y) \otimes \mathbb{Q}$, with $n_{\mathfrak{q}} \in \frac{1}{b_{\mathfrak{p}}} \mathbb{Z}$ where $\mathfrak{p}=\pi(\mathfrak{q})$.
Define the Riemann-Roch space of $D_{L, x}$ associated with E as

$$
\Lambda_{L, x}(E):=\left\{f \in D_{L, x} \mid e_{\mathfrak{q}} w_{\mathfrak{q}, x}(f)+n_{\mathfrak{q}} \geq 0 \text { for all } \mathfrak{q} \in Y\right\} .
$$

Definition (Riemann-Roch spaces of $D_{L, x}$)

Let $E=\sum_{\mathfrak{q} \in Y} n_{\mathfrak{q}} \mathfrak{q} \in \operatorname{Div}_{\mathbb{Q}}(Y):=\operatorname{Div}(Y) \otimes \mathbb{Q}$, with $n_{\mathfrak{q}} \in \frac{1}{b_{\mathfrak{p}}} \mathbb{Z}$ where $\mathfrak{p}=\pi(\mathfrak{q})$.
Define the Riemann-Roch space of $D_{L, x}$ associated with E as

$$
\Lambda_{L, x}(E):=\left\{f \in D_{L, x} \mid e_{\mathfrak{q}} w_{\mathfrak{q}, x}(f)+n_{\mathfrak{q}} \geq 0 \text { for all } \mathfrak{q} \in Y\right\} .
$$

$\Rightarrow \Lambda_{L, x}(E)=\bigoplus_{i=0}^{r-1} L_{Y}\left(E_{i}\right) \cdot T^{i}$, where $E_{i}:=\sum_{\mathfrak{q} \in Y}\left\lfloor n_{\mathfrak{q}}+i \cdot \rho_{\pi(\mathfrak{q})}\right\rfloor \mathfrak{q} \in \operatorname{Div}(Y) \quad(0 \leq i<r)$.

Definition (Riemann-Roch spaces of $D_{L, x}$)

Let $E=\sum_{\mathfrak{q} \in Y} n_{\mathfrak{q}} \mathfrak{q} \in \operatorname{Div}_{\mathbb{Q}}(Y):=\operatorname{Div}(Y) \otimes \mathbb{Q}$, with $n_{\mathfrak{q}} \in \frac{1}{b_{\mathfrak{p}}} \mathbb{Z}$ where $\mathfrak{p}=\pi(\mathfrak{q})$.
Define the Riemann-Roch space of $D_{L, x}$ associated with E as

$$
\Lambda_{L, x}(E):=\left\{f \in D_{L, x} \mid e_{\mathfrak{q}} w_{\mathfrak{q}, x}(f)+n_{\mathfrak{q}} \geq 0 \text { for all } \mathfrak{q} \in Y\right\} .
$$

$\Rightarrow \Lambda_{L, x}(E)=\bigoplus_{i=0}^{r-1} L_{Y}\left(E_{i}\right) \cdot T^{i}$, where $E_{i}:=\sum_{\mathfrak{q} \in Y}\left\lfloor n_{\mathfrak{q}}+i \cdot \rho_{\pi(\mathfrak{q})}\right\rfloor \mathfrak{q} \in \operatorname{Div}(Y) \quad(0 \leq i<r)$.
Lemma: We have $\sum_{i=0}^{r-1} \operatorname{deg}_{Y}\left(E_{i}\right)=r \cdot \operatorname{deg}_{Y}(E)-\frac{r^{2}}{2} \sum_{\mathfrak{p} \in X} \frac{b_{\mathfrak{p}}-1}{b_{\mathfrak{p}} e_{\mathfrak{p}}} \operatorname{deg}_{X}(\mathfrak{p})$.

