ALGEBRAIC GEOMETRY CODES IN THE SUM-RANK METRIC

Elena Berardini and X.Caruso

CNRS, Institut de Mathématiques de Bordeaux

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 899987

Table of Contents

- Codes in the sum-rank metric
- Riemann-Roch spaces over Ore polynomial rings
- Linearized Algebraic Geometry codes
- Conclusion and further works

k a field (keep in mind $k=\mathbb{F}_q$), \mathcal{H} a k-linear vector space endowed with a metric

Linear code C: k-vector subspace of H

Parameters: length $n = \dim_k \mathcal{H}$, dimension $\delta = \dim_k \mathcal{C}$, minimum distance d (depends on the metric)

k a field (keep in mind $k=\mathbb{F}_q$), \mathcal{H} a k-linear vector space endowed with a metric

Linear code C: k-vector subspace of H

Parameters: length $n = \dim_k \mathcal{H}$, dimension $\delta = \dim_k \mathcal{C}$, minimum distance d (depends on the metric)

Codes in the Hamming metric: k-vector subspaces of k^n endowed with $d(x, y) := \#\{i \mid x_i \neq y_i\}$

k a field (keep in mind $k = \mathbb{F}_q$), \mathcal{H} a k-linear vector space endowed with a metric

Linear code C: k-vector subspace of H

Parameters: length $n = \dim_k \mathcal{H}$, dimension $\delta = \dim_k \mathcal{C}$, minimum distance d (depends on the metric)

Codes in the Hamming metric: k-vector subspaces of k^n endowed with $d(x,y) := \#\{i \mid x_i \neq y_i\}$

Reed-Solomon (RS) codes:

$$\mathbb{F}_{q}$$

$$\mathsf{RS}_{\delta}(\mathbf{x}) \coloneqq \{(P(x_1), P(x_2), \dots, P(x_n)) \mid P \in \mathbb{F}_{q}[x]_{<\delta}\}$$

k a field (keep in mind $k = \mathbb{F}_q$), \mathcal{H} a k-linear vector space endowed with a metric

Linear code C: k-vector subspace of H

Parameters: length $n = \dim_k \mathcal{H}$, dimension $\delta = \dim_k \mathcal{C}$, minimum distance d (depends on the metric)

Codes in the Hamming metric: k-vector subspaces of k^n endowed with $d(x,y) := \#\{i \mid x_i \neq y_i\}$

Reed-Solomon (RS) codes:

$$\mathbb{F}_{q}$$

$$\mathsf{RS}_{\delta}(\mathbf{x}) := \{(P(x_1), P(x_2), \dots, P(x_n)) \mid P \in \mathbb{F}_{q}[x]_{<\delta}\}$$

✓ Optimal parameters:
$$\delta + d = n + 1$$

(Singleton bound: $\delta + d \le n + 1$)

Drawback: $n \leq a$

k a field (keep in mind $k = \mathbb{F}_q$), \mathcal{H} a k-linear vector space endowed with a metric

Linear code C: k-vector subspace of H

Parameters: length $n = \dim_k \mathcal{H}$, dimension $\delta = \dim_k \mathcal{C}$, minimum distance d (depends on the metric)

Codes in the Hamming metric: k-vector subspaces of k^n endowed with $d(x,y) := \#\{i \mid x_i \neq y_i\}$

Reed-Solomon (RS) codes:

Algebraic Geometry (AG) codes:

 $C(X, \mathcal{P}, L(D)) := \{ (f(P_1), f(P_2), \dots, f(P_n)) \mid f \in L(D) \}$

 $f \in L(D)$

✓ Optimal parameters: $\delta + d = n + 1$

(Singleton bound: $\delta + d \le n + 1$)

Drawback: $n \leq a$

Algebraic Geometry codes in the sum-rank metric

k a field (keep in mind $k = \mathbb{F}_q$), \mathcal{H} a k-linear vector space endowed with a metric

Linear code C: k-vector subspace of H

Parameters: length $n = \dim_k \mathcal{H}$, dimension $\delta = \dim_k \mathcal{C}$, minimum distance d (depends on the metric)

Codes in the Hamming metric: k-vector subspaces of k^n endowed with $d(x,y) := \#\{i \mid x_i \neq y_i\}$

Reed-Solomon (RS) codes:

- **✓** Optimal parameters: $\delta + d = n + 1$ (Singleton bound: $\delta + d \le n + 1$)

Algebraic Geometry (AG) codes:

- $C(X, \mathcal{P}, L(D)) := \{ (f(P_1), f(P_2), \dots, f(P_n)) \mid f \in L(D) \}$
 - ✓ Good parameters: $n+1-g < d+\delta < n+1$
 - Longer codes

General definitions

$$\underline{V} = (V_1, \dots, V_s)$$
 s-uple of k-vector spaces

 $(n_i = \dim_k V_i)$

$$\mathcal{H} = \operatorname{End}_k(\underline{V}) := \operatorname{End}_k(V_1) \times \cdots \times \operatorname{End}_k(V_s)$$

k-vector space of dimension $\sum_{i=1}^s n_i^2$ k-linear morphisms $V_i \rightarrow V_i$

k-linear morphisms $V_i \rightarrow V_i$

General definitions

$$\underline{V} = (V_1, \dots, V_s)$$
 s-uple of k-vector spaces

 $(n_i = \dim_{\nu} V_i)$

$$\mathcal{H} = \mathsf{End}_k(\underline{V}) \quad := \quad \mathsf{End}_k(V_1) \times \cdots \times \mathsf{End}_k(V_s)$$
 k-vector space of dimension $\sum_{i=1}^s n_i^2$ k-linear morphisms $V_i {\rightarrow} V_i$

Definition

Let $\varphi = (\varphi_1, \dots, \varphi_s) \in \mathcal{H}$. The sum-rank weight of φ is $w_{srk}(\varphi) := \sum_{i=1}^s rk(\varphi_i)$. The sum-rank distance between $\varphi, \psi \in \mathcal{H}$ is

$$d_{srk}(\underline{\varphi},\underline{\psi}) := w_{srk}(\underline{\varphi} - \underline{\psi}).$$

$$\underline{V} = (V_1, \dots, V_s)$$
 s-uple of k-vector spaces

 $(n_i = \dim_{\nu} V_i)$

$$\mathcal{H} = \operatorname{End}_k(\underline{V}) := \operatorname{End}_k(V_1) \times \cdots \times \operatorname{End}_k(V_s)$$
k-vector space of dimension $\sum_{i=1}^s n_i^2$ k-linear morphisms $V_i \rightarrow V_i$

Definition

Let $\varphi = (\varphi_1, \dots, \varphi_s) \in \mathcal{H}$. The sum-rank weight of φ is $w_{srk}(\varphi) := \sum_{i=1}^{s} rk(\varphi_i)$. The sum-rank distance between $\varphi, \psi \in \mathcal{H}$ is

$$d_{srk}(\underline{\varphi},\underline{\psi}) := w_{srk}(\underline{\varphi} - \underline{\psi}).$$

A code C in the sum-rank metric is a k-linear subspace of $End_k(V)$ endowed with the sum-rank distance.

$V = (V_1, \dots, V_s)$ s-uple of k-vector spaces

 $(n_i = \dim_{\nu} V_i)$

$$\mathcal{H} = \operatorname{End}_k(\underline{V}) := \operatorname{End}_k(V_1) \times \cdots \times \operatorname{End}_k(V_s)$$
k-vector space of dimension $\sum_{i=1}^s n_i^2$ k-linear morphisms $V_i \rightarrow V_i$

Definition

Let $\varphi = (\varphi_1, \dots, \varphi_s) \in \mathcal{H}$. The sum-rank weight of φ is $w_{srk}(\varphi) := \sum_{i=1}^{s} rk(\varphi_i)$. The sum-rank distance between $\varphi, \psi \in \mathcal{H}$ is

$$d_{srk}(\underline{\varphi},\underline{\psi}) := w_{srk}(\underline{\varphi} - \underline{\psi}).$$

A code C in the sum-rank metric is a k-linear subspace of $End_k(V)$ endowed with the sum-rank distance. Its length n is $\sum_{i=1}^{s} n_i^2$. Its dimension δ is dim_k \mathcal{C} . Its minimum distance is

$$d := \min \left\{ w_{srk}(\underline{\varphi}) \mid \underline{\varphi} \in \mathcal{C}, \underline{\varphi} \neq \underline{0} \right\}.$$

$V = (V_1, \dots, V_s)$ s-uple of k-vector spaces

 $(n_i = \dim_{\nu} V_i)$

$$\mathcal{H} = \operatorname{End}_k(\underline{V}) := \operatorname{End}_k(V_1) \times \cdots \times \operatorname{End}_k(V_s)$$
k-vector space of dimension $\sum_{i=1}^s n_i^2$ k-linear morphisms $V_i \rightarrow V_i$

