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Codes in the sum-rank metric ®0000

Linear codes and codes in the Hamming metric

k a field (keep in mind k = F,), H a k-linear vector space endowed with a metric
Linear code C: k-vector subspace of H
Parameters: length n = dimyg H, dimension § = dimy C, minimum distance d (depends on the metric)

Algebraic Geometry codes in the sum-rank metric E. Berardini



Codes in the sum-rank metric ®0000

Linear codes and codes in the Hamming metric

k a field (keep in mind k = F,), H a k-linear vector space endowed with a metric
Linear code C: k-vector subspace of H
Parameters: length n = dimyg H, dimension § = dimy C, minimum distance d (depends on the metric)

Codes in the Hamming metric: k-vector subspaces of k" endowed with d(x,y) = #{i | x; # yi}

Algebraic Geometry codes in the sum-rank metric E. Berardini



Codes in the sum-rank metric ®0000

Linear codes and codes in the Hamming metric

k a field (keep in mind k = F,), H a k-linear vector space endowed with a metric

Linear code C: k-vector subspace of H
Parameters: length n = dimyg H, dimension § = dimy C, minimum distance d (depends on the metric)

Codes in the Hamming metric: k-vector subspaces of k" endowed with d(x,y) = #{i | x; # yi}

Reed-Solomon (RS) codes:

o Py Py Fq
X1 X2 e Xn

RSs(x) .= {(P(x1), P(x2), ..., P(xn)) | P € Fq[x]<s}

E. Berardini

Algebraic Geometry codes in the sum-rank metric



Codes in the sum-rank metric ®0000

Linear codes and codes in the Hamming metric

k a field (keep in mind k = F,), H a k-linear vector space endowed with a metric

Linear code C: k-vector subspace of H
Parameters: length n = dimyg H, dimension § = dimy C, minimum distance d (depends on the metric)

Codes in the Hamming metric: k-vector subspaces of k" endowed with d(x,y) = #{i | x; # yi}

Reed-Solomon (RS) codes:

o Py Py Fq
X1 X2 e Xn

RSs(x) .= {(P(x1), P(x2), ..., P(xn)) | P € Fq[x]<s}

« Optimal parameters: 6 +d =n+1
(Singleton bound: § +d < n-+1)
/\ Drawback: n < g

E. Berardini

Algebraic Geometry codes in the sum-rank metric



Codes in the sum-rank metric ®0000

Linear codes and codes in the Hamming metric

k a field (keep in mind k = F,), H a k-linear vector space endowed with a metric

Linear code C: k-vector subspace of H
Parameters: length n = dimyg H, dimension § = dimy C, minimum distance d (depends on the metric)

Codes in the Hamming metric: k-vector subspaces of k" endowed with d(x,y) == #{i | x; # yi}

Reed-Solomon (RS) codes: Algebraic Geometry (AG) codes:
fe L(D)
P1/
. Fy, Pn X

\\

RSs(x) = {(P(x1), P(x2), ..., P(xn)) | P € Fq[x]<s}
C(X,P,L(D)) == {(F(Py), f(Pz - f(Pn)) | f € L(D)}
« Optimal parameters: 6 +d =n+1
(Singleton bound: § +d < n-+1)
/\ Drawback: n < g

E. Berardini
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Codes in the sum-rank metric ®0000
Linear codes and codes in the Hamming metric

k a field (keep in mind k = F,), H a k-linear vector space endowed with a metric
Linear code C: k-vector subspace of H
Parameters: length n = dimyg H, dimension § = dimy C, minimum distance d (depends on the metric)

Codes in the Hamming metric: k-vector subspaces of k" endowed with d(x,y) == #{i | x; # yi}

Reed-Solomon (RS) codes: Algebraic Geometry (AG) codes:
f e L(D)

Pl/ \
. . . F, / P X
Y / :
RSs5(x) = {(P(x1), P(x2), ..., P(xa)) | P € Fg[x]<s} \

C(X,P,L(D)) = A{(f(P1), f(P2),....f(Pn)) | f € L(D)}
« Optimal parameters: § +d =n+1 « Good parameters: n+1—g < d+6 < n+1

(Singleton bound: § +d < n-+1) « Longer codes
/\ Drawback: n < g
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General definitions

