Algebraic Geometry codes in the sum-Rank metric

Elena Berardini and X.Caruso

CNRS, Institut de Mathématiques de Bordeaux

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 899987
(1) Codes in the sum-rank metric
(2) Riemann-Roch spaces over Ore polynomial rings
(3) Linearized Algebraic Geometry codes
(4) Conclusion and further works

Linear codes and codes in the Hamming metric

k a field (keep in mind $k=\mathbb{F}_{q}$), \mathcal{H} a k-linear vector space endowed with a metric Linear code \mathcal{C} : k-vector subspace of \mathcal{H}
Parameters: length $n=\operatorname{dim}_{k} \mathcal{H}$, dimension $\delta=\operatorname{dim}_{k} \mathcal{C}$, minimum distance d (depends on the metric)
k a field (keep in mind $k=\mathbb{F}_{q}$), \mathcal{H} a k-linear vector space endowed with a metric Linear code \mathcal{C} : k-vector subspace of \mathcal{H}
Parameters: length $n=\operatorname{dim}_{k} \mathcal{H}$, dimension $\delta=\operatorname{dim}_{k} \mathcal{C}$, minimum distance \boldsymbol{d} (depends on the metric)
Codes in the Hamming metric: k-vector subspaces of k^{n} endowed with $d(x, y):=\#\left\{i \mid x_{i} \neq y_{i}\right\}$
k a field (keep in mind $k=\mathbb{F}_{q}$), \mathcal{H} a k-linear vector space endowed with a metric Linear code \mathcal{C} : k-vector subspace of \mathcal{H}
Parameters: length $n=\operatorname{dim}_{k} \mathcal{H}$, dimension $\delta=\operatorname{dim}_{k} \mathcal{C}$, minimum distance d (depends on the metric)
Codes in the Hamming metric: k-vector subspaces of k^{n} endowed with $d(x, y):=\#\left\{i \mid x_{i} \neq y_{i}\right\}$
Reed-Solomon (RS) codes:

k a field (keep in mind $k=\mathbb{F}_{q}$), \mathcal{H} a k-linear vector space endowed with a metric Linear code \mathcal{C} : k-vector subspace of \mathcal{H}
Parameters: length $n=\operatorname{dim}_{k} \mathcal{H}$, dimension $\delta=\operatorname{dim}_{k} \mathcal{C}$, minimum distance d (depends on the metric)
Codes in the Hamming metric: k-vector subspaces of k^{n} endowed with $d(x, y):=\#\left\{i \mid x_{i} \neq y_{i}\right\}$
Reed-Solomon (RS) codes:

- Optimal parameters: $\delta+d=n+1$ (Singleton bound: $\delta+d \leq n+1$)
Drawback: $n \leqslant q$
k a field (keep in mind $k=\mathbb{F}_{q}$), \mathcal{H} a k-linear vector space endowed with a metric Linear code \mathcal{C} : k-vector subspace of \mathcal{H}
Parameters: length $n=\operatorname{dim}_{k} \mathcal{H}$, dimension $\delta=\operatorname{dim}_{k} \mathcal{C}$, minimum distance d (depends on the metric)
Codes in the Hamming metric: k-vector subspaces of k^{n} endowed with $d(x, y):=\#\left\{i \mid x_{i} \neq y_{i}\right\}$

Reed-Solomon (RS) codes:

Algebraic Geometry (AG) codes:

$$
\mathcal{C}(X, \mathcal{P}, L(D)):=\left\{\left(f\left(P_{1}\right), f\left(P_{2}\right), \ldots, f\left(P_{n}\right)\right) \mid f \in L(D)\right\}
$$

\checkmark Optimal parameters: $\delta+d=n+1$ (Singleton bound: $\delta+d \leq n+1$)
Drawback: $n \leqslant q$
k a field (keep in mind $k=\mathbb{F}_{q}$), \mathcal{H} a k-linear vector space endowed with a metric Linear code \mathcal{C} : k-vector subspace of \mathcal{H}
Parameters: length $n=\operatorname{dim}_{k} \mathcal{H}$, dimension $\delta=\operatorname{dim}_{k} \mathcal{C}$, minimum distance d (depends on the metric)
Codes in the Hamming metric: k-vector subspaces of k^{n} endowed with $d(x, y):=\#\left\{i \mid x_{i} \neq y_{i}\right\}$

Reed-Solomon (RS) codes:

Algebraic Geometry (AG) codes:

$\mathcal{C}(X, \mathcal{P}, L(D)):=\left\{\left(f\left(P_{1}\right), f\left(P_{2}\right), \ldots, f\left(P_{n}\right)\right) \mid f \in L(D)\right\}$
\checkmark Good parameters: $n+1-g \leq d+\delta \leq n+1$
\checkmark Longer codes

Drawback: $n \leqslant q$

General definitions

$$
\begin{aligned}
& \underline{V}=\left(V_{1}, \ldots, V_{s}\right) s \text {-uple of } k \text {-vector spaces } \\
& \qquad \mathcal{H}=\operatorname{End}_{k}(\underline{V}) \quad:=\underset{E_{i=1}}{\operatorname{End}_{k}\left(V_{1}\right) \times \cdots \times \operatorname{End}_{k}\left(V_{s}\right)} \begin{array}{l}
k \text {-linear morphisms } v_{i} \rightarrow V_{i}
\end{array}
\end{aligned}
$$

$$
\left(n_{i}=\operatorname{dim}_{k} V_{i}\right)
$$

General definitions

$$
\begin{aligned}
& \underline{V}=\left(V_{1}, \ldots, V_{s}\right) \text { s-uple of } k \text {-vector spaces } \\
& \qquad \mathcal{H}=\operatorname{End}_{k}(\underline{V}) \quad:=\underset{\operatorname{End}_{k}\left(V_{1}\right) \times \cdots \times \operatorname{End}_{k}\left(V_{s}\right)}{ } \begin{array}{l}
\text { k-linear morphisms } V_{i} \rightarrow V_{i}
\end{array}
\end{aligned}
$$

Definition

Let $\underline{\varphi}=\left(\varphi_{1}, \ldots, \varphi_{s}\right) \in \mathcal{H}$. The sum-rank weight of $\underline{\varphi}$ is $w_{\text {srk }}(\underline{\varphi}):=\sum_{i=1}^{s} r k\left(\varphi_{i}\right)$.
The sum-rank distance between $\underline{\varphi}, \underline{\psi} \in \mathcal{H}$ is

$$
d_{s r k}(\underline{\varphi}, \underline{\psi}):=w_{s r k}(\underline{\varphi}-\underline{\psi}) .
$$

General definitions

$$
\begin{aligned}
& \underline{V}=\left(V_{1}, \ldots, V_{s}\right) s \text {-uple of } k \text {-vector spaces } \\
& \qquad \mathcal{H}=\operatorname{End}_{k}(\underline{V}) \quad:=\underset{\operatorname{End}_{k}\left(V_{1}\right) \times \cdots \times \operatorname{End}_{k}\left(V_{s}\right)}{ } \begin{array}{l}
\text { k-linear morphisms } V_{i} \rightarrow V_{i}
\end{array}
\end{aligned}
$$

Definition

Let $\underline{\varphi}=\left(\varphi_{1}, \ldots, \varphi_{s}\right) \in \mathcal{H}$. The sum-rank weight of $\underline{\varphi}$ is $w_{\text {srk }}(\underline{\varphi}):=\sum_{i=1}^{s} r k\left(\varphi_{i}\right)$.
The sum-rank distance between $\underline{\varphi}, \underline{\psi} \in \mathcal{H}$ is

$$
d_{s r k}(\underline{\varphi}, \underline{\psi}):=w_{s r k}(\underline{\varphi}-\underline{\psi}) .
$$

A code \mathcal{C} in the sum-rank metric is a k-linear subspace of $\operatorname{End}_{k}(\underline{V})$ endowed with the sum-rank distance.

General definitions

$$
\underline{V}=\left(V_{1}, \ldots, V_{s}\right) s \text {-uple of } k \text {-vector spaces }
$$

$$
\begin{array}{r}
\mathcal{H}=\operatorname{End}_{k}(\underline{V}):=\operatorname{End}_{k}\left(V_{1}\right) \times \cdots \times \operatorname{End}_{k}\left(V_{s}\right) \\
\text { k-vector space of dimension } \sum_{i=1}^{s} n_{i}^{2}
\end{array} \quad \begin{aligned}
& \text { k-linear morphisms } V_{i} \rightarrow V_{i}
\end{aligned}
$$

Definition

Let $\underline{\varphi}=\left(\varphi_{1}, \ldots, \varphi_{s}\right) \in \mathcal{H}$. The sum-rank weight of $\underline{\varphi}$ is $w_{\text {srk }}(\underline{\varphi}):=\sum_{i=1}^{s} r k\left(\varphi_{i}\right)$.
The sum-rank distance between $\underline{\varphi}, \underline{\psi} \in \mathcal{H}$ is

$$
d_{s r k}(\underline{\varphi}, \underline{\psi}):=w_{s r k}(\underline{\varphi}-\underline{\psi})
$$

A code \mathcal{C} in the sum-rank metric is a k-linear subspace of $\operatorname{End}_{k}(\underline{V})$ endowed with the sum-rank distance. Its length n is $\sum_{i=1}^{s} n_{i}^{2}$. Its dimension δ is $\operatorname{dim}_{k} \mathcal{C}$. Its minimum distance is

$$
d:=\min \left\{w_{\text {srk }}(\underline{\varphi}) \mid \underline{\varphi} \in \mathcal{C}, \underline{\varphi} \neq \underline{0}\right\} .
$$