Definition (Riemann-Roch spaces of $D_{L, x}$)

Let $E=\sum_{\mathfrak{q} \in Y} n_{\mathfrak{q}} \mathfrak{q} \in \operatorname{Div}_{\mathbb{Q}}(Y):=\operatorname{Div}(Y) \otimes \mathbb{Q}$, with $n_{\mathfrak{q}} \in \frac{1}{b_{\mathfrak{p}}} \mathbb{Z}$ where $\mathfrak{p}=\pi(\mathfrak{q})$.
Define the Riemann-Roch space of $D_{L, x}$ associated with E as

$$
\Lambda_{L, x}(E):=\left\{f \in D_{L, x} \mid e_{\mathfrak{q}} w_{\mathfrak{q}, x}(f)+n_{\mathfrak{q}} \geq 0 \text { for all } \mathfrak{q} \in Y\right\} .
$$

$\Rightarrow \Lambda_{L, x}(E)=\bigoplus_{i=0}^{r-1} L_{Y}\left(E_{i}\right) \cdot T^{i}$, where $E_{i}:=\sum_{\mathfrak{q} \in Y}\left\lfloor n_{\mathfrak{q}}+i \cdot \rho_{\pi(\mathfrak{q})}\right\rfloor \mathfrak{q} \in \operatorname{Div}(Y) \quad(0 \leq i<r)$.
Lemma: We have $\sum_{i=0}^{r-1} \operatorname{deg}_{Y}\left(E_{i}\right)=r \cdot \operatorname{deg}_{Y}(E)-\frac{r^{2}}{2} \sum_{\mathfrak{p} \in X} \frac{b_{\mathfrak{p}}-1}{b_{\mathfrak{p}} e_{\mathfrak{p}}} \operatorname{deg}_{X}(\mathfrak{p})$.

Riemann's inequality for $\Lambda_{L, x}(E)$

For a divisor $E=\sum_{\mathfrak{q} \in Y} n_{\mathfrak{q}} \mathfrak{q} \in \operatorname{Div}_{\mathbb{Q}}(Y)$ the space $\Lambda_{L, x}(E)$ is finite dimensional over k and

$$
\operatorname{dim}_{k} \Lambda_{L, x}(E) \geq r \cdot \operatorname{deg}_{Y}(E)-r \cdot\left(g_{Y}-1\right)-\frac{r^{2}}{2} \sum_{\mathfrak{p} \in X} \frac{b_{\mathfrak{p}}-1}{b_{\mathfrak{p}} e_{\mathfrak{p}}} \operatorname{deg}_{X}(\mathfrak{p})
$$

Code's construction

Let $\mathfrak{p} \in X$ rational, $t_{\mathfrak{p}}$ a uniformizer $\left(K_{p} \simeq k((t))\right), x \in K^{\times}$

Code's construction

Let $\mathfrak{p} \in X$ rational, $t_{\mathfrak{p}}$ a uniformizer $\left(K_{\mathfrak{p}} \simeq k((t))\right), x \in K^{\times}$
if x is a nonzero norm in $L_{\mathfrak{p}} / K_{\mathfrak{p}}$, more precisely $\exists u_{p}=\left(u_{q}\right)_{q \mid \mathfrak{p}} \in L_{p}^{\times}$s.t. $x=\prod_{q \mid \mathfrak{p}} N_{L_{q} / K_{p}}\left(u_{q}\right)$ and
$\forall \mathfrak{q}, v_{p}\left(u_{q}\right)=v$, then

$$
\begin{aligned}
\varepsilon_{\mathfrak{p}}: \quad \Lambda_{L_{p}, x} & \xrightarrow{\simeq} \operatorname{End}_{\mathcal{K}_{\mathfrak{p}}}\left(\mathcal{O}_{L_{p}}\right) \\
f & \mapsto f\left(u_{\mathfrak{p}} \Phi\right) .
\end{aligned}
$$