Definition

Let $\varphi = (\varphi_1, \dots, \varphi_s) \in \mathcal{H}$. The sum-rank weight of φ is $w_{srk}(\varphi) := \sum_{i=1}^{s} rk(\varphi_i)$. The sum-rank distance between $\varphi, \psi \in \mathcal{H}$ is

$$d_{\mathit{srk}}(arphi,\psi) \coloneqq \mathit{w}_{\mathit{srk}}(arphi-\psi).$$

A code C in the sum-rank metric is a k-linear subspace of $End_k(V)$ endowed with the sum-rank distance. Its length n is $\sum_{i=1}^{s} n_i^2$. Its dimension δ is dim_k \mathcal{C} . Its minimum distance is

$$d := \min \left\{ w_{\mathit{srk}}(\underline{\varphi}) \mid \underline{\varphi} \in \mathcal{C}, \underline{\varphi} \neq \underline{0} \right\}.$$

 $n_i = 1 \ \forall i \quad \leadsto \quad \text{codes of length } s \text{ in the Hamming metric}$

 $\ell = \text{finite extension of } k \text{ of degree } r$

$$\underline{V} = (V_1, \dots, V_s), s$$
-uple of ℓ -vector spaces $(\dim_k V_i = r) \rightsquigarrow \mathcal{H} = \operatorname{End}_k(\underline{V})$ is a ℓ -vector space

Particular case and Singleton bound

Codes in the sum-rank metric 00000

 $\ell = \text{finite extension of } k \text{ of degree } r$

$$\underline{V} = (V_1, \dots, V_s), s$$
-uple of ℓ -vector spaces $(\dim_k V_i = r) \rightsquigarrow \mathcal{H} = \operatorname{End}_k(\underline{V})$ is a ℓ -vector space

 $\rightsquigarrow \ell$ -linear codes in the sum-rank metric: ℓ -linear subspaces $\mathcal{C} \subset \mathcal{H}$

 $\sim \ell$ -variants of the parameters:

$$\begin{cases} n_\ell \coloneqq \textit{rs} & \ell\text{-length} \\ \delta_\ell \coloneqq \dim_\ell \mathcal{C} & \ell\text{-dimension} \\ \text{the minimum distance stays unchanged} \end{cases}$$

Particular case and Singleton bound

 $\ell = \text{finite extension of } k \text{ of degree } r$

$$\underline{V} = (V_1, \dots, V_s), s$$
-uple of ℓ -vector spaces $(\dim_k V_i = r) \rightsquigarrow \mathcal{H} = \operatorname{End}_k(\underline{V})$ is a ℓ -vector space

 $\rightsquigarrow \ell$ -linear codes in the sum-rank metric: ℓ -linear subspaces $\mathcal{C} \subset \mathcal{H}$

 $\leftrightarrow \ell$ -variants of the parameters:

$$\begin{cases} n_\ell := \textit{rs} & \ell\text{-length} \\ \delta_\ell \coloneqq \dim_\ell \mathcal{C} & \ell\text{-dimension} \\ \text{the minimum distance stays unchanged} \end{cases}$$

Singleton bound

The ℓ -parameters of $\mathcal C$ satisfy

$$d + \delta_{\ell} \leq n_{\ell} + 1$$
.

Codes with parameters attaining this bound are called Maximum Sum-Rank Distance (MSRD).

 ℓ field, $\Phi: \ell \to \ell$ ring homomorphism, $\ell^{\Phi=1} = k$, $[\ell: k] = r$

 ℓ field, $\Phi: \ell \to \ell$ ring homomorphism, $\ell^{\Phi=1} = k$, $[\ell:k] = r$

$$T \cdot a = \Phi(a) \cdot T \quad \forall a \in \ell.$$

 ℓ field, $\Phi: \ell \to \ell$ ring homomorphism, $\ell^{\Phi=1} = k$, $[\ell:k] = r$

$$T \cdot a = \Phi(a) \cdot T \quad \forall a \in \ell.$$

ev:
$$\ell[T; \Phi] \rightarrow \operatorname{End}_k(\ell)$$

 $P \mapsto P(\Phi)$.

 ℓ field, $\Phi: \ell \to \ell$ ring homomorphism, $\ell^{\Phi=1} = k$, $[\ell:k] = r$

for
$$c \in \ell$$

$$T \cdot a = \Phi(a) \cdot T \quad \forall a \in \ell.$$

$$\operatorname{ev}_c: \quad \ell[T; \Phi] \quad \to \quad \operatorname{End}_k(\ell) \\ P \quad \mapsto \quad P(c\Phi).$$

 ℓ field, $\Phi: \ell \to \ell$ ring homomorphism, $\ell^{\Phi=1} = k$, $[\ell:k] = r$

$$T \cdot a = \Phi(a) \cdot T \quad \forall a \in \ell.$$

for
$$\underline{c} = (c_1, \ldots, c_s) \in \ell^s$$

$$\begin{array}{ccc} \operatorname{ev}_{\underline{c}} : & \ell[T; \Phi] & \to & \operatorname{End}_k(\ell)^s \\ & P & \mapsto & (P(c_1 \Phi), \dots, P(c_s \Phi)). \end{array}$$

 ℓ field, $\Phi:\ell \to \ell$ ring homomorphism, $\ell^{\Phi=1}=k$, $[\ell:k]=r$

The ring of Ore polynomials $\ell[T; \Phi]$ is the ring whose elements are polynomials with coefficients in ℓ , with usual + and

$$T \cdot a = \Phi(a) \cdot T \quad \forall a \in \ell.$$

for
$$\underline{c} = (c_1, \ldots, c_s) \in \ell^s$$

$$\operatorname{ev}_{\underline{c}}: \quad \ell[T; \Phi] \quad \to \quad \operatorname{End}_k(\ell)^s \\ P \quad \mapsto \quad (P(c_1\Phi), \dots, P(c_s\Phi)).$$

Definition (Linearized Reed-Solomon codes)

For
$$\underline{c} = (c_1, \ldots, c_s) \in \ell^s$$

and $\delta \in \mathbb{Z}$

define

$$LRS(\delta, \underline{c}) = ev_{\underline{c}}(\ell[T; \Phi]_{<\delta})$$

 ℓ field, $\Phi: \ell \to \ell$ ring homomorphism, $\ell^{\Phi=1} = k$, $[\ell: k] = r$

The ring of Ore polynomials $\ell[T; \Phi]$ is the ring whose elements are polynomials with coefficients in ℓ , with usual + and

$$T \cdot a = \Phi(a) \cdot T \quad \forall a \in \ell.$$

for
$$\underline{c} = (c_1, \ldots, c_s) \in \ell^s$$

$$\operatorname{ev}_{\underline{c}}: \quad \ell[T; \Phi] \quad \to \quad \operatorname{End}_k(\ell)^s \\ P \quad \mapsto \quad (P(c_1\Phi), \dots, P(c_s\Phi)).$$

Definition (Linearized Reed-Solomon codes)

For
$$\underline{c} = (c_1, \dots, c_s) \in \ell^s$$
 such that $N_{\ell/k}(c_i) \neq N_{\ell/k}(c_j) \ \forall i \neq j$ and $\delta \in \mathbb{Z}$ such that $\delta \leq rs$ define
$$LRS(\delta, \underline{c}) = ev_{\underline{c}}(\ell[T; \Phi]_{<\delta})$$

length = rs dimension = δ minimum distance = $rs - \delta + 1$ \Rightarrow MSRD codes

Motivation and idea

Codes in the sum-rank metric OOOO

Definition (Linearized Reed–Solomon codes)

For
$$\underline{c} = (c_1, \dots, c_s) \in \ell^s$$
 such that $N_{\ell/k}(c_i) \neq N_{\ell/k}(c_j) \ \forall i \neq j$ and $\mathbb{Z} \ni \delta \leq rs$ define $LRS(\delta, \underline{c}) = ev_{\underline{c}}(\ell[T; \Phi]_{<\delta}).$

 $\Rightarrow s \leq \text{Card}(k)$. Think about $k = \mathbb{F}_q \rightsquigarrow \text{same problem as Reed-Solomon codes}$

Definition (Linearized Reed-Solomon codes)

For
$$\underline{c} = (c_1, \dots, c_s) \in \ell^s$$
 such that $N_{\ell/k}(c_i) \neq N_{\ell/k}(c_j) \ \forall i \neq j$ and $\mathbb{Z} \ni \delta \leq rs$ define $LRS(\delta, \underline{c}) = ev_{\underline{c}}(\ell[T; \Phi]_{<\delta}).$

 $\Rightarrow s \leq \text{Card}(k)$. Think about $k = \mathbb{F}_q \rightsquigarrow \text{same problem as Reed-Solomon codes}$

More in general

Theorem (Byrne, Gluesing-Luerssen, Ravagnani, 2021)

Let $C \subseteq \operatorname{End}_k(\ell)^s$ be a MSRD code of minimum distance $\leq r+2$. Then, $s \leq \operatorname{Card}(k)$.