General definitions

$$
\underline{V}=\left(V_{1}, \ldots, V_{s}\right) s \text {-uple of } k \text {-vector spaces }
$$

$$
\begin{array}{r}
\mathcal{H}=\operatorname{End}_{k}(\underline{V}):=\operatorname{End}_{k}\left(V_{1}\right) \times \cdots \times \operatorname{End}_{k}\left(V_{s}\right) \\
\text { k-vector space of dimension } \sum_{i=1}^{s} n_{i}^{2}
\end{array} \quad \begin{aligned}
& \text { k-linear morphisms } V_{i} \rightarrow V_{i}
\end{aligned}
$$

Definition

Let $\underline{\varphi}=\left(\varphi_{1}, \ldots, \varphi_{s}\right) \in \mathcal{H}$. The sum-rank weight of $\underline{\varphi}$ is $w_{\text {srk }}(\underline{\varphi}):=\sum_{i=1}^{s} r k\left(\varphi_{i}\right)$.
The sum-rank distance between $\underline{\varphi}, \underline{\psi} \in \mathcal{H}$ is

$$
d_{s r k}(\underline{\varphi}, \underline{\psi}):=w_{s r k}(\underline{\varphi}-\underline{\psi})
$$

A code \mathcal{C} in the sum-rank metric is a k-linear subspace of $\operatorname{End}_{k}(\underline{V})$ endowed with the sum-rank distance. Its length n is $\sum_{i=1}^{s} n_{i}^{2}$. Its dimension δ is $\operatorname{dim}_{k} \mathcal{C}$. Its minimum distance is

$$
d:=\min \left\{w_{\text {srk }}(\underline{\varphi}) \mid \underline{\varphi} \in \mathcal{C}, \underline{\varphi} \neq \underline{0}\right\} .
$$

$$
n_{i}=1 \forall i \rightsquigarrow \text { codes of length } s \text { in the Hamming metric }
$$

$\ell=$ finite extension of k of degree r

$$
\underline{V}=\left(V_{1}, \ldots, V_{s}\right), s \text {-uple of } \ell \text {-vector spaces }\left(\operatorname{dim}_{k} V_{i}=r\right) \rightsquigarrow \mathcal{H}=\operatorname{End}_{k}(\underline{V}) \text { is a } \ell \text {-vector space }
$$

$\ell=$ finite extension of k of degree r
$\underline{V}=\left(V_{1}, \ldots, V_{s}\right)$, s-uple of ℓ-vector spaces $\left(\operatorname{dim}_{k} V_{i}=r\right) \rightsquigarrow \mathcal{H}=\operatorname{End}_{k}(\underline{V})$ is a ℓ-vector space
$\rightsquigarrow \ell$-linear codes in the sum-rank metric: $\quad \ell$-linear subspaces $\mathcal{C} \subset \mathcal{H}$
$\rightsquigarrow \ell$-variants of the parameters:

$$
\left\{\begin{array}{lr}
n_{\ell}:=r s & \ell \text {-length } \\
\delta_{\ell}:=\operatorname{dim}_{\ell} \mathcal{C} & \ell \text {-dimension } \\
\text { the minimum distance stays unchanged }
\end{array}\right.
$$

$\ell=$ finite extension of k of degree r
$\underline{V}=\left(V_{1}, \ldots, V_{s}\right)$, s-uple of ℓ-vector spaces $\left(\operatorname{dim}_{k} V_{i}=r\right) \rightsquigarrow \mathcal{H}=\operatorname{End}_{k}(\underline{V})$ is a ℓ-vector space
$\rightsquigarrow \ell$-linear codes in the sum-rank metric: $\quad \ell$-linear subspaces $\mathcal{C} \subset \mathcal{H}$
$\rightsquigarrow \ell$-variants of the parameters:

$$
\left\{\begin{array}{lr}
n_{\ell}:=r s & \ell \text {-length } \\
\delta_{\ell}:=\operatorname{dim}_{\ell} \mathcal{C} & \ell \text {-dimension } \\
\text { the minimum distance stays unchanged }
\end{array}\right.
$$

Singleton bound

The ℓ-parameters of \mathcal{C} satisfy

$$
d+\delta_{\ell} \leq n_{\ell}+1
$$

Codes with parameters attaining this bound are called Maximum Sum-Rank Distance (MSRD).
ℓ field, $\Phi: \ell \rightarrow \ell$ ring homomorphism, $\ell^{\Phi=1}=k,[\ell: k]=r$

Ore polynomials and Linearized Reed-Solomon codes (Martínez-Peñas, 2018)

ℓ field, $\Phi: \ell \rightarrow \ell$ ring homomorphism, $\ell^{\Phi=1}=k,[\ell: k]=r$

The ring of Ore polynomials $\ell[T ; \Phi]$ is the ring whose elements are polynomials with coefficients in ℓ, with usual + and

$$
T \cdot a=\Phi(a) \cdot T \quad \forall a \in \ell .
$$

Ore polynomials and Linearized Reed-Solomon codes (Martínez-Peñas, 2018)

ℓ field, $\Phi: \ell \rightarrow \ell$ ring homomorphism, $\ell^{\Phi=1}=k,[\ell: k]=r$

The ring of Ore polynomials $\ell[T ; \Phi]$ is the ring whose elements are polynomials with coefficients in ℓ, with usual + and

$$
T \cdot a=\Phi(a) \cdot T \quad \forall a \in \ell
$$

$$
\text { ev: } \begin{array}{rlll}
\ell[T ; \Phi] & \rightarrow & \text { End }_{k}(\ell) \\
P & \mapsto & P(\Phi) .
\end{array}
$$

Ore polynomials and Linearized Reed-Solomon codes (Martínez-Peñas, 2018)

ℓ field, $\Phi: \ell \rightarrow \ell$ ring homomorphism, $\ell^{\Phi=1}=k,[\ell: k]=r$

for $c \in \ell$

The ring of Ore polynomials $\ell[T ; \Phi]$ is the ring whose elements are polynomials with coefficients in ℓ, with usual + and

$$
T \cdot a=\Phi(a) \cdot T \quad \forall a \in \ell .
$$

$$
\begin{aligned}
\operatorname{ev}_{c}: \quad \ell[T ; \Phi] & \rightarrow \operatorname{End}_{k}(\ell) \\
P & \mapsto P(c \Phi) .
\end{aligned}
$$

Ore polynomials and Linearized Reed-Solomon codes (Martínez-Peñas, 2018)

ℓ field, $\Phi: \ell \rightarrow \ell$ ring homomorphism, $\ell^{\Phi=1}=k,[\ell: k]=r$

ℓ field, $\Phi: \ell \rightarrow \ell$ ring homomorphism, $\ell^{\Phi=1}=k,[\ell: k]=r$

$$
\begin{aligned}
\mathrm{ev}_{\underline{c}}: \quad \ell[T ; \Phi] & \rightarrow \operatorname{End}_{k}(\ell)^{s} \\
P & \mapsto\left(P\left(c_{1} \Phi\right), \ldots, P\left(c_{s} \Phi\right)\right) .
\end{aligned}
$$

Definition (Linearized Reed-Solomon codes)

$$
\begin{aligned}
& \text { For } \underline{c}=\left(c_{1}, \ldots, c_{s}\right) \in \ell^{s} \quad \text { and } \delta \in \mathbb{Z} \\
& \qquad L R S(\delta, \underline{c})=e v_{\underline{c}}\left(\ell[T ; \Phi]_{<\delta}\right)
\end{aligned}
$$

ℓ field, $\Phi: \ell \rightarrow \ell$ ring homomorphism, $\ell^{\Phi=1}=k,[\ell: k]=r$

The ring of Ore polynomials $\ell[T ; \Phi]$ is the ring whose elements are polynomials with coefficients in ℓ, with usual + and

$$
T \cdot a=\Phi(a) \cdot T \quad \forall a \in \ell
$$

for $\underline{c}=\left(c_{1}, \ldots, c_{s}\right) \in \ell^{s}$

$$
\begin{aligned}
\mathrm{ev}_{\underline{c}}: \quad \ell[T ; \Phi] & \rightarrow \operatorname{End}_{k}(\ell)^{s} \\
P & \mapsto\left(P\left(c_{1} \Phi\right), \ldots, P\left(c_{s} \Phi\right)\right) .
\end{aligned}
$$

Definition (Linearized Reed-Solomon codes)

For $\underline{c}=\left(c_{1}, \ldots, c_{s}\right) \in \ell^{s}$ such that $N_{\ell / k}\left(c_{i}\right) \neq N_{\ell / k}\left(c_{j}\right) \forall i \neq j$ and $\delta \in \mathbb{Z}$ such that $\delta \leq r s$ define

$$
\operatorname{LRS}(\delta, \underline{c})=e v_{\underline{c}}\left(\ell[T ; \Phi]_{<\delta}\right)
$$

$$
\text { length }=\mathrm{rs} \quad \text { dimension }=\delta \quad \text { minimum distance }=r s-\delta+1 \quad \Rightarrow \text { MSRD codes }
$$

Motivation and idea

Definition (Linearized Reed-Solomon codes)