V =(W,..., Vi) s-uple of k-vector spaces (ni=dimy V;)
H =Endi(V) = Endg(Vh) x -+ x Endg(Vs)
k-vector space of dimension 3%, n? k-linear morphisms V,—V;
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General definitions
V =(W,..., Vi) s-uple of k-vector spaces (ni=dimy V;)

H = Ende(V) = Ende(V4) x - x Endi(VS)

k-vector space of dimension 3¢ k-linear morphisms V,—V;

rlr

Definition

‘

Let o = (i1,...,9s) € H. The sum-rank weight of o is wen() = > i_; rk(si).
The sum-rank distance between ¢, € H is

srk((p w) - Wsrk( '¢)
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General definitions

V =(W,..., Vi) s-uple of k-vector spaces (ni=dimy V;)
H =Endi(V) = Endg(Vh) x -+ x Endg(Vs)
k-vector space of dimension 3%, n? k-linear morphisms V,—V;

Definition
Let o = (p1,...,9s) € H. The sum-rank weight of ¢ is wen(p) == Y i_; rk(¢i).
The sum-rank distance between ¢, € H is

dsrk(fv g) = Wsrk(f - y)

A code C in the sum-rank metric is a k—linear subspace of Endy(V') endowed with the sum-rank
distance.
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H =Endi(V) = Endg(Vh) x -+ x Endg(Vs)
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Definition
Let o = (p1,...,9s) € H. The sum-rank weight of ¢ is wen(p) == Y i_; rk(¢i).
The sum-rank distance between ¢, € H is

dsrk(fv g) = Wsrk(f - y)

A code C in the sum-rank metric is a k—linear subspace of Endy(V') endowed with the sum-rank
distance. lIts length n is > ;_, n?. lts dimension § is dimy C. Its minimum distance is

d ;= min {Wsrk(f) | p € C,g;«ég}.
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Codes in the sum-rank metric O®00O
General definitions

V =(W,..., Vi) s-uple of k-vector spaces (ni=dimy V;)
H =Endi(V) = Endg(Vh) x -+ x Endg(Vs)
k-vector space of dimension 3%, n? k-linear morphisms V,—V;

Definition
Let o = (1,...,9s) € H. The sum-rank weight of @ is we(p) = S rk(i).
The sum-rank distance between ¢, € H is

dsrk(fv g) = Wsrk(f - y)

A code C in the sum-rank metric is a k—linear subspace of Endy(V') endowed with the sum-rank
distance. lIts length n is > ;_, n?. lts dimension § is dimy C. Its minimum distance is

d == min {wei(p) | ¢ €C,0 #0} .
ni=1Vi ~-» codes of length s in the Hamming metric
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Codes in the sum-rank metric OO®00O
Particular case and Singleton bound
£ = finite extension of k of degree r

V =(Vi,..., Vs),s-uple of l-vector spaces (dimy V; = r) ~ H = Endk(V) is a {-vector space
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£ = finite extension of k of degree r
V =(W,..., Vs),s-uple of ¢-vector spaces (dimy V; = r) ~ H = Endx(V) is a ¢-vector space

~» [—linear codes in the sum-rank metric:  ¢-linear subspaces C C H

: . ng:=-rs {—length
~» {—variants of the parameters: ¢ ] ) g
op =dim,C {—dimension

the minimum distance stays unchanged
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Codes in the sum-rank metric OO®00O

Particular case and Singleton bound

£ = finite extension of k of degree r
V =(W,..., Vs),s-uple of ¢-vector spaces (dimy V; = r) ~ H = Endx(V) is a ¢-vector space

~» [—linear codes in the sum-rank metric:  ¢-linear subspaces C C H

: . ng:=-rs {—length
~» {—variants of the parameters: ¢ ] ) g
op =dim,C {—dimension

the minimum distance stays unchanged

Singleton bound

The ¢-parameters of C satisfy

d+dp < ng+1.