Definition (Linearized Reed-Solomon codes)

For
$$\underline{c} = (c_1, \dots, c_s) \in \ell^s$$
 such that $N_{\ell/k}(c_i) \neq N_{\ell/k}(c_j) \ \forall i \neq j$ and $\mathbb{Z} \ni \delta \leq rs$ define $LRS(\delta, \underline{c}) = ev_{\underline{c}}(\ell[T; \Phi]_{<\delta}).$

 $\Rightarrow s \leq \text{Card}(k)$. Think about $k = \mathbb{F}_q \rightsquigarrow \text{same problem as Reed-Solomon codes}$

More in general

Theorem (Byrne, Gluesing-Luerssen, Ravagnani, 2021)

Let $\mathcal{C} \subseteq \operatorname{End}_k(\ell)^s$ be a MSRD code of minimum distance $\leq r+2$. Then, $s \leq \operatorname{Card}(k)$.

As in the Hamming case, we can try to overcome the problem using algebraic curves

Definition (Linearized Reed-Solomon codes)

For
$$\underline{c} = (c_1, \dots, c_s) \in \ell^s$$
 such that $N_{\ell/k}(c_i) \neq N_{\ell/k}(c_j) \ \forall i \neq j$ and $\mathbb{Z} \ni \delta \leq rs$ define $LRS(\delta, \underline{c}) = ev_{\underline{c}}(\ell[T; \Phi]_{<\delta}).$

 $\Rightarrow s \leq \text{Card}(k)$. Think about $k = \mathbb{F}_q \rightsquigarrow \text{same problem as Reed-Solomon codes}$

More in general

Theorem (Byrne, Gluesing-Luerssen, Ravagnani, 2021)

Let $\mathcal{C} \subseteq \operatorname{End}_k(\ell)^s$ be a MSRD code of minimum distance $\leq r+2$. Then, $s \leq \operatorname{Card}(k)$.

As in the Hamming case, we can try to overcome the problem using algebraic curves

Main idea

Consider Ore polynomials with coefficients in the function field of a curve

Consider a smooth projective irreducible algebraic curve X of genus g_X defined over k

$$K = k(X)$$
 - function field of X

$$X^*$$
 - set of places (or, equivalently, closed points) of X

for
$$\mathfrak{p} \in X^{\star}$$
, set

$$\mathcal{O}_{\mathfrak{p}}$$
 - the ring of integers of \mathfrak{p}

$$k_{\mathfrak{p}}$$
 - the residue class field of \mathfrak{p}

$$\deg_X(\mathfrak{p})$$
 - the degree of \mathfrak{p} , the degree of the extension $k_{\mathfrak{p}}/k$

$$K_{\mathfrak{p}}$$
 - the completion of K at \mathfrak{p} , equipped with the \mathfrak{p} -adic valuation $v_{\mathfrak{p}}$

Divisors and Riemann-Roch spaces: classical theory

Definition

A divisor on X is a formal finite sum

$$D = \sum_{\mathfrak{p} \in X^{\star}} n_{\mathfrak{p}} \mathfrak{p}$$
 with $n_{\mathfrak{p}} \in \mathbb{Z}$ almost all zero.

The group of divisors on X is denoted by Div(X).

$$D \in Div(X)$$
 is positive, $D \ge 0$, if $n_{\mathfrak{p}} \ge 0 \ \forall \mathfrak{p}$. The degree of D is $\deg_X(D) = \sum_{\mathfrak{p} \in X^*} n_{\mathfrak{p}} \deg_X(\mathfrak{p})$.

Divisors and Riemann-Roch spaces: classical theory

Definition

A divisor on X is a formal finite sum

$$D = \sum_{\mathfrak{p} \in X^{\star}} n_{\mathfrak{p}} \mathfrak{p}$$
 with $n_{\mathfrak{p}} \in \mathbb{Z}$ almost all zero.

The group of divisors on X is denoted by Div(X).

 $D \in Div(X)$ is positive, $D \ge 0$, if $n_{\mathfrak{p}} \ge 0 \ \forall \mathfrak{p}$. The degree of D is $\deg_X(D) = \sum_{\mathfrak{p} \in X^*} n_{\mathfrak{p}} \deg_X(\mathfrak{p})$. The Riemann–Roch space associated with D is

$$L_X(D) := \{x \in K^{\times} \mid (x) + D \ge 0\} \cup \{0\},\$$

where $(x) = \sum_{\mathfrak{p} \in X^*} v_{\mathfrak{p}}(x) \mathfrak{p}$ is the principal divisor associated to a nonzero function $x \in K$.

Divisors and Riemann-Roch spaces: classical theory

Definition

A divisor on X is a formal finite sum

$$D = \sum_{\mathfrak{p} \in X^{\star}} n_{\mathfrak{p}} \mathfrak{p}$$
 with $n_{\mathfrak{p}} \in \mathbb{Z}$ almost all zero.

The group of divisors on X is denoted by Div(X).

 $D \in Div(X)$ is positive, $D \ge 0$, if $n_{\mathfrak{p}} \ge 0 \ \forall \mathfrak{p}$. The degree of D is $\deg_X(D) = \sum_{\mathfrak{p} \in X^*} n_{\mathfrak{p}} \deg_X(\mathfrak{p})$. The Riemann–Roch space associated with D is

$$L_X(D) := \{x \in K^{\times} \mid (x) + D \ge 0\} \cup \{0\},\$$

where $(x) = \sum_{\mathfrak{p} \in X^*} v_{\mathfrak{p}}(x) \mathfrak{p}$ is the principal divisor associated to a nonzero function $x \in K$.

Riemann-Roch theorem

Let K_X denotes a canonical divisor on X. For any divisor $D \in Div(X)$ we have

$$\dim_k L_X(D) = \deg_X(D) + 1 - g_X + \dim_k L_X(K_X - D),$$

$$= 0 \text{ when } \deg_X(D) > 2g_X - 2.$$

 π a Galois cover with cyclic Galois group of order \emph{r}

L := k(Y) the fields of functions of Y, $\mathsf{Gal}(L/K) = \langle \Phi \rangle$

 π a Galois cover with cyclic Galois group of order r

$$\mathit{L} \coloneqq \mathit{k}(\mathit{Y})$$
 the fields of functions of Y , $\mathsf{Gal}(\mathit{L}/\mathit{K}) = \langle \Phi \rangle$

For $\mathfrak{p}\in X^\star$ we have the decomposition $L_{\mathfrak{p}}:=K_{\mathfrak{p}}\otimes_K L\simeq\prod_{\mathfrak{q}\mid\mathfrak{p}}L_{\mathfrak{q}}.$

 π a Galois cover with cyclic Galois group of order r

L := k(Y) the fields of functions of Y, $Gal(L/K) = \langle \Phi \rangle$

For $\mathfrak{p} \in X^*$ we have the decomposition $L_{\mathfrak{p}} := K_{\mathfrak{p}} \otimes_{K} L \simeq \prod_{\mathfrak{q} \mid \mathfrak{p}} L_{\mathfrak{q}}$.

For $x \in K^{\times}$, consider the algebra

$$D_{L,x} \coloneqq L[T;\Phi]/(T^r-x)$$

and for all $\mathfrak{p} \in X^*$, the algebras $D_{L_{\mathfrak{p}},x} := K_{\mathfrak{p}} \otimes_K D_{L,x} = L_{\mathfrak{p}}[T;\Phi]/(T^r - x)$.

 π a Galois cover with cyclic Galois group of order r

 $\mathit{L} \coloneqq \mathit{k}(\mathit{Y})$ the fields of functions of Y , $\mathsf{Gal}(\mathit{L}/\mathit{K}) = \langle \Phi \rangle$

For $\mathfrak{p} \in X^*$ we have the decomposition $L_{\mathfrak{p}} := K_{\mathfrak{p}} \otimes_K L \simeq \prod_{\mathfrak{q} \mid \mathfrak{p}} L_{\mathfrak{q}}$.

For $x \in K^{\times}$, consider the algebra

$$D_{L,x} \coloneqq L[T;\Phi]/(T^r-x)$$

and for all $\mathfrak{p} \in X^*$, the algebras $D_{L_{\mathfrak{p}},x} := K_{\mathfrak{p}} \otimes_K D_{L,x} = L_{\mathfrak{p}}[T;\Phi]/(T^r - x)$.