For $\underline{c}=\left(c_{1}, \ldots, c_{s}\right) \in \ell^{s}$ such that $N_{\ell / k}\left(c_{i}\right) \neq N_{\ell / k}\left(c_{j}\right) \forall i \neq j$ and $\mathbb{Z} \ni \delta \leq r s$ define

$$
\operatorname{LRS}(\delta, \underline{c})=e v_{\underline{c}}\left(\ell[T ; \Phi]_{<\delta}\right)
$$

$\Rightarrow s \leq \operatorname{Card}(k)$. Think about $k=\mathbb{F}_{q} \rightsquigarrow$ same problem as Reed-Solomon codes

Motivation and idea

Definition (Linearized Reed-Solomon codes)

For $\underline{c}=\left(c_{1}, \ldots, c_{s}\right) \in \ell^{s}$ such that $N_{\ell / k}\left(c_{i}\right) \neq N_{\ell / k}\left(c_{j}\right) \forall i \neq j$ and $\mathbb{Z} \ni \delta \leq r s$ define

$$
L R S(\delta, \underline{c})=e v_{\underline{c}}\left(\ell[T ; \Phi]_{<\delta}\right)
$$

$\Rightarrow s \leq \operatorname{Card}(k)$. Think about $k=\mathbb{F}_{q} \rightsquigarrow$ same problem as Reed-Solomon codes
More in general

Theorem (Byrne, Gluesing-Luerssen, Ravagnani, 2021)

Let $\mathcal{C} \subseteq \operatorname{End}_{k}(\ell)^{s}$ be a MSRD code of minimum distance $\leq r+2$. Then, $s \leq \operatorname{Card}(k)$.

Definition (Linearized Reed-Solomon codes)

For $\underline{c}=\left(c_{1}, \ldots, c_{s}\right) \in \ell^{s}$ such that $N_{\ell / k}\left(c_{i}\right) \neq N_{\ell / k}\left(c_{j}\right) \forall i \neq j$ and $\mathbb{Z} \ni \delta \leq r s$ define

$$
L R S(\delta, \underline{c})=e v_{\underline{c}}\left(\ell[T ; \Phi]_{<\delta}\right)
$$

$\Rightarrow s \leq \operatorname{Card}(k)$. Think about $k=\mathbb{F}_{q} \rightsquigarrow$ same problem as Reed-Solomon codes
More in general

Theorem (Byrne, Gluesing-Luerssen, Ravagnani, 2021)

Let $\mathcal{C} \subseteq \operatorname{End}_{k}(\ell)^{s}$ be a MSRD code of minimum distance $\leq r+2$. Then, $s \leq \operatorname{Card}(k)$.
As in the Hamming case, we can try to overcome the problem using algebraic curves

Definition (Linearized Reed-Solomon codes)

For $\underline{c}=\left(c_{1}, \ldots, c_{s}\right) \in \ell^{s}$ such that $N_{\ell / k}\left(c_{i}\right) \neq N_{\ell / k}\left(c_{j}\right) \forall i \neq j$ and $\mathbb{Z} \ni \delta \leq r s$ define

$$
\operatorname{LRS}(\delta, \underline{c})=e v_{\underline{c}}\left(\ell[T ; \Phi]_{<\delta}\right)
$$

$\Rightarrow s \leq \operatorname{Card}(k)$. Think about $k=\mathbb{F}_{q} \rightsquigarrow$ same problem as Reed-Solomon codes
More in general

Theorem (Byrne, Gluesing-Luerssen, Ravagnani, 2021)

Let $\mathcal{C} \subseteq \operatorname{End}_{k}(\ell)^{s}$ be a MSRD code of minimum distance $\leq r+2$. Then, $s \leq \operatorname{Card}(k)$.
As in the Hamming case, we can try to overcome the problem using algebraic curves

Main idea

Consider Ore polynomials with coefficients in the function field of a curve

Consider a smooth projective irreducible algebraic curve X of genus g_{X} defined over k $K=k(X)$ - function field of X
X^{\star} - set of places (or, equivalently, closed points) of X
for $\mathfrak{p} \in X^{\star}$, set
$\mathcal{O}_{\mathfrak{p}}$ - the ring of integers of \mathfrak{p}
$k_{\mathfrak{p}}$ - the residue class field of \mathfrak{p}
$\operatorname{deg}_{X}(\mathfrak{p})$ - the degree of \mathfrak{p}, the degree of the extension $k_{\mathfrak{p}} / k$ $K_{\mathfrak{p}}$ - the completion of K at \mathfrak{p}, equipped with the \mathfrak{p}-adic valuation $v_{\mathfrak{p}}$

Definition

A divisor on X is a formal finite sum

$$
D=\sum_{\mathfrak{p} \in X^{\star}} n_{\mathfrak{p}} \mathfrak{p} \quad \text { with } n_{\mathfrak{p}} \in \mathbb{Z} \text { almost all zero. }
$$

The group of divisors on X is denoted by $\operatorname{Div}(X)$.
$D \in \operatorname{Div}(X)$ is positive, $D \geq 0$, if $n_{\mathfrak{p}} \geq 0 \forall \mathfrak{p}$. The degree of D is $\operatorname{deg}_{X}(D)=\sum_{\mathfrak{p} \in X^{\star}} n_{\mathfrak{p}} \operatorname{deg}_{X}(\mathfrak{p})$.

Definition

A divisor on X is a formal finite sum

$$
D=\sum_{\mathfrak{p} \in X^{\star}} n_{\mathfrak{p}} \mathfrak{p} \quad \text { with } n_{\mathfrak{p}} \in \mathbb{Z} \text { almost all zero. }
$$

The group of divisors on X is denoted by $\operatorname{Div}(X)$.
$D \in \operatorname{Div}(X)$ is positive, $D \geq 0$, if $n_{\mathfrak{p}} \geq 0 \forall \mathfrak{p}$. The degree of D is $\operatorname{deg}_{X}(D)=\sum_{\mathfrak{p} \in X^{*}} n_{\mathfrak{p}} \operatorname{deg}_{X}(\mathfrak{p})$. The Riemann-Roch space associated with D is

$$
L_{x}(D):=\left\{x \in K^{\times} \mid(x)+D \geq 0\right\} \cup\{0\},
$$

where $(x)=\sum_{\mathfrak{p} \in X^{*}} v_{\mathfrak{p}}(x) \mathfrak{p}$ is the principal divisor associated to a nonzero function $x \in K$.

Definition

A divisor on X is a formal finite sum

$$
D=\sum_{\mathfrak{p} \in X^{\star}} n_{\mathfrak{p}} \mathfrak{p} \quad \text { with } n_{\mathfrak{p}} \in \mathbb{Z} \text { almost all zero. }
$$

The group of divisors on X is denoted by $\operatorname{Div}(X)$.
$D \in \operatorname{Div}(X)$ is positive, $D \geq 0$, if $n_{\mathfrak{p}} \geq 0 \forall \mathfrak{p}$. The degree of D is $\operatorname{deg}_{X}(D)=\sum_{\mathfrak{p} \in X^{\star}} n_{\mathfrak{p}} \operatorname{deg}_{X}(\mathfrak{p})$.
The Riemann-Roch space associated with D is

$$
L_{x}(D):=\left\{x \in K^{\times} \mid(x)+D \geq 0\right\} \cup\{0\}
$$

where $(x)=\sum_{\mathfrak{p} \in X^{\star}} v_{\mathfrak{p}}(x) \mathfrak{p}$ is the principal divisor associated to a nonzero function $x \in K$.

Riemann-Roch theorem

Let K_{X} denotes a canonical divisor on X. For any divisor $D \in \operatorname{Div}(X)$ we have

$$
\operatorname{dim}_{k} L_{x}(D)=\operatorname{deg}_{x}(D)+1-g_{x}+\operatorname{dim}_{k} L_{x}\left(K_{X}-D\right),
$$

π a Galois cover with cyclic Galois group of order r $L:=k(Y)$ the fields of functions of $Y, \operatorname{Gal}(L / K)=\langle\Phi\rangle$

π a Galois cover with cyclic Galois group of order r $L:=k(Y)$ the fields of functions of $Y, \operatorname{Gal}(L / K)=\langle\Phi\rangle$ For $\mathfrak{p} \in X^{\star}$ we have the decomposition $L_{\mathfrak{p}}:=K_{\mathfrak{p}} \otimes_{K} L \simeq \prod_{\mathfrak{q} \mid \mathfrak{p}} L_{\mathfrak{q}}$.

π a Galois cover with cyclic Galois group of order r $L:=k(Y)$ the fields of functions of $Y, \operatorname{Gal}(L / K)=\langle\Phi\rangle$

For $\mathfrak{p} \in X^{\star}$ we have the decomposition $L_{\mathfrak{p}}:=K_{\mathfrak{p}} \otimes_{K} L \simeq \prod_{\mathfrak{q} \mid \mathfrak{p}} L_{\mathfrak{q}}$.
For $x \in K^{\times}$, consider the algebra

$$
D_{L, x}:=L[T ; \Phi] /\left(T^{r}-x\right)
$$

and for all $\mathfrak{p} \in X^{\star}$, the algebras $D_{L_{\mathfrak{p}}, x}:=K_{\mathfrak{p}} \otimes_{K} D_{L, x}=L_{\mathfrak{p}}[T ; \Phi] /\left(T^{r}-x\right)$.

π a Galois cover with cyclic Galois group of order r $L:=k(Y)$ the fields of functions of $Y, \operatorname{Gal}(L / K)=\langle\Phi\rangle$
For $\mathfrak{p} \in X^{\star}$ we have the decomposition $L_{\mathfrak{p}}:=K_{\mathfrak{p}} \otimes_{K} L \simeq \prod_{\mathfrak{q} \mid \mathfrak{p}} L_{\mathfrak{q}}$.