Codes with parameters attaining this bound are called Maximum Sum-Rank Distance (MSRD).
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Codes in the sum-rank metric OOO®0O

Ore polynomials and Linearized Reed—Solomon codes (Martinez-Peiias, 2018)

? field, ® : £ — ¢ ring homomorphism, (*= =k, [(: k] = r
14

0]
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Ore polynomials and Linearized Reed—Solomon codes (Martinez-Peiias, 2018)

? field, ® : £ — ¢ ring homomorphism, (*= =k, [(: k] = r
14

The ring of Ore polynomials ¢[T; ®] is the ring whose elements are
® polynomials with coefficients in ¢, with usual 4 and

T-a=®(a)- T Vael.
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Ore polynomials and Linearized Reed—Solomon codes (Martinez-Peiias, 2018)
? field, ® : £ — ¢ ring homomorphism, (*= =k, [(: k] = r
4

The ring of Ore polynomials ¢[T; ®] is the ring whose elements are
® polynomials with coefficients in ¢, with usual + and

T-a=®(a)- T Vael.

ev: [{[T;®] — Endg(¥)
P — P(®).
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Ore polynomials and Linearized Reed—Solomon codes (Martinez-Peiias, 2018)
? field, ® : £ — ¢ ring homomorphism, (*= =k, [(: k] = r
4

The ring of Ore polynomials ¢[T; ®] is the ring whose elements are
® polynomials with coefficients in ¢, with usual + and
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Ore polynomials and Linearized Reed—Solomon codes (Martinez-Peiias, 2018)

? field, ® : £ — ¢ ring homomorphism, (*= =k, [(: k] = r
14

The ring of Ore polynomials ¢[T; ®] is the ring whose elements are
® polynomials with coefficients in ¢, with usual 4 and

X T-a=®(a)- T Vael.

forc =(c1,...,cs) € °

eve: {[T;®] — Endg(f)°
P = (P(a®),...,P(cs?)).
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Codes in the sum-rank metric OOO®0O

Ore polynomials and Linearized Reed—Solomon codes (Martinez-Peiias, 2018)

? field, ® : £ — ¢ ring homomorphism, (*= =k, [(: k] = r

¢ The ring of Ore polynomials ¢[T; ®] is the ring whose elements are
Jq) polynomials with coefficients in ¢, with usual + and
k

T-a=®(a)- T VYael.

forc =(c1,...,cs) € °

eve: {[T;®] — Endg(f)°
P = (P(a®),...,P(cs?)).

Definition (Linearized Reed—Solomon codes)
Forc=(c,...,c5) € £° and 6 € Z define
LRS(6, ¢) = eve (/[T ®]<5)
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Codes in the sum-rank metric OOO®0O

Ore polynomials and Linearized Reed—Solomon codes (Martinez-Peiias, 2018)

? field, ® : £ — ¢ ring homomorphism, (*= =k, [(: k] = r

¢ The ring of Ore polynomials ¢[T; ®] is the ring whose elements are
Jq) polynomials with coefficients in ¢, with usual + and
k

T-a=®(a)- T VYael.

forc =(c1,...,cs) € °

eve: {[T;®] — Endg(f)°
P = (P(a®),...,P(cs?)).

Definition (Linearized Reed—Solomon codes)
For ¢ = (c1,...,cs) € £° such that Ny (ci) # Ngji(cj) Vi # j and § € Z such that 6 < rs define
LRS(5, ¢) = eve(¢[T; ®]<s)

length = rs dimension =& minimum distance =rs —d+1 = MSRD codes
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Codes in the sum-rank metric 0OO0®

Motivation and idea

Definition (Linearized Reed—Solomon codes)
For ¢ = (c1,...,cs) € € such that Ny, (ci) # Neji(cj) Vi # j and Z > 6 < rs define
LRS(5, ¢) = eve(£[T; ¥]<s).

= 5 < Card(k). Think about k = Fy ~» same problem as Reed—Solomon codes
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Let C C End(¢)° be a MSRD code of minimum distance < r + 2. Then, s < Card(k).

Algebraic Geometry codes in the sum-rank metric E. Berardini 7/17



Codes in the sum-rank metric 0OO0®

Motivation and idea

Definition (Linearized Reed—Solomon codes)
For ¢ = (c1,...,cs) € € such that Ny, (ci) # Neji(cj) Vi # j and Z > 6 < rs define
LRS(6,c) = eve({[T; ®]<s).

= 5 < Card(k). Think about k = Fy ~» same problem as Reed—Solomon codes

More in general

Theorem (Byrne, Gluesing—Luerssen, Ravagnani, 2021)

Let C C End(¢)° be a MSRD code of minimum distance < r + 2. Then, s < Card(k).