Define $w_{\mathfrak{q}_{i,X}}: D_{L_{n,X}} \to \frac{1}{r}\mathbb{Z} \sqcup \{\infty\} (1 \le j \le m_p)$: for $f = f_0 + f_1 T + \cdots + f_{r-1} T^{r-1}$,

$$w_{\mathfrak{q},x}(f) = \min_{0 \le i < r} \left(\frac{v_{\mathfrak{q}}(f_i)}{e_{\mathfrak{q}}} + i \cdot \frac{v_{\mathfrak{p}}(x)}{r} \right),$$

where $e_{\mathfrak{q}}$ denotes the ramification index of \mathfrak{q} .

 π a Galois cover with cyclic Galois group of order r

 $\mathit{L} \coloneqq \mathit{k}(\mathit{Y})$ the fields of functions of Y , $\mathsf{Gal}(\mathit{L}/\mathit{K}) = \langle \Phi \rangle$

For $\mathfrak{p} \in X^*$ we have the decomposition $L_{\mathfrak{p}} := K_{\mathfrak{p}} \otimes_K L \simeq \prod_{\mathfrak{q} \mid \mathfrak{p}} L_{\mathfrak{q}}$.

For $x \in K^{\times}$, consider the algebra

$$D_{L,x} := L[T; \Phi]/(T^r - x)$$

and for all $\mathfrak{p} \in X^*$, the algebras $D_{L_{\mathfrak{p}},x} := K_{\mathfrak{p}} \otimes_K D_{L,x} = L_{\mathfrak{p}}[T;\Phi]/(T^r - x)$.

Define $w_{\mathfrak{q}_{i,X}}: D_{L_{n,X}} \to \frac{1}{r}\mathbb{Z} \sqcup \{\infty\} (1 \le j \le m_p)$: for $f = f_0 + f_1 T + \cdots + f_{r-1} T^{r-1}$,

$$w_{\mathfrak{q},x}(f) = \min_{0 \le i < r} \left(\frac{v_{\mathfrak{q}}(f_i)}{e_{\mathfrak{q}}} + i \cdot \frac{v_{\mathfrak{p}}(x)}{r} \right),$$

where $e_{\mathfrak{q}}$ denotes the ramification index of \mathfrak{q} . $\bigwedge w_{\mathfrak{q},x}(fg) \geq w_{\mathfrak{q},x}(f) + w_{\mathfrak{q},x}(g)$.

 π a Galois cover with cyclic Galois group of order r

 $\mathit{L} \coloneqq \mathit{k}(\mathit{Y})$ the fields of functions of Y , $\mathsf{Gal}(\mathit{L}/\mathit{K}) = \langle \Phi \rangle$

For $\mathfrak{p} \in X^*$ we have the decomposition $L_{\mathfrak{p}} := K_{\mathfrak{p}} \otimes_K L \simeq \prod_{\mathfrak{q} \mid \mathfrak{p}} L_{\mathfrak{q}}$.

For $x \in K^{\times}$, consider the algebra

$$D_{L,x} \coloneqq L[T;\Phi]/(T^r-x)$$

and for all $\mathfrak{p} \in X^*$, the algebras $D_{L_{\mathfrak{p}},x} := K_{\mathfrak{p}} \otimes_K D_{L,x} = L_{\mathfrak{p}}[T;\Phi]/(T^r - x)$.

Define $w_{\mathfrak{q}_{i,X}}: D_{L_{n,X}} \to \frac{1}{r}\mathbb{Z} \sqcup \{\infty\} (1 \le j \le m_p)$: for $f = f_0 + f_1 T + \cdots + f_{r-1} T^{r-1}$,

$$w_{\mathfrak{q},x}(f) = \min_{0 \le i < r} \left(\frac{v_{\mathfrak{q}}(f_i)}{e_{\mathfrak{q}}} + i \cdot \frac{v_{\mathfrak{p}}(x)}{r} \right),$$

where $e_{\mathfrak{q}}$ denotes the ramification index of \mathfrak{q} . $\bigwedge w_{\mathfrak{q},x}(fg) \geq w_{\mathfrak{q},x}(f) + w_{\mathfrak{q},x}(g)$.

$$\Lambda_{L_{\mathfrak{p}},x} := \{ f \in D_{L_{\mathfrak{p}},x} \mid w_{\mathfrak{q}_{i},x}(f) \geq 0 \}$$

Our setting

 π a Galois cover with cyclic Galois group of order r $L := k(Y) \text{ the fields of functions of } Y, \text{ Gal}(L/K) = \langle \Phi \rangle$ For $\mathfrak{p} \in X^*$ we have the decomposition $L_{\mathfrak{p}} := K_{\mathfrak{p}} \otimes_K L \simeq \prod_{\mathfrak{q} \mid \mathfrak{p}} L_{\mathfrak{q}}$.

For $x \in K^{\times}$, consider the algebra

$$D_{L,x} \coloneqq L[T;\Phi]/(T^r-x)$$

and for all $\mathfrak{p} \in X^*$, the algebras $D_{L_{\mathfrak{p}},x} := K_{\mathfrak{p}} \otimes_K D_{L,x} = L_{\mathfrak{p}}[T;\Phi]/(T^r - x)$.

Define $w_{q_{1,X}}: D_{L_{n,X}} \to \frac{1}{r} \mathbb{Z} \sqcup \{\infty\} (1 \le j \le m_p)$: for $f = f_0 + f_1 T + \cdots + f_{r-1} T^{r-1}$,

$$w_{\mathfrak{q},x}(f) = \min_{0 \le i < r} \left(\frac{v_{\mathfrak{q}}(f_i)}{e_{\mathfrak{q}}} + i \cdot \frac{v_{\mathfrak{p}}(x)}{r} \right),$$

where $e_{\mathfrak{q}}$ denotes the ramification index of \mathfrak{q} . $\bigwedge w_{\mathfrak{q},x}(fg) \geq w_{\mathfrak{q},x}(f) + w_{\mathfrak{q},x}(g)$.

$$\Lambda_{L_{\mathfrak{p}},x} := \{ f \in D_{L_{\mathfrak{p}},x} \mid w_{\mathfrak{q}_{j},x}(f) \geq 0 \}$$

For $\mathfrak{p} \in X^*$, $e_{\mathfrak{p}} w_{\mathfrak{q},x}(f) \in \frac{1}{b_{\mathfrak{p}}} \mathbb{Z}$ where $b_{\mathfrak{p}}$ is the denominator of $\rho_{\mathfrak{p}} = \frac{e_{\mathfrak{p}} \cdot v_{\mathfrak{p}}(x)}{r}$ after reduction

10 / 17

Divisors and Riemann-Roch spaces over Ore polynomial rings

Definition (Riemann–Roch spaces of $D_{L,\times}$)

Let $E = \sum_{\mathfrak{q} \in Y^*} n_{\mathfrak{q}} \mathfrak{q} \in Div_{\mathbb{Q}}(Y) := Div(Y) \otimes \mathbb{Q}$ where, for all \mathfrak{q} , the coefficient $n_{\mathfrak{q}}$ is in $\frac{1}{b_{\mathfrak{p}}}\mathbb{Z}$ where $\mathfrak{p} = \pi(\mathfrak{q})$ is the place below \mathfrak{q} . We define the Riemann–Roch space of $D_{L,x}$ associated with E as

$$\Lambda_{L,x}(E) := \big\{ f \in D_{L,x} \, | \, e_{\mathfrak{q}} w_{\mathfrak{q},x}(f) + n_{\mathfrak{q}} \geq 0 \, \text{ for all } \mathfrak{q} \in Y^{\star} \, \big\}.$$

Divisors and Riemann-Roch spaces over Ore polynomial rings

Definition (Riemann–Roch spaces of $D_{L,x}$)

Let $E = \sum_{\mathfrak{q} \in Y^*} n_{\mathfrak{q}} \mathfrak{q} \in Div_{\mathbb{Q}}(Y) := Div(Y) \otimes \mathbb{Q}$ where, for all \mathfrak{q} , the coefficient $n_{\mathfrak{q}}$ is in $\frac{1}{b_{\mathfrak{p}}}\mathbb{Z}$ where $\mathfrak{p} = \pi(\mathfrak{q})$ is the place below \mathfrak{q} . We define the Riemann–Roch space of $D_{L,x}$ associated with E as $\Lambda_{L,x}(E) := \left\{ f \in D_{L,x} \mid e_{\mathfrak{q}} w_{\mathfrak{q},x}(f) + n_{\mathfrak{q}} \geq 0 \text{ for all } \mathfrak{q} \in Y^* \right\}.$

$$\Rightarrow \Lambda_{L,x}(E) = \bigoplus_{i=0}^{r-1} L_Y(E_i) \cdot T^i$$
, where $E_i := \sum_{\mathfrak{q} \in Y^*} \left\lfloor n_{\mathfrak{q}} + i \cdot \rho_{\pi(\mathfrak{q})} \right\rfloor \cdot \mathfrak{q} \in \mathsf{Div}(Y)$ $(0 \le i < r)$.