For $x \in K^{\times}$, consider the algebra

$$
D_{L, x}:=L[T ; \Phi] /\left(T^{r}-x\right)
$$

and for all $\mathfrak{p} \in X^{\star}$, the algebras $D_{L_{\mathfrak{p}}, x}:=K_{\mathfrak{p}} \otimes_{K} D_{L, x}=L_{\mathfrak{p}}[T ; \Phi] /\left(T^{r}-x\right)$.
Define $w_{\mathfrak{q}_{j}, x}: D_{L_{p}, x} \rightarrow \frac{1}{r} \mathbb{Z} \sqcup\{\infty\}\left(1 \leq j \leq m_{p}\right):$ for $f=f_{0}+f_{1} T+\cdots+f_{r-1} T^{r-1}$,

$$
w_{\mathfrak{q}, x}(f)=\min _{0 \leq i<r}\left(\frac{v_{\mathfrak{q}}\left(f_{i}\right)}{e_{\mathfrak{q}}}+i \cdot \frac{v_{\mathfrak{p}}(x)}{r}\right)
$$

where $e_{\mathfrak{q}}$ denotes the ramification index of \mathfrak{q}.

π a Galois cover with cyclic Galois group of order r $L:=k(Y)$ the fields of functions of $Y, \operatorname{Gal}(L / K)=\langle\Phi\rangle$
For $\mathfrak{p} \in X^{\star}$ we have the decomposition $L_{\mathfrak{p}}:=K_{\mathfrak{p}} \otimes_{K} L \simeq \prod_{\mathfrak{q} \mid \mathfrak{p}} L_{\mathfrak{q}}$.

For $x \in K^{\times}$, consider the algebra

$$
D_{L, x}:=L[T ; \Phi] /\left(T^{r}-x\right)
$$

and for all $\mathfrak{p} \in X^{\star}$, the algebras $D_{L_{\mathfrak{p}}, x}:=K_{\mathfrak{p}} \otimes_{K} D_{L, x}=L_{\mathfrak{p}}[T ; \Phi] /\left(T^{r}-x\right)$.
Define $w_{\mathfrak{q}_{j}, x}: D_{L_{p}, x} \rightarrow \frac{1}{r} \mathbb{Z} \sqcup\{\infty\}\left(1 \leq j \leq m_{p}\right):$ for $f=f_{0}+f_{1} T+\cdots+f_{r-1} T^{r-1}$,

$$
w_{\mathfrak{q}, x}(f)=\min _{0 \leq i<r}\left(\frac{v_{\mathfrak{q}}\left(f_{i}\right)}{e_{\mathfrak{q}}}+i \cdot \frac{v_{\mathfrak{p}}(x)}{r}\right)
$$

where $e_{\mathfrak{q}}$ denotes the ramification index of $\mathfrak{q} . \leqq w_{\mathfrak{q}, x}(f g) \geq w_{\mathfrak{q}, x}(f)+w_{\mathfrak{q}, x}(g)$.

π a Galois cover with cyclic Galois group of order r $L:=k(Y)$ the fields of functions of $Y, \operatorname{Gal}(L / K)=\langle\Phi\rangle$
For $\mathfrak{p} \in X^{\star}$ we have the decomposition $L_{\mathfrak{p}}:=K_{\mathfrak{p}} \otimes_{K} L \simeq \prod_{\mathfrak{q} \mid \mathfrak{p}} L_{\mathfrak{q}}$.

For $x \in K^{\times}$, consider the algebra

$$
D_{L, x}:=L[T ; \Phi] /\left(T^{r}-x\right)
$$

and for all $\mathfrak{p} \in X^{\star}$, the algebras $D_{L_{\mathfrak{p}}, x}:=K_{\mathfrak{p}} \otimes_{K} D_{L, x}=L_{\mathfrak{p}}[T ; \Phi] /\left(T^{r}-x\right)$.
Define $w_{\mathfrak{q}_{j}, x}: D_{L_{p}, x} \rightarrow \frac{1}{r} \mathbb{Z} \sqcup\{\infty\}\left(1 \leq j \leq m_{p}\right):$ for $f=f_{0}+f_{1} T+\cdots+f_{r-1} T^{r-1}$,

$$
w_{\mathfrak{q}, x}(f)=\min _{0 \leq i<r}\left(\frac{v_{\mathfrak{q}}\left(f_{i}\right)}{e_{\mathfrak{q}}}+i \cdot \frac{v_{\mathfrak{p}}(x)}{r}\right)
$$

where $e_{\mathfrak{q}}$ denotes the ramification index of $\mathfrak{q} . \leqq w_{\mathfrak{q}, x}(f g) \geq w_{\mathfrak{q}, x}(f)+w_{\mathfrak{q}, x}(g)$.

$$
\Lambda_{L_{p}, x}:=\left\{f \in D_{L_{p}, x} \mid w_{\mathfrak{q}_{j}, x}(f) \geq 0\right\}
$$

Y	$\mathfrak{q}_{1} \ldots \mathfrak{q}_{m_{\mathfrak{p}}}$	π a Galois cover with cyclic Galois group of order r
π	$\backslash /$	$L:=k(Y)$ the fields of functions of $Y, \operatorname{Gal}(L / K)=\langle\Phi\rangle$
X	$\forall \mathfrak{p}$	For $\mathfrak{p} \in X^{\star}$ we have the decomposition $L_{\mathfrak{p}}:=K_{\mathfrak{p}} \otimes_{K} L \simeq \prod_{\mathfrak{q} \mid \mathfrak{p}} L_{\mathfrak{q}}$.

For $x \in K^{\times}$, consider the algebra

$$
D_{L, x}:=L[T ; \Phi] /\left(T^{r}-x\right)
$$

and for all $\mathfrak{p} \in X^{\star}$, the algebras $D_{L_{\mathfrak{p}}, x}:=K_{\mathfrak{p}} \otimes_{K} D_{L, x}=L_{\mathfrak{p}}[T ; \Phi] /\left(T^{r}-x\right)$.
Define $w_{\mathfrak{q}_{j}, x}: D_{L_{p}, x} \rightarrow \frac{1}{r} \mathbb{Z} \sqcup\{\infty\}\left(1 \leq j \leq m_{p}\right):$ for $f=f_{0}+f_{1} T+\cdots+f_{r-1} T^{r-1}$,

$$
w_{\mathfrak{q}, x}(f)=\min _{0 \leq i<r}\left(\frac{v_{\mathfrak{q}}\left(f_{i}\right)}{e_{\mathfrak{q}}}+i \cdot \frac{v_{\mathfrak{p}}(x)}{r}\right)
$$

where $e_{\mathfrak{q}}$ denotes the ramification index of $\mathfrak{q} . \leqq w_{\mathfrak{q}, x}(f g) \geq w_{\mathfrak{q}, x}(f)+w_{\mathfrak{q}, x}(g)$.

$$
\Lambda_{L_{p}, x}:=\left\{f \in D_{L_{p}, x} \mid w_{\mathfrak{q}_{j}, x}(f) \geq 0\right\}
$$

For $\mathfrak{p} \in X^{\star}, e_{\mathfrak{p}} w_{\mathfrak{q}, x}(f) \in \frac{1}{b_{\mathfrak{p}}} \mathbb{Z}$ where $b_{\mathfrak{p}}$ is the denominator of $\rho_{\mathfrak{p}}=\frac{e_{\mathfrak{p}} \cdot v_{\mathfrak{p}}(x)}{r}$ after reduction

Definition (Riemann-Roch spaces of $D_{L, x}$)

Let $E=\sum_{\mathfrak{q}^{*} Y^{\star}} n_{\mathfrak{q}} \mathfrak{q} \in \operatorname{Div}_{\mathbb{Q}}(Y):=\operatorname{Div}(Y) \otimes \mathbb{Q}$ where, for all \mathfrak{q}, the coefficient $n_{\mathfrak{q}}$ is in $\frac{1}{b_{\mathfrak{p}}} \mathbb{Z}$ where $\mathfrak{p}=\pi(\mathfrak{q})$ is the place below \mathfrak{q}. We define the Riemann-Roch space of $D_{L, x}$ associated with E as

$$
\Lambda_{L, x}(E):=\left\{f \in D_{L, x} \mid e_{\mathfrak{q}} w_{\mathfrak{q}, x}(f)+n_{\mathfrak{q}} \geq 0 \text { for all } \mathfrak{q} \in Y^{\star}\right\} .
$$

Definition (Riemann-Roch spaces of $D_{L, x}$)

Let $E=\sum_{\mathfrak{q} \in Y^{\star}} n_{\mathfrak{q}} \mathfrak{q} \in \operatorname{Div}_{\mathbb{Q}}(Y):=\operatorname{Div}(Y) \otimes \mathbb{Q}$ where, for all \mathfrak{q}, the coefficient $n_{\mathfrak{q}}$ is in $\frac{1}{b_{\mathfrak{p}}} \mathbb{Z}$ where $\mathfrak{p}=\pi(\mathfrak{q})$ is the place below \mathfrak{q}. We define the Riemann-Roch space of $D_{L, x}$ associated with E as

$$
\Lambda_{L, x}(E):=\left\{f \in D_{L, x} \mid e_{\mathfrak{q}} w_{\mathfrak{q}, x}(f)+n_{\mathfrak{q}} \geq 0 \text { for all } \mathfrak{q} \in Y^{\star}\right\} .
$$

$\Rightarrow \Lambda_{L, x}(E)=\bigoplus_{i=0}^{r-1} L_{Y}\left(E_{i}\right) \cdot T^{i}$, where $E_{i}:=\sum_{\mathfrak{q} \in Y *}\left\lfloor n_{\mathfrak{q}}+i \cdot \rho_{\pi(\mathfrak{q})}\right\rfloor \cdot \mathfrak{q} \in \operatorname{Div}(Y) \quad(0 \leq i<r)$.