Let $\mathfrak{p} \in X$ rational, $t_{\mathfrak{p}}$ a uniformizer $\left(K_{p} \simeq k((t))\right), x \in K^{\times}$
if x is a nonzero norm in $L_{p} / K_{\mathfrak{p}}$, more precisely $\exists u_{p}=\left(u_{q}\right)_{q \mid p} \in L_{p}^{\times}$s.t. $x=\prod_{q \mid p} N_{L_{q} / K_{p}}\left(u_{q}\right)$ and $\forall \mathfrak{q}, v_{\mathfrak{p}}\left(u_{\mathfrak{q}}\right)=v$, then

$$
\begin{array}{rlll}
\bar{\varepsilon}_{\mathfrak{p}}: \quad \Lambda_{L_{\mathfrak{p}}, x} & \xrightarrow{\simeq} \operatorname{End}_{\mathcal{O}_{\kappa_{\mathfrak{p}}}\left(\mathcal{O}_{L_{\mathfrak{p}}}\right)} & \xrightarrow{\text { red }} & \operatorname{End}_{k}\left(\mathcal{O}_{L_{\mathfrak{p}}} / t_{\mathfrak{p}} \mathcal{O}_{L_{\mathfrak{p}}}\right)=: \operatorname{End}_{k}\left(V_{\mathfrak{p}}\right) \\
f & \mapsto f\left(u_{\mathfrak{p}} \Phi\right) & \mapsto f\left(u_{\mathfrak{p}} \Phi\right) \bmod t_{\mathfrak{p}}
\end{array}
$$

Let $\mathfrak{p} \in X$ rational, $t_{\mathfrak{p}}$ a uniformizer $\left(K_{p} \simeq k((t))\right), x \in K^{\times}$
if x is a nonzero norm in $L_{p} / K_{\mathfrak{p}}$, more precisely $\exists u_{p}=\left(u_{q}\right)_{q \mid p} \in L_{p}^{\times}$s.t. $x=\prod_{q \mid p} N_{L_{q} / K_{p}}\left(u_{q}\right)$ and $\forall \mathfrak{q}, v_{p}\left(u_{q}\right)=v$, then

$$
\begin{array}{rlll}
\bar{\varepsilon}_{\mathfrak{p}}: \quad \Lambda_{L_{\mathfrak{p}}, x} & \xrightarrow{\simeq} \operatorname{End}_{\mathcal{O}_{\mathfrak{p}}}\left(\mathcal{O}_{L_{\mathfrak{p}}}\right) & \xrightarrow{\text { red }} & \operatorname{End}_{k}\left(\mathcal{O}_{L_{\mathfrak{p}}} / t_{\mathfrak{p}} \mathcal{O}_{L_{\mathfrak{p}}}\right)=: \operatorname{End}_{k}\left(V_{\mathfrak{p}}\right) \\
f & \mapsto & \mapsto\left(u_{\mathfrak{p}} \Phi\right) & \mapsto
\end{array} f\left(u_{\mathfrak{p}} \Phi\right) \bmod t_{\mathfrak{p}} .
$$

Code's construction

Let $\mathfrak{p} \in X$ rational, $t_{\mathfrak{p}}$ a uniformizer $\left(K_{\mathfrak{p}} \simeq k((t))\right), x \in K^{\times}$
if x is a nonzero norm in $L_{p} / K_{\mathfrak{p}}$, more precisely $\exists u_{p}=\left(u_{q}\right)_{q \mid p} \in L_{p}^{\times}$s.t. $x=\prod_{q \mid p} N_{L_{q} / K_{p}}\left(u_{q}\right)$ and $\forall \mathfrak{q}, v_{p}\left(u_{q}\right)=v$, then

$$
\begin{array}{rlll}
\bar{\varepsilon}_{\mathfrak{p}}: \quad \Lambda_{L_{\mathfrak{p}}, x} & \xrightarrow{\simeq} \operatorname{End}_{\mathcal{O}_{\kappa_{\mathfrak{p}}}}\left(\mathcal{O}_{L_{\mathfrak{p}}}\right) & \xrightarrow{\text { red }} & \operatorname{End}_{k}\left(\mathcal{O}_{L_{\mathfrak{p}}} / t_{\mathfrak{p}} \mathcal{O}_{L_{\mathfrak{p}}}\right)=: \operatorname{End}_{k}\left(V_{\mathfrak{p}}\right) \\
& \mapsto\left(u_{\mathfrak{p}} \Phi\right) & \mapsto\left(u_{\mathfrak{p}} \Phi\right) \bmod t_{\mathfrak{p}}
\end{array}
$$

$$
\text { if } \mathfrak{p} \notin \pi(\operatorname{supp}(E)) \Rightarrow \Lambda_{L_{\mathfrak{p}}, x}(E) \subseteq \Lambda_{L_{\mathfrak{p}}, x}
$$