As in the Hamming case, we can try to overcome the problem using algebraic curves

Algebraic Geometry codes in the sum-rank metric E. Berardini 7/17



Codes in the sum-rank metric 0OO0®

Motivation and idea

Definition (Linearized Reed—Solomon codes)
For ¢ = (c1,...,cs) € € such that Ny, (ci) # Neji(cj) Vi # j and Z > 6 < rs define
LRS(6,c) = eve({[T; ®]<s).

= 5 < Card(k). Think about k = Fy ~» same problem as Reed—Solomon codes

More in general

Theorem (Byrne, Gluesing—Luerssen, Ravagnani, 2021)

Let C C End(¢)° be a MSRD code of minimum distance < r + 2. Then, s < Card(k).

As in the Hamming case, we can try to overcome the problem using algebraic curves

Main idea

Consider Ore polynomials with coefficients in the function field of a curve
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RR spaces over Ore rings €000
Notations

Consider a smooth projective irreducible algebraic curve X of genus gx defined over k
K = k(X) - function field of X

X* - set of places (or, equivalently, closed points) of X

for p € X*, set

Oy - the ring of integers of p

ky - the residue class field of p

degx(p) - the degree of p, the degree of the extension k,/k

K, - the completion of K at p, equipped with the p-adic valuation v,
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RR spaces over Ore rings O®00

Divisors and Riemann—Roch spaces: classical theory

A divisor on X is a formal finite sum

D= Z npyp  with n, € Z almost all zero.
peEX*

The group of divisors on X is denoted by Div(X).
D € Dif(X) is positive, D > 0, if n, > 0Vp. The degree of D is degx(D) = >_,cx- np degx(p).
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RR spaces over Ore rings O®00

Divisors and Riemann—Roch spaces: classical theory

A divisor on X is a formal finite sum

D= Z npyp  with n, € Z almost all zero.
peEX*

The group of divisors on X is denoted by Div(X).
D € Dif(X) is positive, D > 0, if n, > 0Vp. The degree of D is degx(D) = >_,cx- ny degx(p).
The Riemann—Roch space associated with D is

Lx(D) ={x e K* | (x)+ D > 0} u {0},

where (x) = >, cx+ Vp(X) p is the principal divisor associated to a nonzero function x € K.
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RR spaces over Ore rings O®00
Divisors and Riemann—Roch spaces: classical theory
Definition

A divisor on X is a formal finite sum

D= Z npyp  with n, € Z almost all zero.
peEX*

The group of divisors on X is denoted by Div(X).
D € Dif(X) is positive, D > 0, if n, > 0Vp. The degree of D is degx(D) = >_,cx- ny degx(p).
The Riemann—Roch space associated with D is

Lx(D) = {x € K* | (x) + D > 0} U {0},

where (x) = >, cx+ Vp(X) p is the principal divisor associated to a nonzero function x € K.

Riemann—Roch theorem
Let Kx denotes a canonical divisor on X. For any divisor D € Div(X) we have

dimk LX(D) = degX(D) + 1 — 8x —+ dlmk L)((/’(X*D)7
=0 when degy (D)>2gx—2.

E. Berardini

Algebraic Geometry codes in the sum-rank metric



RR spaces over Ore rings OO®0
Our setting

Y 7 a Galois cover with cyclic Galois group of order r

™ L := k(Y) the fields of functions of Y, Gal(L/K) = (&)
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RR spaces over Ore rings OO®0
Our setting

.dm, 7 a Galois cover with cyclic Galois group of order r

J \/ L := k(Y) the fields of functions of Y, Gal(L/K) = (®)

For p € X* we have the decomposition L, .= K, @k L~ ][], Lq-

qalp
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RR spaces over Ore rings OO®0
Our setting

Y 91 ...9m, 7 a Galois cover with cyclic Galois group of order r

{W \/ L := k(Y) the fields of functions of Y, Gal(L/K) = (®)

For p € X* we have the decomposition L, .= K, @k L~ ][], Lq-

X p alp
For x € K*, consider the algebra
Dy = L[T;®]/(T" —x)

and for all p € X*, the algebras Dy, « = K, ®k D x = Lp[T; ®]/(T" — x).
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RR spaces over Ore rings OO®0
Our setting

Y 91 ...9m, 7 a Galois cover with cyclic Galois group of order r

{w \/ L := k() the fields of functions of Y, Gal(L/K) = (®)

X P For p € X* we have the decomposition L, = K, @ L ~ Hq‘p Ly.