Definition (Riemann-Roch spaces of $D_{L, x}$)

Let $E=\sum_{\mathfrak{q} \in Y^{\star}} n_{\mathfrak{q}} \mathfrak{q} \in \operatorname{Div}_{\mathbb{Q}}(Y):=\operatorname{Div}(Y) \otimes \mathbb{Q}$ where, for all \mathfrak{q}, the coefficient $n_{\mathfrak{q}}$ is in $\frac{1}{b_{\mathfrak{p}}} \mathbb{Z}$ where $\mathfrak{p}=\pi(\mathfrak{q})$ is the place below \mathfrak{q}. We define the Riemann-Roch space of $D_{L, x}$ associated with E as

$$
\Lambda_{L, x}(E):=\left\{f \in D_{L, x} \mid e_{\mathfrak{q}} w_{\mathfrak{q}, x}(f)+n_{\mathfrak{q}} \geq 0 \text { for all } \mathfrak{q} \in Y^{\star}\right\} .
$$

$\Rightarrow \Lambda_{L, x}(E)=\bigoplus_{i=0}^{r-1} L_{Y}\left(E_{i}\right) \cdot T^{i}$, where $E_{i}:=\sum_{\mathfrak{q} \in Y_{\star}}\left\lfloor n_{\mathfrak{q}}+i \cdot \rho_{\pi(\mathfrak{q})}\right\rfloor \cdot \mathfrak{q} \in \operatorname{Div}(Y) \quad(0 \leq i<r)$.
Lemma: We have $\sum_{i=0}^{r-1} \operatorname{deg}_{Y}\left(E_{i}\right)=r \cdot \operatorname{deg}_{Y}(E)-\frac{r^{2}}{2} \sum_{\mathfrak{p} \in X *} * \frac{b_{\mathfrak{p}}-1}{b_{\mathfrak{p}} e_{\mathfrak{p}}} \operatorname{deg}_{X}(\mathfrak{p})$.

Definition (Riemann-Roch spaces of $D_{L, x}$)

Let $E=\sum_{\mathfrak{q}^{\prime} \in Y^{\star}} n_{\mathfrak{q}} \mathfrak{q} \in \operatorname{Div}_{\mathbb{Q}}(Y):=\operatorname{Div}(Y) \otimes \mathbb{Q}$ where, for all \mathfrak{q}, the coefficient $n_{\mathfrak{q}}$ is in $\frac{1}{b_{\mathfrak{p}}} \mathbb{Z}$ where $\mathfrak{p}=\pi(\mathfrak{q})$ is the place below \mathfrak{q}. We define the Riemann-Roch space of $D_{L, x}$ associated with E as

$$
\Lambda_{L, x}(E):=\left\{f \in D_{L, x} \mid e_{\mathfrak{q}} w_{\mathfrak{q}, x}(f)+n_{\mathfrak{q}} \geq 0 \text { for all } \mathfrak{q} \in Y^{\star}\right\} .
$$

$\Rightarrow \Lambda_{L, x}(E)=\bigoplus_{i=0}^{r-1} L_{Y}\left(E_{i}\right) \cdot T^{i}$, where $E_{i}:=\sum_{\mathfrak{q} \in Y \star}\left\lfloor n_{\mathfrak{q}}+i \cdot \rho_{\pi(\mathfrak{q})}\right\rfloor \cdot \mathfrak{q} \in \operatorname{Div}(Y) \quad(0 \leq i<r)$.
Lemma: We have $\sum_{i=0}^{r-1} \operatorname{deg}_{Y}\left(E_{i}\right)=r \cdot \operatorname{deg}_{Y}(E)-\frac{r^{2}}{2} \sum_{\mathfrak{p} \in X *} \frac{b_{\mathfrak{p}}-1}{b_{\mathfrak{p}} e_{\mathfrak{p}}} \operatorname{deg}_{X}(\mathfrak{p})$.

Riemann's inequality for $\Lambda_{L, x}(E)$

For a divisor $E=\sum_{\mathfrak{q}^{\prime} Y^{\star}} n_{\mathfrak{q}} \mathfrak{q} \in \operatorname{Div}_{\mathbb{Q}}(Y)$ the space $\Lambda_{L, x}(E)$ is finite dimensional over k and

$$
\operatorname{dim}_{k} \Lambda_{L, x}(E) \geq r \cdot \operatorname{deg}_{Y}(E)-r \cdot\left(g_{Y}-1\right)-\frac{r^{2}}{2} \sum_{\mathfrak{p} \in X^{\star}} \frac{b_{\mathfrak{p}}-1}{b_{\mathfrak{p}} e_{\mathfrak{p}}} \operatorname{deg}_{X}(\mathfrak{p}) .
$$

Let $\mathfrak{p} \in X^{\star}$ rational, $t_{\mathfrak{p}}$ a uniformizer $\left(K_{\mathfrak{p}} \simeq k((t))\right), x \in K^{\times}$

Let $\mathfrak{p} \in X^{\star}$ rational, $t_{\mathfrak{p}}$ a uniformizer $\left(K_{\mathfrak{p}} \simeq k((t))\right), x \in K^{\times}$
if x is a nonzero norm in $L_{\mathfrak{p}} / K_{\mathfrak{p}}$, more precisely $\exists u_{p}=\left(u_{q}\right)_{q \mid \mathfrak{p}} \in L_{p}^{\times}$s.t. $x=\prod_{q \mid p} N_{L_{q} / K_{p}}\left(u_{q}\right)$, then

$$
\begin{aligned}
\varepsilon_{\mathfrak{p}}: \quad D_{L_{p}, x} & \xrightarrow{\longrightarrow} \operatorname{End}_{K_{\mathfrak{p}}}\left(L_{\mathfrak{p}}\right) \\
f & \mapsto\left(u_{\mathfrak{p}} \Phi\right) .
\end{aligned}
$$

Let $\mathfrak{p} \in X^{\star}$ rational, $t_{\mathfrak{p}}$ a uniformizer $\left(K_{\mathfrak{p}} \simeq k((t))\right), x \in K^{\times}$
if x is a nonzero norm in $L_{\mathfrak{p}} / K_{\mathfrak{p}}$, more precisely $\exists u_{p}=\left(u_{q}\right)_{q \mid \mathfrak{p}} \in L_{p}^{\times}$s.t. $x=\prod_{q \mid \mathfrak{p}} N_{L_{q} / K_{p}}\left(u_{q}\right)$ and $\forall \mathfrak{q}, v_{\mathfrak{p}}\left(u_{\mathfrak{q}}\right)=v$, then

$$
\begin{aligned}
\varepsilon_{\mathfrak{p}}: \quad D_{L_{\mathfrak{p}}, x} & \xrightarrow{\simeq} \operatorname{End}_{K_{\mathfrak{p}}}\left(L_{\mathfrak{p}}\right) \\
f & \mapsto f\left(u_{\mathfrak{p}} \Phi\right) .
\end{aligned}
$$

Let $\mathfrak{p} \in X^{\star}$ rational, $t_{\mathfrak{p}}$ a uniformizer $\left(K_{p} \simeq k((t))\right), x \in K^{\times}$
if x is a nonzero norm in $L_{\mathfrak{p}} / K_{\mathfrak{p}}$, more precisely $\exists u_{p}=\left(u_{q}\right)_{q \mid \mathfrak{p}} \in L_{p}^{\times}$s.t. $x=\prod_{q \mid \mathfrak{p}} N_{L_{q} / K_{p}}\left(u_{q}\right)$ and $\forall \mathfrak{q}, v_{\mathfrak{p}}\left(u_{\mathfrak{q}}\right)=v$, then

$$
\begin{aligned}
\varepsilon_{\mathfrak{p}}: \quad \Lambda_{L_{p}, x} & \xrightarrow{\simeq} \operatorname{End}_{\mathcal{O}_{K_{\mathfrak{p}}}}\left(\mathcal{O}_{L_{\mathfrak{p}}}\right) \\
f & \mapsto f\left(u_{\mathfrak{p}} \Phi\right) .
\end{aligned}
$$

Let $\mathfrak{p} \in X^{\star}$ rational, $t_{\mathfrak{p}}$ a uniformizer $\left(K_{\mathfrak{p}} \simeq k((t))\right), x \in K^{\times}$
if x is a nonzero norm in $L_{\mathfrak{p}} / K_{\mathfrak{p}}$, more precisely $\exists u_{\mathfrak{p}}=\left(u_{q}\right)_{\mathfrak{q} \mid \mathfrak{p}} \in L_{p}^{\times}$s.t. $x=\prod_{\mathfrak{q} \mid \mathfrak{p}} N_{L_{q} / K_{\mathfrak{p}}}\left(u_{q}\right)$ and $\forall \mathfrak{q}, v_{\mathfrak{p}}\left(u_{\mathfrak{q}}\right)=v$, then

$$
\begin{array}{rlll}
\bar{\varepsilon}_{\mathfrak{p}}: \quad \Lambda_{L_{p}, x} & \xrightarrow{\simeq} \operatorname{End}_{\mathcal{O}_{\kappa_{p}}}\left(\mathcal{O}_{L_{p}}\right) & \xrightarrow{\text { red }} & \operatorname{End}_{k}\left(\mathcal{O}_{L_{\mathfrak{p}}} / t_{\mathfrak{p}} \mathcal{O}_{L_{p}}\right) \\
f & \mapsto f\left(u_{\mathfrak{p}} \Phi\right) & \mapsto & f\left(u_{\mathfrak{p}} \Phi\right) \bmod t_{p}
\end{array}
$$