Divisors and Riemann-Roch spaces over Ore polynomial rings

Definition (Riemann–Roch spaces of $D_{L,x}$)

Let $E = \sum_{\mathfrak{q} \in Y^*} n_{\mathfrak{q}} \mathfrak{q} \in Div_{\mathbb{Q}}(Y) := Div(Y) \otimes \mathbb{Q}$ where, for all \mathfrak{q} , the coefficient $n_{\mathfrak{q}}$ is in $\frac{1}{b_{\mathfrak{p}}}\mathbb{Z}$ where $\mathfrak{p} = \pi(\mathfrak{q})$ is the place below \mathfrak{q} . We define the Riemann–Roch space of $D_{L,x}$ associated with E as $\Lambda_{L,x}(E) := \left\{ f \in D_{L,x} \mid e_{\mathfrak{q}} w_{\mathfrak{q},x}(f) + n_{\mathfrak{q}} \geq 0 \text{ for all } \mathfrak{q} \in Y^* \right\}.$

$$\Rightarrow \Lambda_{L,x}(E) = \bigoplus_{i=0}^{r-1} L_Y(E_i) \cdot T^i, \text{ where } E_i := \sum_{\mathfrak{q} \in Y^*} \left| n_{\mathfrak{q}} + i \cdot \rho_{\pi(\mathfrak{q})} \right| \cdot \mathfrak{q} \in \mathsf{Div}(Y) \qquad (0 \le i < r).$$

Lemma: We have
$$\sum_{i=0}^{r-1} \deg_Y(E_i) = r \cdot \deg_Y(E) - \frac{r^2}{2} \sum_{\mathfrak{p} \in X^*} \frac{b_{\mathfrak{p}} - 1}{b_{\mathfrak{p}} e_{\mathfrak{p}}} \deg_X(\mathfrak{p}).$$

Definition (Riemann–Roch spaces of $D_{L,x}$)

Let $E = \sum_{\mathfrak{q} \in Y^*} n_{\mathfrak{q}} \mathfrak{q} \in Div_{\mathbb{Q}}(Y) := Div(Y) \otimes \mathbb{Q}$ where, for all \mathfrak{q} , the coefficient $n_{\mathfrak{q}}$ is in $\frac{1}{b_{\mathfrak{p}}}\mathbb{Z}$ where $\mathfrak{p} = \pi(\mathfrak{q})$ is the place below \mathfrak{q} . We define the Riemann–Roch space of $D_{L,x}$ associated with E as

 $\Lambda_{L,x}(E) := \{ f \in D_{L,x} \mid e_{\mathfrak{q}} w_{\mathfrak{q},x}(f) + n_{\mathfrak{q}} \geq 0 \text{ for all } \mathfrak{q} \in Y^* \}.$

$$\Rightarrow \Lambda_{L,x}(E) = \bigoplus_{i=0}^{r-1} L_Y(E_i) \cdot T^i, \text{ where } E_i := \sum_{g \in Y^*} \left| n_g + i \cdot \rho_{\pi(g)} \right| \cdot \mathfrak{q} \in \mathsf{Div}(Y) \qquad (0 \le i < r).$$

Lemma: We have
$$\sum_{i=0}^{r-1} \deg_Y(E_i) = r \cdot \deg_Y(E) - \frac{r^2}{2} \sum_{\mathfrak{p} \in X^*} \frac{b_{\mathfrak{p}} - 1}{b_{\mathfrak{p}} e_{\mathfrak{p}}} \deg_X(\mathfrak{p})$$
.

Riemann's inequality for $\Lambda_{L\times}(E)$

For a divisor $E = \sum_{\mathfrak{q} \in Y^*} n_{\mathfrak{q}} \mathfrak{q} \in \mathsf{Div}_{\mathbb{Q}}(Y)$ the space $\Lambda_{L,x}(E)$ is finite dimensional over k and

$$\dim_k \Lambda_{L,x}(E) \geq r \cdot \deg_Y(E) - r \cdot (g_Y - 1) - \frac{r^2}{2} \sum_{\mathfrak{p} \in X^*} \frac{b_{\mathfrak{p}} - 1}{b_{\mathfrak{p}} e_{\mathfrak{p}}} \deg_X(\mathfrak{p}).$$

Linearized AG codes •0000

Code's construction

Let $\mathfrak{p} \in X^*$ rational, $t_{\mathfrak{p}}$ a uniformizer $(K_{\mathfrak{p}} \simeq k((t)))$, $x \in K^{\times}$

Let $\mathfrak{p} \in X^*$ rational, $t_{\mathfrak{p}}$ a uniformizer $(K_{\mathfrak{p}} \simeq k((t))), x \in K^{\times}$ if x is a nonzero norm in $L_{\mathfrak{p}}/K_{\mathfrak{p}}$, more precisely $\exists u_{\mathfrak{p}} = (u_{\mathfrak{q}})_{\mathfrak{q}|\mathfrak{p}} \in L_{\mathfrak{p}}^{\times}$ s.t. $x = \prod_{a|n} N_{L_{\mathfrak{q}}/K_{\mathfrak{p}}}(u_{\mathfrak{q}})$, then $\varepsilon_{\mathfrak{p}}: D_{L_{\mathfrak{p}},\mathsf{x}} \stackrel{\simeq}{\longrightarrow} \operatorname{End}_{K_{\mathfrak{p}}}(L_{\mathfrak{p}})$ $f \mapsto f(u_{\mathfrak{p}}\Phi).$

Let $\mathfrak{p} \in X^*$ rational, t_n a uniformizer $(K_{\mathfrak{p}} \simeq k((t))), x \in K^{\times}$ if x is a nonzero norm in $L_{\mathfrak{p}}/K_{\mathfrak{p}}$, more precisely $\exists u_{\mathfrak{p}} = (u_{\mathfrak{q}})_{\mathfrak{q}|\mathfrak{p}} \in L_{\mathfrak{p}}^{\times}$ s.t. $x = \prod_{\mathfrak{q}|\mathfrak{p}} N_{L_{\mathfrak{q}}/K_{\mathfrak{p}}}(u_{\mathfrak{q}})$ and $\forall \mathfrak{q}, v_{\mathfrak{p}}(u_{\mathfrak{q}}) = v$, then

$$\begin{array}{ccc} \varepsilon_{\mathfrak{p}}: & D_{L_{\mathfrak{p},X}} & \xrightarrow{\simeq} & \operatorname{End}_{K_{\mathfrak{p}}}(L_{\mathfrak{p}}) \\ & f & \mapsto & f(u_{\mathfrak{p}}\Phi). \end{array}$$

Let $\mathfrak{p} \in X^*$ rational, $t_{\mathfrak{p}}$ a uniformizer $(K_{\mathfrak{p}} \simeq k((t))), x \in K^{\times}$ if x is a nonzero norm in $L_{\mathfrak{p}}/K_{\mathfrak{p}}$, more precisely $\exists u_{\mathfrak{p}} = (u_{\mathfrak{q}})_{\mathfrak{q}|\mathfrak{p}} \in L_{\mathfrak{p}}^{\times}$ s.t. $x = \prod_{\mathfrak{q}|\mathfrak{p}} N_{L_{\mathfrak{q}}/K_{\mathfrak{p}}}(u_{\mathfrak{q}})$ and $\forall \mathfrak{q}, v_{\mathfrak{p}}(u_{\mathfrak{q}}) = v$, then

$$\begin{array}{ccc} \varepsilon_{\mathfrak{p}}: & \Lambda_{L_{\mathfrak{p}}, X} & \xrightarrow{\simeq} & \operatorname{End}_{\mathcal{O}_{K_{\mathfrak{p}}}}(\mathcal{O}_{L_{\mathfrak{p}}}) \\ & f & \mapsto & f(u_{\mathfrak{p}}\Phi). \end{array}$$

Let $\mathfrak{p} \in X^*$ rational, t_n a uniformizer $(K_n \simeq k((t))), x \in K^\times$ if x is a nonzero norm in $L_{\mathfrak{p}}/K_{\mathfrak{p}}$, more precisely $\exists u_{\mathfrak{p}} = (u_{\mathfrak{q}})_{\mathfrak{q}|\mathfrak{p}} \in L_{\mathfrak{p}}^{\times}$ s.t. $x = \prod_{\mathfrak{q}|\mathfrak{p}} N_{L_{\mathfrak{q}}/K_{\mathfrak{p}}}(u_{\mathfrak{q}})$ and $\forall \mathfrak{q}, v_{\mathfrak{n}}(u_{\mathfrak{q}}) = v$, then