For x € K*, consider the algebra

Dy = L[T;®]/(T" —x)
and for all p € X*, the algebras Dy, « = K, ®k D x = Lp[T; ®]/(T" — x).
Define wy; x : Dy, x — %Z U{oco}i<j<m,): for f = fo+ AT + -+ f_; T

Wqx(f) = min (M +i- @) ’

€q

where e, denotes the ramification index of g.

E. Berardini 10/17
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RR spaces over Ore rings OO®0
Our setting

Y 91 ...9m, 7 a Galois cover with cyclic Galois group of order r

{w \/ L := k() the fields of functions of Y, Gal(L/K) = (®)

% P For p € X* we have the decomposition L, = K, @ L ~ Hq‘p Ly.

For x € K*, consider the algebra

Dy = L[T;®]/(T" —x)
and for all p € X*, the algebras Dy, « = K, ®k D x = Lp[T; ®]/(T" — x).
Define wy; x : Dy, x — %Z U{oco}i<j<m,): for f = fo+ AT + -+ f_; T

W x(F) = min (ﬂ+M)

o<i<r €q r

where e; denotes the ramification index of q. A w, (fg) = w, () + wy . (g).
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RR spaces over Ore rings OO®0
Our setting

Y 91 ...9m, 7 a Galois cover with cyclic Galois group of order r

{w \/ L := k() the fields of functions of Y, Gal(L/K) = (®)

X P For p € X* we have the decomposition L, = K, @ L ~ Hq‘p Ly.

For x € K*, consider the algebra

Dy = L[T;®]/(T" —x)
and for all p € X*, the algebras Dy, « = K, ®k D x = Lp[T; ®]/(T" — x).
Define wy; x : Dy, x — %Z U{oco}i<j<m,): for f = fo+ AT + -+ f_; T

W x(F) = min (ﬂ+M)

o<i<r €q r
where e; denotes the ramification index of q. A w, (fg) = w, () + wy . (g).

ALmX = {f € DLp,x | ij,x(f) > 0}

E. Berardini 10/17
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RR spaces over Ore rings OO®0
Our setting

Y 91 ...9m, 7 a Galois cover with cyclic Galois group of order r

{w \/ L := k() the fields of functions of Y, Gal(L/K) = (®)

X P For p € X* we have the decomposition L, = K, @ L ~ Hq‘p Ly.

For x € K*, consider the algebra

Dy = L[T;®]/(T" —x)
and for all p € X*, the algebras Dy, « = K, ®k D x = Lp[T; ®]/(T" — x).
Define wy; x : Dy, x — %Z U{oco}i<j<m,): for f = fo+ AT + -+ f_; T

W x(F) = min (ﬂ+M)

o<i<r €q r
where e; denotes the ramification index of q. A w, (fg) = w, () + wy . (g).
ALmX = {f S DLp,x | ij,x(f) > 0}

For p € X*, eywq«(f) € ﬁZ where by, is the denominator of p, = e"vf*’(x) after reduction

E. Berardini 10/17

Algebraic Geometry codes in the sum-rank metric



RR spaces over Ore rings 000®

Divisors and Riemann—Roch spaces over Ore polynomial rings

Definition (Riemann—Roch spaces of D, )

Let E =73 cy. nqq € Divg(Y) := Div (Y)® Q where, for all q, the coefficient nq is in éZ where
p = w(q) is the place below q. We define the Riemann—Roch space of Dy x associated with E as

A x(E) = { f e Dyx|eqwqx(f)+ng >0 forallqge Y* }
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Divisors and Riemann—Roch spaces over Ore polynomial rings

Definition (Riemann—Roch spaces of D, )

Let E =73 cy. nqq € Divg(Y) := Div (Y)® Q where, for all q, the coefficient nq is in éZ where
p = w(q) is the place below q. We define the Riemann—Roch space of Dy x associated with E as

A x(E) = { f e Dyx|eqwqx(f)+ng >0 forallqge Y* }

= Aw(E) = @2y Ly(E) - T/, where E; ==Y . [ng+ i+ pa(gy] -9 €Div(Y)  (0<i<r)
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RR spaces over Ore rings 000®