Let $\mathfrak{p} \in X^{\star}$ rational, $t_{\mathfrak{p}}$ a uniformizer $\left(K_{p} \simeq k((t))\right), x \in K^{\times}$
if x is a nonzero norm in $L_{p} / K_{\mathfrak{p}}$, more precisely $\exists u_{p}=\left(u_{q}\right)_{q \mid p} \in L_{p}^{\times}$s.t. $x=\prod_{q \mid p} N_{L_{q} / K_{p}}\left(u_{q}\right)$ and $\forall \mathfrak{q}, v_{\mathfrak{p}}\left(u_{\mathfrak{q}}\right)=v$, then

$$
\begin{array}{rllll}
\bar{\varepsilon}_{\mathfrak{p}}: \quad \Lambda_{L_{\mathfrak{p}}, x} & \xrightarrow{\simeq} & \operatorname{End}_{\mathcal{O}_{K_{\mathfrak{p}}}}\left(\mathcal{O}_{L_{\mathfrak{p}}}\right) & \xrightarrow{\text { red }} & \operatorname{End}_{k}\left(\mathcal{O}_{L_{\mathfrak{p}}} / t_{\mathfrak{p}} \mathcal{O}_{L_{\mathfrak{p}}}\right) \\
f & \mapsto & \mapsto\left(u_{\mathfrak{p}} \Phi\right) & \mapsto & f\left(u_{\mathfrak{p}} \Phi\right) \bmod t_{\mathfrak{p}} .
\end{array}
$$

if $\mathfrak{p} \notin \pi(\operatorname{supp}(E)) \rightsquigarrow \Lambda_{L_{\mathfrak{p}}, x}(E) \subseteq \Lambda_{L_{\mathfrak{p}}, x}$

Let $\mathfrak{p} \in X^{\star}$ rational, $t_{\mathfrak{p}}$ a uniformizer $\left(K_{\mathfrak{p}} \simeq k((t))\right), x \in K^{\times}$
if x is a nonzero norm in $L_{\mathfrak{p}} / K_{\mathfrak{p}}$, more precisely $\exists u_{\mathfrak{p}}=\left(u_{q}\right)_{\mathfrak{q} \mid \mathfrak{p}} \in L_{p}^{\times}$s.t. $x=\prod_{\mathfrak{q} \mid \mathfrak{p}} N_{L_{q} / K_{\mathfrak{p}}}\left(u_{q}\right)$ and $\forall \mathfrak{q}, v_{p}\left(u_{\mathfrak{q}}\right)=v$, then

$$
\begin{array}{rllll}
\bar{\varepsilon}_{\mathfrak{p}}: \quad \Lambda_{L_{p}, x} & \xrightarrow{\simeq} \operatorname{End}_{\mathcal{O}_{\kappa_{p}}}\left(\mathcal{O}_{L_{p}}\right) & \xrightarrow{\text { red }} & \operatorname{End}_{k}\left(\mathcal{O}_{L_{p}} / t_{p} \mathcal{O}_{L_{p}}\right) \\
f & \mapsto f\left(u_{p} \Phi\right) & \mapsto & f\left(u_{p} \Phi\right) \bmod t_{p}
\end{array}
$$

if $\mathfrak{p} \notin \pi(\operatorname{supp}(E)) \rightsquigarrow \Lambda_{L_{\mathfrak{p}}, x}(E) \subseteq \Lambda_{L_{\mathfrak{p}}, x}$

Definition (Linearized Algebraic Geometry codes)

Let $E=\sum_{\mathfrak{q} \in Y^{\star}} n_{\mathfrak{q}} \mathfrak{q} \in \operatorname{Div}_{\mathbb{Q}}(Y)$. Chose $x \in K$ and $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}$ rational places on X such that the hypotheses hold. Set $V_{\mathfrak{p}_{i}}:=\mathcal{O}_{L_{\mathfrak{p}_{i}}} / t_{\mathfrak{p}_{i}} \mathcal{O}_{L_{\mathfrak{p}_{i}}}$. Consider

$$
\begin{aligned}
\alpha: \quad \Lambda_{L, x}(E) & \longrightarrow \prod_{i=1}^{s} \operatorname{End}_{k}\left(V_{\mathfrak{p}_{i}}\right) \\
f & \mapsto\left(\bar{\varepsilon}_{\mathfrak{p}_{i}}(f)\right)_{1 \leq i \leq s} .
\end{aligned}
$$

The code $\mathcal{C}\left(x ; E ; \mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}\right)$ is defined as the image of α.

We study the parameters of the k-linear code \mathcal{C} in $\prod_{i=1}^{s} \operatorname{End}_{k}\left(V_{\mathfrak{p}_{i}}\right)$.

We study the parameters of the k-linear code \mathcal{C} in $\prod_{i=1}^{s} \operatorname{End}_{k}\left(V_{\mathfrak{p}_{i}}\right)$. Its length n is the k-dimension of the ambient space : $\operatorname{dim}_{k} V_{\mathfrak{p}_{i}}=r \Rightarrow n=s r^{2}$

We study the parameters of the k-linear code \mathcal{C} in $\prod_{i=1}^{s} \operatorname{End}_{k}\left(V_{\mathfrak{p}_{i}}\right)$.
Its length n is the k-dimension of the ambient space : $\operatorname{dim}_{k} V_{\mathfrak{p}_{i}}=r \Rightarrow n=s r^{2}$

Theorem (B., Caruso)

Assume $^{\operatorname{deg}_{Y}}(E)<s r$. Assume the previous hypotheses and that $D_{L, x}$ contains no nonzero divisors. Then, the dimension δ and the minimum distance d of $\mathcal{C}\left(x ; E ; \mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}\right)$ satisfy

$$
\begin{aligned}
& \delta \geq r \cdot \operatorname{deg}_{Y}(E)-r \cdot\left(g_{Y}-1\right)-\frac{r^{2}}{2} \sum_{\mathfrak{p} \in X^{\star}} \frac{b_{\mathfrak{p}}-1}{b_{\mathfrak{p}} e_{\mathfrak{p}}} \operatorname{deg}_{X}(\mathfrak{p}) \\
& d \geq s r-\operatorname{deg}_{Y}(E)
\end{aligned}
$$

We study the parameters of the k-linear code \mathcal{C} in $\prod_{i=1}^{s} \operatorname{End}_{k}\left(V_{\mathfrak{p}_{i}}\right)$.
Its length n is the k-dimension of the ambient space : $\operatorname{dim}_{k} V_{\mathfrak{p}_{i}}=r \Rightarrow n=s r^{2}$

Theorem (B., Caruso)

Assume $\operatorname{deg}_{Y}(E)<$ sr. Assume the previous hypotheses and that $D_{L, x}$ contains no nonzero divisors. Then, the dimension δ and the minimum distance d of $\mathcal{C}\left(x ; E ; \mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}\right)$ satisfy

$$
\begin{aligned}
& \delta \geq r \cdot \operatorname{deg}_{Y}(E)-r \cdot\left(g_{Y}-1\right)-\frac{r^{2}}{2} \sum_{\mathfrak{p} \in X^{\star}} \frac{b_{\mathfrak{p}}-1}{b_{\mathfrak{p}} e_{\mathfrak{p}}} \operatorname{deg}_{X}(\mathfrak{p}), \\
& d \geq s r-\operatorname{deg}_{Y}(E) .
\end{aligned}
$$

Singleton bound:

$$
r d+\delta \leq n+r
$$

We have:

$$
r d+\delta \geq n+r-\left(r \cdot g_{Y}+\frac{r^{2}}{2} \sum_{\mathfrak{p} \in X \times} \frac{b_{p}-1}{b_{p} e_{\mathfrak{p}}} \operatorname{deg}_{X}(\mathfrak{p})\right)
$$

Want: $d \geq s r-\operatorname{deg}_{Y}(E)+$ bound on the dimension δ

Want: $d \geq s r-\operatorname{deg}_{Y}(E)+$ bound on the dimension δ
Let $0 \neq f \in \Lambda_{L, x}(E)$, with $\omega=w_{\mathrm{rk}}(\alpha(f))=\sum_{i=1}^{s} \mathrm{rk} \bar{\varepsilon}_{\mathfrak{p}_{i}}(f)$.

Want: $d \geq s r-\operatorname{deg}_{Y}(E)+$ bound on the dimension δ
Let $0 \neq f \in \Lambda_{L, x}(E)$, with $\omega=w_{\text {rk }}(\alpha(f))=\sum_{i=1}^{s} \mathrm{rk}{\overline{\mathcal{p}_{i}}}(f)$.
Let $d_{i}:=\operatorname{dim}_{k} \operatorname{ker} \bar{\varepsilon}_{i}(f)$ for $i \in\{1, \ldots, s\}$
and define the divisor $E^{\prime}:=-\sum_{i=1}^{s} d_{i} \mathfrak{p}_{i}+\sum_{\mathfrak{p} \in X^{\star}}\left\lfloor\sum_{\mathfrak{q} \mid \mathfrak{p}} \frac{r \cdot n_{\mathfrak{q}}}{e_{\mathfrak{p}} m_{\mathfrak{p}}}\right\rfloor \mathfrak{p} \in \operatorname{Div}(X)$.