Linearized AG codes •0000

$$\begin{array}{cccc} \overline{\varepsilon}_{\mathfrak{p}}: & \Lambda_{L_{\mathfrak{p}}, \times} & \stackrel{\simeq}{\longrightarrow} & \operatorname{End}_{\mathcal{O}_{K_{\mathfrak{p}}}}(\mathcal{O}_{L_{\mathfrak{p}}}) & \stackrel{\mathit{red}}{\longrightarrow} & \operatorname{End}_{k}(\mathcal{O}_{L_{\mathfrak{p}}}/t_{\mathfrak{p}}\mathcal{O}_{L_{\mathfrak{p}}}) \\ & f & \mapsto & f(u_{\mathfrak{p}}\Phi) & \mapsto & f(u_{\mathfrak{p}}\Phi) & \operatorname{mod} t_{\mathfrak{p}}. \end{array}$$

Let $\mathfrak{p} \in X^*$ rational, t_n a uniformizer $(K_n \simeq k((t))), x \in K^\times$ if x is a nonzero norm in L_p/K_p , more precisely $\exists u_p = (u_q)_{q|p} \in L_p^\times$ s.t. $x = \prod_{q|p} N_{L_q/K_p}(u_q)$ and $\forall q, v_n(u_q) = v$, then

$$\begin{array}{cccc} \overline{\varepsilon}_{\mathfrak{p}}: & \Lambda_{L_{\mathfrak{p}}, \times} & \xrightarrow{\simeq} & \operatorname{End}_{\mathcal{O}_{K_{\mathfrak{p}}}}(\mathcal{O}_{L_{\mathfrak{p}}}) & \xrightarrow{red} & \operatorname{End}_{k}(\mathcal{O}_{L_{\mathfrak{p}}}/t_{\mathfrak{p}}\mathcal{O}_{L_{\mathfrak{p}}}) \\ & f & \mapsto & f(u_{\mathfrak{p}}\Phi) & \mapsto & f(u_{\mathfrak{p}}\Phi) & \operatorname{mod} t_{\mathfrak{p}}. \end{array}$$

if
$$\mathfrak{p} \notin \pi(\operatorname{supp}(E)) \rightsquigarrow \Lambda_{L_{\mathfrak{p}},x}(E) \subseteq \Lambda_{L_{\mathfrak{p}},x}$$

Let $\mathfrak{p} \in X^*$ rational, t_n a uniformizer $(K_n \simeq k((t))), x \in K^\times$ if x is a nonzero norm in L_p/K_p , more precisely $\exists u_p = (u_q)_{q|p} \in L_p^\times$ s.t. $x = \prod_{q|p} N_{L_q/K_p}(u_q)$ and $\forall \mathfrak{q}, v_{\mathfrak{n}}(u_{\mathfrak{q}}) = v$, then

$$egin{array}{lll} \overline{arepsilon}_{\mathfrak{p}}: & \Lambda_{L_{\mathfrak{p}}, \mathsf{x}} & \stackrel{\simeq}{\longrightarrow} & \operatorname{End}_{\mathcal{O}_{K_{\mathfrak{p}}}}(\mathcal{O}_{L_{\mathfrak{p}}}) & \stackrel{\mathit{red}}{\longrightarrow} & \operatorname{End}_{k}(\mathcal{O}_{L_{\mathfrak{p}}}/t_{\mathfrak{p}}\mathcal{O}_{L_{\mathfrak{p}}}) \\ & f & \mapsto & f(u_{\mathfrak{p}}\Phi) & \mapsto & f(u_{\mathfrak{p}}\Phi) & \operatorname{mod} t_{\mathfrak{p}}. \end{array}$$

Linearized AG codes 00000

if $\mathfrak{p} \not\in \pi(\operatorname{supp}(E)) \rightsquigarrow \Lambda_{L_n,x}(E) \subseteq \Lambda_{L_n,x}$

Definition (Linearized Algebraic Geometry codes)

Let $E = \sum_{q \in Y^*} n_q q \in Div_{\mathbb{Q}}(Y)$. Chose $x \in K$ and $\mathfrak{p}_1, \ldots, \mathfrak{p}_s$ rational places on X such that the hypotheses hold. Set $V_{\mathfrak{p}_i} := \mathcal{O}_{L_{\mathfrak{p}_i}}/t_{\mathfrak{p}_i}\mathcal{O}_{L_{\mathfrak{p}_i}}$. Consider

$$\alpha: \quad \Lambda_{L,x}(E) \quad \longrightarrow \quad \prod_{i=1}^s End_k(V_{\mathfrak{p}_i}) \\ f \quad \mapsto \quad \left(\bar{\varepsilon}_{\mathfrak{p}_i}(f)\right)_{1 \leq i \leq s}.$$

The code $C(x; E; \mathfrak{p}_1, \ldots, \mathfrak{p}_s)$ is defined as the image of α .

Linearized AG codes 00000

Code's parameters

We study the parameters of the k-linear code $\mathcal C$ in $\prod_{i=1}^s \operatorname{End}_k(V_{\mathfrak p_i})$.

Linearized AG codes 00000

Code's parameters

We study the parameters of the k-linear code \mathcal{C} in $\prod_{i=1}^{s} \operatorname{End}_{k}(V_{\mathfrak{p}_{i}})$. Its length n is the k-dimension of the ambient space : $\dim_k V_{\mathfrak{p}_i} = r \Rightarrow n = sr^2$ We study the parameters of the k-linear code \mathcal{C} in $\prod_{i=1}^{s} \operatorname{End}_{k}(V_{p_{i}})$. Its length n is the k-dimension of the ambient space : $\dim_k V_{n_k} = r \Rightarrow n = sr^2$

Theorem (B., Caruso)

Assume $\deg_{V}(E) < sr$. Assume the previous hypotheses and that $D_{L,v}$ contains no nonzero divisors. Then, the dimension δ and the minimum distance d of $\mathcal{C}(x; E; \mathfrak{p}_1, \dots, \mathfrak{p}_s)$ satisfy

$$\delta \geq r \cdot \deg_Y(E) - r \cdot (g_Y - 1) - \frac{r^2}{2} \sum_{\mathfrak{p} \in X^*} \frac{b_{\mathfrak{p}} - 1}{b_{\mathfrak{p}} e_{\mathfrak{p}}} \deg_X(\mathfrak{p}),$$
 $d \geq sr - \deg_Y(E).$

Linearized AG codes 00000

We study the parameters of the k-linear code \mathcal{C} in $\prod_{i=1}^{s} \operatorname{End}_{k}(V_{p_{i}})$. Its length n is the k-dimension of the ambient space : $\dim_k V_{n_k} = r \Rightarrow n = sr^2$

Theorem (B., Caruso)

Assume $\deg_{V}(E) < sr$. Assume the previous hypotheses and that $D_{L,v}$ contains no nonzero divisors. Then, the dimension δ and the minimum distance d of $\mathcal{C}(x; E; \mathfrak{p}_1, \dots, \mathfrak{p}_s)$ satisfy

$$\delta \geq r \cdot \deg_Y(E) - r \cdot (g_Y - 1) - \frac{r^2}{2} \sum_{\mathfrak{p} \in X^*} \frac{b_{\mathfrak{p}} - 1}{b_{\mathfrak{p}} e_{\mathfrak{p}}} \deg_X(\mathfrak{p}),$$

$$d \geq sr - \deg_Y(E).$$

Linearized AG codes 00000

Singleton bound:

$$rd + \delta < n + r$$

We have:

$$rd + \delta \ge n + r - \left(r \cdot g_Y + \frac{r^2}{2} \sum_{\mathfrak{p} \in X^{\star}} \frac{b_{\mathfrak{p}} - 1}{b_{\mathfrak{p}} e_{\mathfrak{p}}} \deg_X(\mathfrak{p})\right)$$

Linearized AG codes 00000

Sketch of the proof

Want: $d \ge sr - \deg_Y(E) + \text{bound on the dimension } \delta$

Want: $d \ge sr - \deg_Y(E) + \text{bound on the dimension } \delta$ Let $0 \neq f \in \Lambda_{L,x}(E)$, with $\omega = w_{\mathsf{rk}}(\alpha(f)) = \sum_{i=1}^{s} \mathsf{rk} \, \bar{\varepsilon}_{\mathfrak{p}_i}(f)$.