Divisors and Riemann—Roch spaces over Ore polynomial rings

Definition (Riemann—Roch spaces of D, )

Let E =73 cy. nqq € Divg(Y) := Div (Y)® Q where, for all q, the coefficient nq is in éZ where
p = w(q) is the place below q. We define the Riemann—Roch space of Dy x associated with E as

A x(E) = { f e Dyx|eqwqx(f)+ng >0 forallqge Y* }

= Aw(E) = @2y Ly(E) - T/, where E; ==Y . [ng+ i+ pa(gy] -9 €Div(Y)  (0<i<r)

Lemma: We have Z,:ol degy (E;) = r-degy (E) — ’—22 > pexr %% degx(p).
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RR spaces over Ore rings 000®
Divisors and Riemann—Roch spaces over Ore polynomial rings

Definition (Riemann—Roch spaces of D, )

Let E =73 cy. nqq € Divg(Y) := Div (Y)® Q where, for all q, the coefficient nq is in éZ where
p = w(q) is the place below q. We define the Riemann—Roch space of Dy x associated with E as

A x(E) = { f e Dyx|eqwqx(f)+ng >0 forallqge Y* }

= Aw(E) = @2y Ly(E) - T/, where E; ==Y . [ng+ i+ pa(gy] -9 €Div(Y)  (0<i<r)

Lemma: We have Z:Ol degy (E;) = r-degy (E) — ’—22 > pexr %’% degx(p).

Riemann’s inequality for A, (E)

For a divisor E = }__ . nqq € Divg(Y) the space A, «(E) is finite dimensional over k and

by,—1
by e,

2
dimg ALx(E) > r-degy(E) — r-(gy — 1) — % > degx (p)-

peEX*
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Linearized AG codes #0000
Code’s construction

Let p € X* rational, t, a uniformizer (K, ~ k((1))), x € K*
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Code’s construction

Let p € X* rational, t, a uniformizer (K, ~ k((t))), x € K*

if x is a nonzero norm in Ly /Ky, more precisely Juy = (ug)qpp € Ly s.t. x = [, Niy/k, (1g), then

ep: Di,x — Endg,(Ly)
foo= f(u®).
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Let p € X* rational, t, a uniformizer (K, ~ k((t))), x € K*
if x is a nonzero norm in Ly /Ky, more precisely Juy = (ug)qpp € Ly s.t. x = [, Niy/k, (uq) and
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ep: Di,x — Endg,(Lp)
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Linearized AG codes #0000
Code’s construction

Let p € X* rational, t, a uniformizer (K, ~ k((1))), x € K*
if x is a nonzero norm in L, /Ky, more precisely Ju, = (uq)qp € Ly s.t. x = 1., Niysx, (uq) and
Vg, vy(ug) = v, then
Ep /\wa — EI‘ICI@K|g (OLP)
fo—=  f(u®).
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Code’s construction

Let p € X* rational, t, a uniformizer (K, ~ k((t))), x € K*

if x is a nonzero norm in Ly /Ky, more precisely Juy = (ug)qpp € Ly s.t. x = [1,, Niy/k, (uq) and
Vg, vy(ug) = v, then

Ep . /\L,,,x = EndOKP(OLp) ﬂ) Endk(OLp/tpOLp)
= flu®d) = f(up®) mod t.
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Linearized AG codes #0000
Code’s construction

Let p € X* rational, t, a uniformizer (K, ~ k((t))), x € K*

if x is a nonzero norm in Ly /Ky, more precisely Juy = (ug)qpp € Ly s.t. x = [1,, Niy/k, (uq) and
Vg, vy(ug) = v, then

Ep . /\L,,,x = EndOKP(OLp) ﬂ) Endk(OLp/tpOLp)
= flu®d) = f(up®) mod t.

ifp & w(supp(E)) ~ A, x(E) € Ar, x
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Linearized AG codes #0000
Code’s construction

Let p € X* rational, t, a uniformizer (K, ~ k((t))), x € K*
if x is a nonzero norm in Ly /Ky, more precisely Juy = (ug)qpp € Ly s.t. x = [1,, Niy/k, (uq) and
Vg, vy(ug) = v, then
Ep . /\L,,,x = EndoKp (OLp) ﬂ) Endk(OLp/tpOLp)
= flu®d) = f(up®) mod t.
ifp & w(supp(E)) ~ A, x(E) € Ar, x