Linearized Algebraic Geometry codes

Let $E=\sum_{\mathfrak{q} \in Y} n_{\mathfrak{q}} \mathfrak{q} \in \operatorname{Div}_{\mathbb{Q}}(Y)$. Chose $x \in K$ and $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}$ rational places on X such that the hypotheses hold. Consider

$$
\begin{array}{rlll}
\alpha: \quad \Lambda_{L, x}(E) & \longrightarrow & \prod_{i=1}^{s} \operatorname{End}_{k}\left(V_{\mathfrak{p}_{i}}\right) \\
f & \mapsto & \left(\bar{\varepsilon}_{\mathfrak{p}_{i}}(f)\right)_{1 \leq i \leq s^{.}}
\end{array}
$$

The code $\mathcal{C}\left(x ; E ; \mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}\right)$ is defined as the image of α.

We study the parameters of the k-linear code \mathcal{C} in $\prod_{i=1}^{s} \operatorname{End}_{k}\left(V_{\mathfrak{p}_{i}}\right)$.

We study the parameters of the k-linear code \mathcal{C} in $\prod_{i=1}^{s} \operatorname{End}_{k}\left(V_{\mathfrak{p}_{i}}\right)$.
The length is $n=s r^{2}$
$\left(\operatorname{dim}_{k} V_{\mathfrak{p}_{i}}=r\right)$

We study the parameters of the k-linear code \mathcal{C} in $\prod_{i=1}^{s} \operatorname{End}_{k}\left(V_{\mathfrak{p}_{i}}\right)$.
The length is $n=s r^{2}$

$$
\left(\operatorname{dim}_{k} V_{\mathfrak{p}_{i}}=r\right)
$$

Theorem (B., Caruso, 2023)

Assume $\operatorname{deg}_{Y}(E)<$ sr. Assume the previous hypotheses and that $D_{L, x}$ contains no nonzero divisors. Then, the dimension δ and the minimum distance d of $\mathcal{C}\left(x ; E ; \mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}\right)$ satisfy

$$
\begin{aligned}
& \delta \geq r \cdot \operatorname{deg}_{Y}(E)-r \cdot\left(g_{Y}-1\right)-\frac{r^{2}}{2} \sum_{\mathfrak{p} \in X} \frac{b_{\mathfrak{p}}-1}{b_{\mathfrak{p}} e_{\mathfrak{p}}} \operatorname{deg}_{X}(\mathfrak{p}), \\
& d \geq s r-\operatorname{deg}_{Y}(E) .
\end{aligned}
$$

We study the parameters of the k-linear code \mathcal{C} in $\prod_{i=1}^{s} \operatorname{End}_{k}\left(V_{\mathfrak{p}_{i}}\right)$.
The length is $n=s r^{2}$

$$
\left(\operatorname{dim}_{k} V_{\mathfrak{p}_{i}}=r\right)
$$

Theorem (B., Caruso, 2023)

Assume $\operatorname{deg}_{Y}(E)<$ sr. Assume the previous hypotheses and that $D_{L, x}$ contains no nonzero divisors. Then, the dimension δ and the minimum distance d of $\mathcal{C}\left(x ; E ; \mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}\right)$ satisfy

$$
\begin{aligned}
& \delta \geq r \cdot \operatorname{deg}_{Y}(E)-r \cdot\left(g_{Y}-1\right)-\frac{r^{2}}{2} \sum_{\mathfrak{p} \in X} \frac{b_{\mathfrak{p}}-1}{b_{\mathfrak{p}} e_{\mathfrak{p}}} \operatorname{deg}_{X}(\mathfrak{p}), \\
& d \geq s r-\operatorname{deg}_{Y}(E) .
\end{aligned}
$$

Singleton bound:

$$
r d+\delta \leq n+r
$$

We have:

$$
r d+\delta \geq n+r-\left(r \cdot g_{Y}+\frac{r^{2}}{2} \sum_{\mathfrak{p} \in X} \frac{b_{p}-1}{b_{p} e_{\mathfrak{p}}} \operatorname{deg}_{X}(\mathfrak{p})\right)
$$

Let ℓ be a finite cyclic extension of k of order r.