Want: $d \ge sr - \deg_{\mathcal{V}}(E) + \text{bound on the dimension } \delta$ Let $0 \neq f \in \Lambda_{L,x}(E)$, with $\omega = w_{\mathsf{rk}}(\alpha(f)) = \sum_{i=1}^{\mathsf{s}} \mathsf{rk} \, \bar{\varepsilon}_{\mathfrak{p}_i}(f)$. Let $d_i := \dim_k \ker \bar{\varepsilon}_i(f)$ for $i \in \{1, \dots, s\}$ and define the divisor $E' \coloneqq -\sum_{i=1}^s d_i \mathfrak{p}_i + \sum_{\mathfrak{p} \in X^\star} \left| \sum_{\mathfrak{q} \mid \mathfrak{p}} \frac{r \cdot n_{\mathfrak{q}}}{e_{\mathfrak{p}} m_{\mathfrak{p}}} \right| \mathfrak{p} \in \mathsf{Div}(X).$

Want: $d \ge sr - \deg_{\mathcal{V}}(E) + \text{bound on the dimension } \delta$ Let $0 \neq f \in \Lambda_{L,x}(E)$, with $\omega = w_{\mathsf{rk}}(\alpha(f)) = \sum_{i=1}^{\mathsf{s}} \mathsf{rk} \, \bar{\varepsilon}_{\mathfrak{p}_i}(f)$. Let $d_i := \dim_k \ker \bar{\varepsilon}_i(f)$ for $i \in \{1, \dots, s\}$ and define the divisor $E' \coloneqq -\sum_{i=1}^s d_i \mathfrak{p}_i + \sum_{\mathfrak{p} \in X^\star} \left| \sum_{\mathfrak{q} \mid \mathfrak{p}} \frac{r \cdot n_{\mathfrak{q}}}{e_{\mathfrak{p}} m_{\mathfrak{p}}} \right| \mathfrak{p} \in \mathsf{Div}(X).$ We have $Nrd(f) \in L_X(E')$ where $Nrd(f) \in K$ and is defined as the determinant of $g \stackrel{\mu_f}{\hookrightarrow} gf$

Want: $d \ge sr - \deg_{\mathcal{V}}(E) + \text{bound on the dimension } \delta$

Let
$$0 \neq f \in \Lambda_{L,x}(E)$$
, with $\omega = w_{\mathsf{rk}}(\alpha(f)) = \sum_{i=1}^{s} \mathsf{rk} \, \bar{\varepsilon}_{\mathfrak{p}_i}(f)$.

Let
$$d_i := \dim_k \ker \bar{\varepsilon}_i(f)$$
 for $i \in \{1, \dots, s\} \Rightarrow \sum_{i=1}^s d_i = \sum_{i=1}^s \dim_k V_{\mathfrak{p}_i} - \operatorname{rk} \bar{\varepsilon}_{\mathfrak{p}_i}(f) = \operatorname{sr} - \omega$ and define the divisor $E' := -\sum_{i=1}^s d_i \mathfrak{p}_i + \sum_{\mathfrak{p} \in X^*} \left| \sum_{\mathfrak{q} \mid \mathfrak{p}} \frac{r \cdot n_{\mathfrak{q}}}{e_{\mathfrak{p}} m_{\mathfrak{p}}} \right| \mathfrak{p} \in \operatorname{Div}(X)$.

We have $Nrd(f) \in L_X(E')$ where $Nrd(f) \in K$ and is defined as the determinant of $g \stackrel{\mu_f}{\hookrightarrow} gf$

$$\deg_Y(E') \leq -\sum_{i=1}^s d_i + \sum_{\mathfrak{q} \in Y^*} \frac{r \cdot n_{\mathfrak{q}}}{e_{\mathfrak{p}} m_{\mathfrak{p}}} \deg_X(\pi(\mathfrak{q})) = \omega - sr + \deg_Y(E).$$

Want: $d \ge sr - \deg_{\mathcal{V}}(E) + \text{bound on the dimension } \delta$

Let
$$0 \neq f \in \Lambda_{L,x}(E)$$
, with $\omega = w_{\mathsf{rk}}(\alpha(f)) = \sum_{i=1}^{s} \mathsf{rk} \, \bar{\varepsilon}_{\mathfrak{p}_i}(f)$.

Let
$$d_i := \dim_k \ker \bar{\varepsilon}_i(f)$$
 for $i \in \{1, \dots, s\} \Rightarrow \sum_{i=1}^s d_i = \sum_{i=1}^s \dim_k V_{\mathfrak{p}_i} - \operatorname{rk} \bar{\varepsilon}_{\mathfrak{p}_i}(f) = \operatorname{sr} - \omega$

and define the divisor
$$E' \coloneqq -\sum_{i=1}^s d_i \mathfrak{p}_i + \sum_{\mathfrak{p} \in X^\star} \left[\sum_{\mathfrak{q} \mid \mathfrak{p}} \frac{r \cdot n_{\mathfrak{q}}}{e_{\mathfrak{p}} m_{\mathfrak{p}}} \right] \mathfrak{p} \in \mathsf{Div}(X).$$

We have $Nrd(f) \in L_X(E')$ where $Nrd(f) \in K$ and is defined as the determinant of $g \stackrel{\mu_f}{\mapsto} gf$

$$\deg_Y(E') \leq -\sum_{i=1}^s d_i + \sum_{\mathfrak{q} \in Y^\star} \frac{r \cdot n_{\mathfrak{q}}}{e_{\mathfrak{p}} m_{\mathfrak{p}}} \deg_X(\pi(\mathfrak{q})) = \omega - sr + \deg_Y(E).$$

If $\omega < sr - \deg_Y(E) \Rightarrow \operatorname{Nrd}(f) = 0 \Rightarrow \mu_f$ is not injective $\Rightarrow f$ is a nonzero zero divisor in D_{LX}

Want: $d \ge sr - \deg_{\mathcal{V}}(E) + \text{bound on the dimension } \delta$

Let
$$0 \neq f \in \Lambda_{L,x}(E)$$
, with $\omega = w_{\mathsf{rk}}(\alpha(f)) = \sum_{i=1}^{s} \mathsf{rk} \, \bar{\varepsilon}_{\mathfrak{p}_i}(f)$.

Let
$$d_i := \dim_k \ker \bar{\varepsilon}_i(f)$$
 for $i \in \{1, \dots, s\} \Rightarrow \sum_{i=1}^s d_i = \sum_{i=1}^s \dim_k V_{\mathfrak{p}_i} - \operatorname{rk} \bar{\varepsilon}_{\mathfrak{p}_i}(f) = \operatorname{sr} - \omega$ and define the divisor $E' := -\sum_{i=1}^s d_i \mathfrak{p}_i + \sum_{\mathfrak{p} \in X^*} \left| \sum_{\mathfrak{q} \mid \mathfrak{p}} \frac{r \cdot n_{\mathfrak{q}}}{e_{\mathfrak{p}} m_{\mathfrak{p}}} \right| \mathfrak{p} \in \operatorname{Div}(X)$.

We have $Nrd(f) \in L_X(E')$ where $Nrd(f) \in K$ and is defined as the determinant of $g \stackrel{\mu_f}{\hookrightarrow} gf$

$$\deg_Y(E') \leq -\sum_{i=1}^s d_i + \sum_{\mathfrak{q} \in Y^*} \frac{r \cdot n_{\mathfrak{q}}}{e_{\mathfrak{p}} m_{\mathfrak{p}}} \deg_X(\pi(\mathfrak{q})) = \omega - sr + \deg_Y(E).$$

Linearized AG codes 00000

If $\omega < sr - \deg_Y(E) \Rightarrow \operatorname{Nrd}(f) = 0 \Rightarrow \mu_f$ is not injective $\Rightarrow f$ is a nonzero zero divisor in D_{LX}

In conclusion: $\omega \geq sr - \deg_{\mathcal{V}}(E)$

Want: $d \ge sr - \deg_{\mathcal{V}}(E) + \text{bound on the dimension } \delta$

Let
$$0 \neq f \in \Lambda_{L,x}(E)$$
, with $\omega = w_{\mathsf{rk}}(\alpha(f)) = \sum_{i=1}^{s} \mathsf{rk} \; \bar{\varepsilon}_{\mathfrak{p}_i}(f)$.

Let
$$d_i := \dim_k \ker \bar{\varepsilon}_i(f)$$
 for $i \in \{1, \dots, s\} \Rightarrow \sum_{i=1}^s d_i = \sum_{i=1}^s \dim_k V_{\mathfrak{p}_i} - \operatorname{rk} \bar{\varepsilon}_{\mathfrak{p}_i}(f) = \operatorname{sr} - \omega$ and define the divisor $E' := -\sum_{i=1}^s d_i \mathfrak{p}_i + \sum_{\mathfrak{p} \in X^*} \left| \sum_{\mathfrak{q} \mid \mathfrak{p}} \frac{r \cdot n_{\mathfrak{q}}}{e_{\mathfrak{p}} m_{\mathfrak{p}}} \right| \mathfrak{p} \in \operatorname{Div}(X)$.