Definition (Linearized Algebraic Geometry codes)
Let E=3" cy. nqq € Divg(Y). Chose x € K and p1,...,ps rational places on X such that the
hypotheses hold. Set Vj, == Oy, [ty,OL, . Consider

(672 AL,X(E) — H;‘;:lEndk(VPi)
fo= (5Pi(f))1§i§s'

The code C(x; E; p1,...,ps) is defined as the image of a.
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Linearized AG codes O®000
Code’s parameters

We study the parameters of the k-linear code C in [];_; End(V},).
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Linearized AG codes O®000

Code’s parameters

We study the parameters of the k-linear code C in [];_; End(V},).
Its length n is the k-dimension of the ambient space : dimy V,,, =r = n = sr?

Theorem (B., Caruso)

Assume degy (E) < sr. Assume the previous hypotheses and that D; . contains no nonzero
divisors. Then, the dimension ¢ and the minimum distance d of C(x; E; p1, ..., ps) satisfy

2 _
5> r'degy(E)—r~(gy—1)—r— by—1

d > sr —degy (E).
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Linearized AG codes O®000

Code’s parameters

We study the parameters of the k-linear code C in [];_; End(V},).
Its length n is the k-dimension of the ambient space : dimy V,,, =r = n = sr?

Theorem (B., Caruso)

Assume degy (E) < sr. Assume the previous hypotheses and that D; . contains no nonzero
divisors. Then, the dimension ¢ and the minimum distance d of C(x; E; p1, ..., ps) satisfy

r? b,—1
§ > r-degy(E) —r(gy —1)— = degx (),
2 byep
peEX*
d > sr —degy (E).
Singleton bound: rd+d6d<n+r

We have: rd+d>n+r— (r-gv + %2 D pex % degx(p)>
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Linearized AG codes OO®00O
Sketch of the proof

Want: d > sr — degy (E) + bound on the dimension ¢
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Sketch of the proof

Want: d > sr — degy (E) + bound on the dimension ¢
Let 0 # f € Apx(E), with w = wa(a(f)) = D7, rk &, (f).
Let d; == dimy ker &;(f) for i € {1,...,s}

and define the divisor E' := — 377, dipi + >, c x- {Z ﬂ—J p € Div(X).

qlp €p My

Algebraic Geometry codes in the sum-rank metric E. Berardini 14 /17



Linearized AG codes OO®00O
Sketch of the proof

Want: d > sr — degy (E) + bound on the dimension ¢
Let 0 # f € Apx(E), with w = wa(a(f)) = D7, rk &, (f).
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Linearized AG codes OO®00O
Sketch of the proof

Want: d > sr — degy (E) + bound on the dimension ¢

Let 0 # f € Apx(E), with w = wa(a(f)) = D7, rk &, (f).

Let d; == dimyker&;(f) for i € {1,...,s} = > d; :Zf_l dimg Vy, —rk &, (f) = sr —w
and define the divisor E/ := — 7, dip; + 2 pex+ {qu epmpJ p € Div(X).

We have Nrd(f) € Lx(E") where Nrd(f) € K and is defined as the determinant of g &% gf

degy (E Zd + Z

qey €p My

"L degy (n(q)) = w — sr + degy (E).
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qey €p My
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qey €p My

"L degy (n(q)) = w — sr + degy (E).

If w < sr—degy(E) = Nrd(f) = 0 = pur is not injective = f is a nonzero zero divisor in D

In conclusion: w > sr — degy (E) ¢

Algebraic Geometry codes in the sum-rank metric E. Berardini 14 /17



Linearized AG codes OO®00O
Sketch of the proof

Want: d > sr — degy (E) + bound on the dimension ¢

Let 0 # f € Apx(E), with w = wa(a(f)) = D7, rk &, (f).

Let d; == dimyker&;(f) for i € {1,...,s} = > d; :Zf_l dimg Vy, —rk &, (f) = sr —w
and define the divisor E/ := — 7, dip; + 2 pex+ {qu epmpJ p € Div(X).

We have Nrd(f) € Lx(E") where Nrd(f) € K and is defined as the determinant of g &% gf

degy (E Zd + Z

qey €p My

"L degy (n(q)) = w — sr + degy (E).