Want: $d \geq s r-\operatorname{deg}_{Y}(E)+$ bound on the dimension δ
Let $0 \neq f \in \Lambda_{L, x}(E)$, with $\omega=w_{\text {rk }}(\alpha(f))=\sum_{i=1}^{s} \mathrm{rk} \bar{\varepsilon}_{\mathfrak{p}_{i}}(f)$.
Let $d_{i}:=\operatorname{dim}_{k} \operatorname{ker} \bar{\varepsilon}_{i}(f)$ for $i \in\{1, \ldots, s\}$
and define the divisor $E^{\prime}:=-\sum_{i=1}^{s} d_{i} \mathfrak{p}_{i}+\sum_{\mathfrak{p} \in X^{\star}}\left|\sum_{\mathfrak{q} \mid \mathfrak{p}} \frac{r \cdot n_{\mathfrak{q}}}{e_{\mathfrak{p}} m_{\mathfrak{p}}}\right| \mathfrak{p} \in \operatorname{Div}(X)$.
We have $\operatorname{Nrd}(f) \in L_{X}\left(E^{\prime}\right)$ where $\operatorname{Nrd}(f) \in K$ and is defined as the determinant of $g \stackrel{\mu_{G}}{\mapsto} g f$

Sketch of the proof

Want: $d \geq s r-\operatorname{deg}_{Y}(E)+$ bound on the dimension δ
Let $0 \neq f \in \Lambda_{L, x}(E)$, with $\omega=w_{\text {rk }}(\alpha(f))=\sum_{i=1}^{s} \mathrm{rk} \bar{\varepsilon}_{\mathfrak{p}_{i}}(f)$.
Let $d_{i}:=\operatorname{dim}_{k} \operatorname{ker} \bar{\varepsilon}_{i}(f)$ for $i \in\{1, \ldots, s\} \Rightarrow \sum_{i=1}^{s} d_{i}=\sum_{i=1}^{s} \operatorname{dim}_{k} V_{\mathfrak{p}_{i}}-\operatorname{rk} \bar{\varepsilon}_{\mathfrak{p}_{i}}(f)=s r-\omega$ and define the divisor $E^{\prime}:=-\sum_{i=1}^{s} d_{i} \mathfrak{p}_{i}+\sum_{\mathfrak{p} \in X^{\star}}\left\lfloor\left.\sum_{\mathfrak{q} \mid \mathfrak{p}} \frac{r \cdot n_{\mathfrak{q}}}{e_{\mathfrak{p}} m_{\mathfrak{p}}} \right\rvert\, \mathfrak{p} \in \operatorname{Div}(X)\right.$.
We have $\operatorname{Nrd}(f) \in L_{X}\left(E^{\prime}\right)$ where $\operatorname{Nrd}(f) \in K$ and is defined as the determinant of $g \stackrel{\mu_{f}}{\mapsto} g f$

$$
\operatorname{deg}_{Y}\left(E^{\prime}\right) \leq-\sum_{i=1}^{s} d_{i}+\sum_{\mathfrak{q} \in Y^{\star}} \frac{r \cdot n_{\mathfrak{q}}}{e_{\mathfrak{p}} m_{\mathfrak{p}}} \operatorname{deg}_{X}(\pi(\mathfrak{q}))=\omega-s r+\operatorname{deg}_{Y}(E) .
$$

Sketch of the proof

Want: $d \geq s r-\operatorname{deg}_{Y}(E)+$ bound on the dimension δ
Let $0 \neq f \in \Lambda_{L, x}(E)$, with $\omega=w_{\text {rk }}(\alpha(f))=\sum_{i=1}^{s} \mathrm{rk} \bar{\varepsilon}_{\mathfrak{p}_{i}}(f)$.
Let $d_{i}:=\operatorname{dim}_{k} \operatorname{ker} \bar{\varepsilon}_{i}(f)$ for $i \in\{1, \ldots, s\} \Rightarrow \sum_{i=1}^{s} d_{i}=\sum_{i=1}^{s} \operatorname{dim}_{k} V_{\mathfrak{p}_{i}}-\operatorname{rk} \bar{\varepsilon}_{\mathfrak{p}_{i}}(f)=s r-\omega$ and define the divisor $E^{\prime}:=-\sum_{i=1}^{s} d_{i} \mathfrak{p}_{i}+\sum_{\mathfrak{p} \in X^{\star}}\left\lfloor\left.\sum_{\mathfrak{q} \mid \mathfrak{p}} \frac{r \cdot n_{\mathfrak{q}}}{e_{\mathfrak{p}} m_{\mathfrak{p}}} \right\rvert\, \mathfrak{p} \in \operatorname{Div}(X)\right.$.
We have $\operatorname{Nrd}(f) \in L_{X}\left(E^{\prime}\right)$ where $\operatorname{Nrd}(f) \in K$ and is defined as the determinant of $g \stackrel{\mu_{f}}{\mapsto} g f$

$$
\operatorname{deg}_{Y}\left(E^{\prime}\right) \leq-\sum_{i=1}^{s} d_{i}+\sum_{\mathfrak{q} \in Y^{\star}} \frac{r \cdot n_{\mathfrak{q}}}{e_{\mathfrak{p}} m_{\mathfrak{p}}} \operatorname{deg}_{X}(\pi(\mathfrak{q}))=\omega-s r+\operatorname{deg}_{Y}(E) .
$$

If $\omega<\operatorname{sr}-\operatorname{deg}_{Y}(E) \Rightarrow \operatorname{Nrd}(f)=0 \Rightarrow \mu_{f}$ is not injective $\Rightarrow f$ is a nonzero zero divisor in $D_{L, \chi}$

Sketch of the proof

Want: $d \geq s r-\operatorname{deg}_{Y}(E)+$ bound on the dimension δ
Let $0 \neq f \in \Lambda_{L, x}(E)$, with $\omega=w_{\text {rk }}(\alpha(f))=\sum_{i=1}^{s} \mathrm{rk} \bar{\varepsilon}_{\mathfrak{p}_{i}}(f)$.
Let $d_{i}:=\operatorname{dim}_{k} \operatorname{ker} \bar{\varepsilon}_{i}(f)$ for $i \in\{1, \ldots, s\} \Rightarrow \sum_{i=1}^{s} d_{i}=\sum_{i=1}^{s} \operatorname{dim}_{k} V_{\mathfrak{p}_{i}}-\operatorname{rk} \bar{\varepsilon}_{\mathfrak{p}_{i}}(f)=s r-\omega$ and define the divisor $E^{\prime}:=-\sum_{i=1}^{s} d_{i} \mathfrak{p}_{i}+\sum_{\mathfrak{p} \in X^{\star}}\left\lfloor\left.\sum_{\mathfrak{q} \mid \mathfrak{p}} \frac{r \cdot n_{\mathfrak{q}}}{e_{\mathfrak{p}} m_{\mathfrak{p}}} \right\rvert\, \mathfrak{p} \in \operatorname{Div}(X)\right.$.
We have $\operatorname{Nrd}(f) \in L_{X}\left(E^{\prime}\right)$ where $\operatorname{Nrd}(f) \in K$ and is defined as the determinant of $g \stackrel{\mu_{f}}{\hookrightarrow} g f$

$$
\operatorname{deg}_{Y}\left(E^{\prime}\right) \leq-\sum_{i=1}^{s} d_{i}+\sum_{\mathfrak{q} \in Y^{\star}} \frac{r \cdot n_{\mathfrak{q}}}{e_{\mathfrak{p}} m_{\mathfrak{p}}} \operatorname{deg}_{X}(\pi(\mathfrak{q}))=\omega-s r+\operatorname{deg}_{Y}(E) .
$$

If $\omega<\operatorname{sr}-\operatorname{deg}_{\gamma}(E) \Rightarrow \operatorname{Nrd}(f)=0 \Rightarrow \mu_{f}$ is not injective $\Rightarrow f$ is a nonzero zero divisor in $D_{L, \chi}$ In conclusion: $\omega \geq s r-\operatorname{deg}_{Y}(E)$

Want: $d \geq s r-\operatorname{deg}_{Y}(E)+$ bound on the dimension δ
Let $0 \neq f \in \Lambda_{L, x}(E)$, with $\omega=w_{\mathrm{rk}}(\alpha(f))=\sum_{i=1}^{s} \mathrm{rk} \bar{\varepsilon}_{\mathfrak{p}_{i}}(f)$.
Let $d_{i}:=\operatorname{dim}_{k} \operatorname{ker} \bar{\varepsilon}_{i}(f)$ for $i \in\{1, \ldots, s\} \Rightarrow \sum_{i=1}^{s} d_{i}=\sum_{i=1}^{s} \operatorname{dim}_{k} V_{\mathfrak{p}_{i}}-\operatorname{rk} \bar{\varepsilon}_{\mathfrak{p}_{i}}(f)=s r-\omega$ and define the divisor $E^{\prime}:=-\sum_{i=1}^{s} d_{i} \mathfrak{p}_{i}+\sum_{\mathfrak{p} \in X^{\star}}\left\lfloor\sum_{\mathfrak{q} \mid \mathfrak{p}} \frac{r \cdot n_{\mathfrak{q}}}{e_{\mathfrak{p}} m_{\mathfrak{p}}}\right\rfloor \mathfrak{p} \in \operatorname{Div}(X)$.
We have $\operatorname{Nrd}(f) \in L_{X}\left(E^{\prime}\right)$ where $\operatorname{Nrd}(f) \in K$ and is defined as the determinant of $g \stackrel{\mu_{f}}{\mapsto} g f$

$$
\operatorname{deg}_{Y}\left(E^{\prime}\right) \leq-\sum_{i=1}^{s} d_{i}+\sum_{\mathfrak{q} \in Y^{\star}} \frac{r \cdot n_{\mathfrak{q}}}{e_{\mathfrak{p}} m_{\mathfrak{p}}} \operatorname{deg}_{X}(\pi(\mathfrak{q}))=\omega-s r+\operatorname{deg}_{Y}(E)
$$