We have $Nrd(f) \in L_X(E')$ where $Nrd(f) \in K$ and is defined as the determinant of $g \stackrel{\mu_f}{\mapsto} gf$

$$\deg_Y(E') \leq -\sum_{i=1}^s d_i + \sum_{\mathfrak{q} \in Y^\star} \frac{r \cdot n_{\mathfrak{q}}}{e_{\mathfrak{p}} m_{\mathfrak{p}}} \deg_X(\pi(\mathfrak{q})) = \omega - sr + \deg_Y(E).$$

If $\omega < sr - \deg_Y(E) \Rightarrow \operatorname{Nrd}(f) = 0 \Rightarrow \mu_f$ is not injective $\Rightarrow f$ is a nonzero zero divisor in D_{LX}

In conclusion:
$$\omega \geq sr - \deg_Y(E) \checkmark$$

Injectivity of the map $\alpha \Rightarrow \delta = \dim_k \Lambda_{L,x}(E) \rightsquigarrow$ lower bound on δ via Riemann's inequality \checkmark

Let ℓ be a finite cyclic extension of k of order r.

Linearized AG codes OOOOO

Let ℓ be a finite cyclic extension of k of order r. Take $Y = \operatorname{Spec} \ell \times_{\operatorname{Spec} k} X$ (cyclic Galois cover of X of degree r)

Residue field of any place of Y is a ℓ -algebra \Rightarrow the code $\mathcal{C}(x; E; \mathfrak{p}_1, \dots, \mathfrak{p}_s)$ is ℓ -linear

Residue field of any place of Y is a ℓ -algebra \Rightarrow the code $\mathcal{C}(x; E; \mathfrak{p}_1, \dots, \mathfrak{p}_s)$ is ℓ -linear

ℓ -parameters of the code

For the code $\mathcal{C}(x; E; \mathfrak{p}_1, \dots, \mathfrak{p}_s)$ with $x, \mathfrak{p}_1, \dots, \mathfrak{p}_s, E$ satisfying the hypotheses, we have

- $n_{\ell} = sr$.
- $\delta_{\ell} \geq \deg_{Y}(E) r \cdot (g_{X} 1) \frac{r}{2} \sum_{\mathfrak{p} \in X^{*}} \frac{b_{\mathfrak{p}} 1}{b_{\mathfrak{p}}} \deg_{X}(\mathfrak{p}),$
- $d > sr \deg_{\checkmark}(E)$.

Linearized AG codes over \mathbb{P}^1 are Linearized Reed-Solomon codes

 $X=\mathbb{P}^1_{\iota}$ and $Y=\mathbb{P}^1_{\ell}$, both viewed as curves over Spec k, t= the coordinate on X and Y

Linearized AG codes over \mathbb{P}^1 are Linearized Reed–Solomon codes

 $X=\mathbb{P}^1_k$ and $Y=\mathbb{P}^1_\ell$, both viewed as curves over Spec k, t= the coordinate on X and Y

Choose the function $x = t \in K^{\times} = k(t)^{\times}$. Then

$$b_{\mathfrak{p}} = egin{cases} r ext{ for } \mathfrak{p} = 0, \infty, \ 1 ext{ for all other } \mathfrak{p} \in X^{\star}, \end{cases}$$

$$D_{L,\mathsf{x}} = \ell(t)[T;\Phi]/(T^r-t) \simeq \mathsf{Frac}(\ell[T;\Phi])$$

Linearized AG codes over \mathbb{P}^1 are Linearized Reed–Solomon codes

 $X=\mathbb{P}^1_k$ and $Y=\mathbb{P}^1_\ell$, both viewed as curves over Spec k, t= the coordinate on X and Y

Choose the function $x = t \in K^{\times} = k(t)^{\times}$. Then

$$b_{\mathfrak{p}} = egin{cases} r ext{ for } \mathfrak{p} = 0, \infty, \ 1 ext{ for all other } \mathfrak{p} \in X^{\star}, \end{cases}$$

$$D_{L,x} = \ell(t)[T;\Phi]/(T^r - t) \simeq \mathsf{Frac}(\ell[T;\Phi])$$

Consider the divisor $E = \frac{\delta}{r} \cdot \infty \in \mathsf{Div}_{\mathbb{Q}}(Y), \ \delta \in \mathbb{N} \leadsto \mathsf{\Lambda}_{L,t}(E) = \ell[T;\Phi]_{\leq \delta}$

 $X=\mathbb{P}^1_{\iota}$ and $Y=\mathbb{P}^1_{\ell}$, both viewed as curves over Spec k, t= the coordinate on X and Y

Choose the function $x = t \in K^{\times} = k(t)^{\times}$. Then

$$b_{\mathfrak{p}} = egin{cases} r ext{ for } \mathfrak{p} = 0, \infty, \ 1 ext{ for all other } \mathfrak{p} \in X^{\star}, \end{cases}$$

$$D_{L,\mathsf{x}} = \ell(t)[T;\Phi]/(T^r-t) \simeq \mathsf{Frac}(\ell[T;\Phi])$$

Linearized AG codes OOOOO

Consider the divisor $E = \frac{\delta}{r} \cdot \infty \in \text{Div}_{\mathbb{Q}}(Y), \ \delta \in \mathbb{N} \leadsto \Lambda_{L,t}(E) = \ell[T; \Phi]_{<\delta}$

Fix rational places $\mathfrak{p}_1,\ldots,\mathfrak{p}_s$ corresponding to elements $c_1,\ldots,c_s\in k\sqcup\{\infty\}$. They satisfy the hypothesis if and only if $c_i \in N_{\ell/k}(\ell^{\times}) \ \forall i$. For $c_i = N_{\ell/k}(u_i)$ we have

$$\alpha: \quad \ell[T; \Phi]_{\leq \delta} \quad \longrightarrow \quad \mathsf{End}_k(\ell)^s \\ f \quad \mapsto \quad \big(f(u_i \Phi)\big)_{1 \leq i \leq s},$$

 $X=\mathbb{P}^1_k$ and $Y=\mathbb{P}^1_\ell$, both viewed as curves over Spec k, t= the coordinate on X and Y

Choose the function $x = t \in K^{\times} = k(t)^{\times}$. Then

$$b_{\mathfrak{p}} = egin{cases} r ext{ for } \mathfrak{p} = 0, \infty, \ 1 ext{ for all other } \mathfrak{p} \in X^{\star}, \end{cases}$$

$$D_{L,x} = \ell(t)[T;\Phi]/(T^r - t) \simeq \operatorname{Frac}(\ell[T;\Phi])$$

Linearized AG codes OOOOO

Consider the divisor $E = \frac{\delta}{r} \cdot \infty \in \text{Div}_{\mathbb{Q}}(Y), \ \delta \in \mathbb{N} \leadsto \Lambda_{L,t}(E) = \ell[T; \Phi]_{\leq \delta}$

Fix rational places $\mathfrak{p}_1, \ldots, \mathfrak{p}_s$ corresponding to elements $c_1, \ldots, c_s \in k \sqcup \{\infty\}$. They satisfy the hypothesis if and only if $c_i \in N_{\ell/k}(\ell^{\times}) \ \forall i$. For $c_i = N_{\ell/k}(u_i)$ we have

$$\alpha: \quad \ell[T; \Phi]_{\leq \delta} \quad \longrightarrow \quad \mathsf{End}_k(\ell)^s \\ f \quad \mapsto \quad \big(f(u_i \Phi)\big)_{1 \leq i \leq s},$$

Our lower bounds: $\delta_{\ell} > m+1$ and $d > sr - m = n_{\ell} - m \Rightarrow MSRD$ codes

• linearized AG codes in the general framework of central simple algebras

Further questions

- linearized AG codes in the general framework of central simple algebras
- decoding problem (decoding algorithm for linearized Reed–Solomon codes ✓)

Further questions

- linearized AG codes in the general framework of central simple algebras
- decoding problem (decoding algorithm for linearized Reed–Solomon codes ✓)
- duality theorem for the codes $C(x; E; \mathfrak{p}_1, \dots, \mathfrak{p}_s)$ (require to develop the theory of differential forms and residues in our framework)

- linearized AG codes in the general framework of central simple algebras
- decoding problem (decoding algorithm for linearized Reed–Solomon codes ✓)
- duality theorem for the codes $C(x; E; \mathfrak{p}_1, \dots, \mathfrak{p}_s)$ (require to develop the theory of differential forms and residues in our framework)

Merci de votre attention I

Questions? elena berardini@math.u-bordeaux fr