If w < sr—degy(E) = Nrd(f) = 0 = pur is not injective = f is a nonzero zero divisor in D

In conclusion: w > sr — degy (E) ¢

Injectivity of the map o = § = dimy A «(E) ~~ lower bound on § via Riemann’s inequality v
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Linearized AG codes OO0O®0O
The case of isotrivial covers

Let ¢ be a finite cyclic extension of k of order r.
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Linearized AG codes OO0O®0O
The case of isotrivial covers

Let ¢ be a finite cyclic extension of k of order r.

® Take Y = Spec £ Xspec k X (cyclic Galois cover of X of degree r)

k
Residue field of any place of Y is a (-algebra = the code C(x; E; p1,...,Ps) is ¢-linear
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Linearized AG codes OOO®0O

The case of isotrivial covers

L
® Let ¢ be a finite cyclic extension of k of order r.
Take Y = Spec £ Xspec k X (cyclic Galois cover of X of degree r)
k

Residue field of any place of Y is a (-algebra = the code C(x; E; p1,...,Ps) is ¢-linear

{-parameters of the code

For the code C(x; E; p1,...,ps) with x,p1,...,ps, E satisfying the hypotheses, we have

® ny = sr,
® 0, > degy(E) — r-(gx —1) = § Lpexe 2 degx(p),
® d > sr—degy(E).
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Linearized AG codes OOO0®

Linearized AG codes over P! are Linearized Reed—Solomon codes

X =P} and Y =P}, both viewed as curves over Spec k, t = the coordinate on X and Y

Algebraic Geometry codes in the sum-rank metric E. Berardini 16 /17



Linearized AG codes OOO0®

Linearized AG codes over P! are Linearized Reed—Solomon codes

X =P} and Y =P}, both viewed as curves over Spec k, t = the coordinate on X and Y

Choose the function x =t € K*= k(t)*. Then

_Jrforp=0,00,
P 7] 1 for all other p e X*,

Dy =L(t)[T;®]/(T" —t) ~ Frac({[T; ¢])
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Linearized AG codes over P! are Linearized Reed—Solomon codes

X =P} and Y =P}, both viewed as curves over Spec k, t = the coordinate on X and Y
Choose the function x =t € K*= k(t)*. Then
_Jrforp=0,00,
P 7] 1 for all other p e X,
Dy =L(t)[T;®]/(T" —t) ~ Frac({[T; ¢])
Consider the divisor E = 2-00 € Divg(Y), § € N~ A, (E) = ([T; ]
Fix rational places p1,...,ps corresponding to elements cy, ..., cs € kU {oo}. They satisfy the
hypothesis if and only if ¢; € Ny (%) Vi. For ¢; = Nyi(u;) we have

a: (T;®l<s —> Endi(¢)*
f = (f(”"d)))lgigs’

~~ construction of linearized Reed—Solomon!
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Linearized AG codes OOO0®

Linearized AG codes over P! are Linearized Reed—Solomon codes

X =P} and Y =P}, both viewed as curves over Spec k, t = the coordinate on X and Y
Choose the function x =t € K*= k(t)*. Then
_Jrforp=0,00,
P 7] 1 for all other p e X,
Dy =L(t)[T;®]/(T" —t) ~ Frac({[T; ¢])
Consider the divisor E = 2-00 € Divg(Y), § € N~ A, (E) = ([T; ]
Fix rational places p1,...,ps corresponding to elements cy, ..., cs € kU {oo}. They satisfy the
hypothesis if and only if ¢; € Ny (%) Vi. For ¢; = Nyi(u;) we have

a: (T;®l<s —> Endi(¢)*
f (f(”"d)))lgigs’
~~ construction of linearized Reed—Solomon!

Our lower bounds: 6, > m+ 1 and d >sr — m = n, — m = MSRD codes
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Conclusion and further works @
Further questions

® linearized AG codes in the general framework of central simple algebras
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® decoding problem
(decoding algorithm for linearized Reed—Solomon codes ¢ )

® duality theorem for the codes C(x; E; p1,...,ps)
(require to develop the theory of differential forms and residues in our framework)

Merci de votre attention !

Questions?
elena.berardini@math.u-bordeaux.fr
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