Let ℓ be a finite cyclic extension of k of order r.
Take $Y=$ Spec $\ell \times{ }_{\text {Spec } k} X$ (cyclic Galois cover of X of degree r)

The case of isotrivial covers

Let ℓ be a finite cyclic extension of k of order r.
Take $Y=$ Spec $\ell \times{ }_{\text {Spec } k} X$ (cyclic Galois cover of X of degree r)

Residue field of any place of Y is a ℓ-algebra \Rightarrow the code $\mathcal{C}\left(x ; E ; \mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}\right)$ is ℓ-linear

Let ℓ be a finite cyclic extension of k of order r.
Take $Y=$ Spec $\ell \times_{\text {Spec } k} X$ (cyclic Galois cover of X of degree r)

Residue field of any place of Y is a ℓ-algebra \Rightarrow the code $\mathcal{C}\left(x ; E ; \mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}\right)$ is ℓ-linear

ℓ-parameters of the code

For the code $\mathcal{C}\left(x ; E ; \mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}\right)$ with $x, \mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}, E$ satisfying the hypotheses, we have

- $n_{\ell}=s r$,
- $\delta_{\ell} \geq \operatorname{deg}_{Y}(E)-r \cdot(g X-1)-\frac{r}{2} \sum_{\mathfrak{p} \in X} \frac{b_{\mathfrak{p}}-1}{b_{\mathfrak{p}}} \operatorname{deg}_{X}(\mathfrak{p})$,
- $d \geq s r-\operatorname{deg}_{Y}(E)$.

Let ℓ be a finite cyclic extension of k of order r.
Take $Y=$ Spec $\ell \times{ }_{\text {Spec } k} X$ (cyclic Galois cover of X of degree r)
k
Residue field of any place of Y is a ℓ-algebra \Rightarrow the code $\mathcal{C}\left(x ; E ; \mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}\right)$ is ℓ-linear

ℓ-parameters of the code

For the code $\mathcal{C}\left(x ; E ; \mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}\right)$ with $x, \mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}, E$ satisfying the hypotheses, we have

- $n_{\ell}=s r$,
- $\delta_{\ell} \geq \operatorname{deg}_{Y}(E)-r \cdot\left(g_{X}-1\right)-\frac{r}{2} \sum_{\mathfrak{p} \in X} \frac{b_{\mathfrak{p}}-1}{b_{\mathfrak{p}}} \operatorname{deg}_{X}(\mathfrak{p})$,
- $d \geq s r-\operatorname{deg}_{Y}(E)$.
$X=\mathbb{P}_{k}^{1}, Y=\mathbb{P}_{\ell}^{1}, E=\frac{\delta}{r} \cdot \infty \in \operatorname{Div}_{\mathbb{Q}}(Y) \rightsquigarrow$ linearized Reed-Solomon codes! Our lower bounds \Rightarrow MSRD codes
- linearized AG codes in the general framework of central simple algebras
- linearized AG codes in the general framework of central simple algebras
- decoding problem (decoding algorithm for linearized Reed-Solomon codes \checkmark)
- linearized AG codes in the general framework of central simple algebras
- decoding problem (decoding algorithm for linearized Reed-Solomon codes \checkmark)
- duality theorem for the codes $\mathcal{C}\left(x ; E ; \mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}\right)$ (require to develop the theory of differential forms and residues in our framework)
- linearized AG codes in the general framework of central simple algebras
- decoding problem (decoding algorithm for linearized Reed-Solomon codes \checkmark)
- duality theorem for the codes $\mathcal{C}\left(x ; E ; \mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}\right)$ (require to develop the theory of differential forms and residues in our framework)

Thanks for your attention!
Questions?
elena.berardini@math.u-bordeaux.fr