If $\omega<s r-\operatorname{deg}_{Y}(E) \Rightarrow \operatorname{Nrd}(f)=0 \Rightarrow \mu_{f}$ is not injective $\Rightarrow f$ is a nonzero zero divisor in $D_{L, x}$
In conclusion: $\omega \geq s r-\operatorname{deg}_{Y}(E)$
Injectivity of the map $\alpha \Rightarrow \delta=\operatorname{dim}_{k} \Lambda_{L, x}(E) \rightsquigarrow$ lower bound on δ via Riemann's inequality

Let ℓ be a finite cyclic extension of k of order r.

Let ℓ be a finite cyclic extension of k of order r.
Take $Y=$ Spec $\ell \times_{\text {Spec } k} X$ (cyclic Galois cover of X of degree r)

Let ℓ be a finite cyclic extension of k of order r.
Take $Y=$ Spec $\ell \times \times_{\text {Spec } k} X$ (cyclic Galois cover of X of degree r)

Residue field of any place of Y is a ℓ-algebra \Rightarrow the $\operatorname{code} \mathcal{C}\left(x ; E ; \mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}\right)$ is ℓ-linear

Let ℓ be a finite cyclic extension of k of order r.
Take $Y=$ Spec $\ell \times \times_{\text {Spec } k} X$ (cyclic Galois cover of X of degree r)

Residue field of any place of Y is a ℓ-algebra \Rightarrow the code $\mathcal{C}\left(x ; E ; \mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}\right)$ is ℓ-linear

ℓ-parameters of the code

For the code $\mathcal{C}\left(x ; E ; \mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}\right)$ with $x, \mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}, E$ satisfying the hypotheses, we have

- $n_{\ell}=s r$,
- $\delta_{\ell} \geq \operatorname{deg}_{Y}(E)-r \cdot\left(g_{X}-1\right)-\frac{r}{2} \sum_{\mathfrak{p} \in X^{*}} \frac{b_{\mathfrak{p}}-1}{b_{\mathfrak{p}}} \operatorname{deg}_{X}(\mathfrak{p})$,
- $d \geq s r-\operatorname{deg}_{Y}(E)$.

Linearized AG codes over \mathbb{P}^{1} are Linearized Reed-Solomon codes

$$
X=\mathbb{P}_{k}^{1} \text { and } Y=\mathbb{P}_{\ell}^{1} \text {, both viewed as curves over Spec } k, t=\text { the coordinate on } X \text { and } Y
$$

$X=\mathbb{P}_{k}^{1}$ and $Y=\mathbb{P}_{\ell}^{1}$, both viewed as curves over Spec $k, t=$ the coordinate on X and Y Choose the function $x=t \in K^{\times}=k(t)^{\times}$. Then

$$
\begin{gathered}
b_{\mathfrak{p}}=\left\{\begin{array}{l}
r \text { for } \mathfrak{p}=0, \infty \\
1 \text { for all other } \mathfrak{p} \in X^{\star},
\end{array}\right. \\
D_{L, x}=\ell(t)[T ; \Phi] /\left(T^{r}-t\right) \simeq \operatorname{Frac}(\ell[T ; \Phi])
\end{gathered}
$$

$X=\mathbb{P}_{k}^{1}$ and $Y=\mathbb{P}_{\ell}^{1}$, both viewed as curves over Spec $k, t=$ the coordinate on X and Y Choose the function $x=t \in K^{\times}=k(t)^{\times}$. Then

$$
\begin{gathered}
b_{\mathfrak{p}}=\left\{\begin{array}{l}
r \text { for } \mathfrak{p}=0, \infty \\
1 \text { for all other } \mathfrak{p} \in X^{\star},
\end{array}\right. \\
D_{L, x}=\ell(t)[T ; \Phi] /\left(T^{r}-t\right) \simeq \operatorname{Frac}(\ell[T ; \Phi])
\end{gathered}
$$

Consider the divisor $E=\frac{\delta}{r} \cdot \infty \in \operatorname{Div}_{\mathbb{Q}}(Y), \delta \in \mathbb{N} \rightsquigarrow \Lambda_{L, t}(E)=\ell[T ; \Phi]_{\leq \delta}$
$X=\mathbb{P}_{k}^{1}$ and $Y=\mathbb{P}_{\ell}^{1}$, both viewed as curves over Spec $k, t=$ the coordinate on X and Y Choose the function $x=t \in K^{\times}=k(t)^{\times}$. Then

$$
\begin{gathered}
b_{\mathfrak{p}}=\left\{\begin{array}{l}
r \text { for } \mathfrak{p}=0, \infty, \\
1 \text { for all other } \mathfrak{p} \in X^{\star},
\end{array}\right. \\
D_{L, x}=\ell(t)[T ; \Phi] /\left(T^{r}-t\right) \simeq \operatorname{Frac}(\ell[T ; \Phi])
\end{gathered}
$$

Consider the divisor $E=\frac{\delta}{r} \cdot \infty \in \operatorname{Div}_{\mathbb{Q}}(Y), \delta \in \mathbb{N} \rightsquigarrow \Lambda_{L, t}(E)=\ell[T ; \Phi]_{\leq \delta}$
Fix rational places $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}$ corresponding to elements $c_{1}, \ldots, c_{s} \in k \sqcup\{\infty\}$. They satisfy the hypothesis if and only if $c_{i} \in N_{\ell / k}\left(\ell^{\times}\right) \forall i$. For $c_{i}=N_{\ell / k}\left(u_{i}\right)$ we have

$$
\begin{array}{rlll}
\alpha: \quad \ell[T ; \Phi]_{\leq \delta} & \longrightarrow & \operatorname{End}_{k}(\ell)^{s} \\
f & \mapsto & \left(f\left(u_{i} \Phi\right)\right)_{1 \leq i \leq s},
\end{array}
$$

\rightsquigarrow construction of linearized Reed-Solomon!
$X=\mathbb{P}_{k}^{1}$ and $Y=\mathbb{P}_{\ell}^{1}$, both viewed as curves over Spec $k, t=$ the coordinate on X and Y Choose the function $x=t \in K^{\times}=k(t)^{\times}$. Then

$$
\begin{gathered}
b_{\mathfrak{p}}=\left\{\begin{array}{l}
r \text { for } \mathfrak{p}=0, \infty, \\
1 \text { for all other } \mathfrak{p} \in X^{\star},
\end{array}\right. \\
D_{L, x}=\ell(t)[T ; \Phi] /\left(T^{r}-t\right) \simeq \operatorname{Frac}(\ell[T ; \Phi])
\end{gathered}
$$

Consider the divisor $E=\frac{\delta}{r} \cdot \infty \in \operatorname{Div}_{\mathbb{Q}}(Y), \delta \in \mathbb{N} \rightsquigarrow \Lambda_{L, t}(E)=\ell[T ; \Phi]_{\leq \delta}$
Fix rational places $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}$ corresponding to elements $c_{1}, \ldots, c_{s} \in k \sqcup\{\infty\}$. They satisfy the hypothesis if and only if $c_{i} \in N_{\ell / k}\left(\ell^{\times}\right) \forall i$. For $c_{i}=N_{\ell / k}\left(u_{i}\right)$ we have

$$
\begin{aligned}
& \alpha: \quad \ell[T ; \Phi]_{\leq \delta} \longrightarrow \operatorname{End}_{k}(\ell)^{s} \\
& f \mapsto \\
&\left(f\left(u_{i} \Phi\right)\right)_{1 \leq i \leq s}
\end{aligned}
$$

\rightsquigarrow construction of linearized Reed-Solomon!
Our lower bounds: $\delta_{\ell} \geq m+1$ and $d \geq s r-m=n_{\ell}-m \Rightarrow$ MSRD codes

- linearized AG codes in the general framework of central simple algebras
- linearized AG codes in the general framework of central simple algebras
- decoding problem (decoding algorithm for linearized Reed-Solomon codes \checkmark)
- linearized AG codes in the general framework of central simple algebras
- decoding problem (decoding algorithm for linearized Reed-Solomon codes \checkmark)
- duality theorem for the codes $\mathcal{C}\left(x ; E ; \mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}\right)$ (require to develop the theory of differential forms and residues in our framework)
- linearized AG codes in the general framework of central simple algebras
- decoding problem (decoding algorithm for linearized Reed-Solomon codes \checkmark)
- duality theorem for the codes $\mathcal{C}\left(x ; E ; \mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}\right)$ (require to develop the theory of differential forms and residues in our framework)

Merci de votre attention!

Questions?
elena.berardini@math.u-bordeaux.fr

