An introduction to Algebraic Geometry codes

Elena Berardini

Eindhoven University of Technology
TU/e * Eurotech Postdoc2 Programme

ICTLab Group meeting $4^{\text {th }}$ April 2023

[^0](1) Linear codes and Reed-Solomon codes

2 Algebraic geometry codes

(1) Linear codes and Reed-Solomon codes

(2) Algebraic geometry codes

Linear codes

Let \mathbb{F}_{q} denote the finite field with q elements.
A linear code C on \mathbb{F}_{q} of length n is a vector subspace of \mathbb{F}_{q}^{n}. Let k be its dimension.
A G matrix of C is a matrix whose rows form a basis of C. (often taken in row-reduced echelon form)

Let \mathbb{F}_{q} denote the finite field with q elements.
A linear code C on \mathbb{F}_{q} of length n is a vector subspace of \mathbb{F}_{q}^{n}. Let k be its dimension.
A G matrix of C is a matrix whose rows form a basis of C. (often taken in row-reduced echelon form)
Let $\boldsymbol{x} \in C$. The weight of the word x is given by $\omega(\boldsymbol{x})=\#\left\{i \in\{1, \ldots, n\} \mid x_{i} \neq 0\right\}$.
Ex : the weight of $(1,0,2,0,0,0) \in \mathbb{F}_{3}^{6}$ is 2 .

Let \mathbb{F}_{q} denote the finite field with q elements.
A linear code C on \mathbb{F}_{q} of length n is a vector subspace of \mathbb{F}_{q}^{n}. Let k be its dimension.
A G matrix of C is a matrix whose rows form a basis of C. (often taken in row-reduced echelon form)
Let $\boldsymbol{x} \in C$. The weight of the word x is given by $\omega(\boldsymbol{x})=\#\left\{i \in\{1, \ldots, n\} \mid x_{i} \neq 0\right\}$.
Ex: the weight of $(1,0,2,0,0,0) \in \mathbb{F}_{3}^{6}$ is 2 .
Let $\boldsymbol{x}, \boldsymbol{y} \in C$. The Hamming distance between \boldsymbol{x} and \boldsymbol{y} is defined by

$$
d(\boldsymbol{x}, \boldsymbol{y})=\#\left\{i \in\{1, \ldots, n\} \mid x_{i} \neq y_{i}\right\}=\omega(\boldsymbol{x}-\boldsymbol{y})
$$

Let \mathbb{F}_{q} denote the finite field with q elements.
A linear code C on \mathbb{F}_{q} of length n is a vector subspace of \mathbb{F}_{q}^{n}. Let k be its dimension.
A G matrix of C is a matrix whose rows form a basis of C. (often taken in row-reduced echelon form)
Let $\boldsymbol{x} \in C$. The weight of the word x is given by $\omega(\boldsymbol{x})=\#\left\{i \in\{1, \ldots, n\} \mid x_{i} \neq 0\right\}$.
Ex: the weight of $(1,0,2,0,0,0) \in \mathbb{F}_{3}^{6}$ is 2 .
Let $\boldsymbol{x}, \boldsymbol{y} \in C$. The Hamming distance between \boldsymbol{x} and \boldsymbol{y} is defined by

$$
d(\boldsymbol{x}, \boldsymbol{y})=\#\left\{i \in\{1, \ldots, n\} \mid x_{i} \neq y_{i}\right\}=\omega(\boldsymbol{x}-\boldsymbol{y})
$$

The minimum distance of the code C is defined by $d_{\min }(C) \stackrel{\text { def }}{=} \min _{\boldsymbol{x}, \boldsymbol{y} \in C} d(\boldsymbol{x}, \boldsymbol{y})=\min _{\boldsymbol{x} \in \boldsymbol{\boldsymbol { y }}, C \backslash\{0\}} \omega(\boldsymbol{x})$.

Let \mathbb{F}_{q} denote the finite field with q elements.
A linear code C on \mathbb{F}_{q} of length n is a vector subspace of \mathbb{F}_{q}^{n}. Let k be its dimension.
A G matrix of C is a matrix whose rows form a basis of C. (often taken in row-reduced echelon form)
Let $\boldsymbol{x} \in C$. The weight of the word x is given by $\omega(\boldsymbol{x})=\#\left\{i \in\{1, \ldots, n\} \mid x_{i} \neq 0\right\}$.
Ex: the weight of $(1,0,2,0,0,0) \in \mathbb{F}_{3}^{6}$ is 2 .
Let $\boldsymbol{x}, \boldsymbol{y} \in C$. The Hamming distance between \boldsymbol{x} and \boldsymbol{y} is defined by

$$
d(\boldsymbol{x}, \boldsymbol{y})=\#\left\{i \in\{1, \ldots, n\} \mid x_{i} \neq y_{i}\right\}=\omega(\boldsymbol{x}-\boldsymbol{y})
$$

The minimum distance of the code C is defined by $d_{\min }(C) \stackrel{\text { def }}{=} \min _{\boldsymbol{x}, \boldsymbol{y} \in C} d(\boldsymbol{x}, \boldsymbol{y})=\min _{\boldsymbol{x} \in \boldsymbol{y} \in C \backslash\{0\}} \omega(\boldsymbol{x})$.
$[n, k, d]_{q}$-code: code of length \mathbf{n}, dimension \mathbf{k} and minimum distance \mathbf{d}.

$$
\left.\begin{array}{c}
\text { dimension } \leftrightarrow \text { information rate } \\
\text { minimum distance } \leftrightarrow \text { correction capacity }
\end{array}\right\}
$$

$$
k+d \leqslant n+1 \text { 目 Singleton, } 1964
$$

For an $[n, k, d]$-code C, we define its (transmission) rate $\kappa \stackrel{\text { def }}{=} \frac{k}{n}$ and its relative distance $\delta \stackrel{\text { def }}{=} \frac{d}{n}$. "Good" code : κ and δ close to 1 .

For an $[n, k, d]$-code C, we define its (transmission) rate $\kappa \stackrel{\text { def }}{=} \frac{k}{n}$ and its relative distance $\delta \stackrel{\text { def }}{=} \frac{d}{n}$. "Good" code : κ and δ close to 1 .

Compromises:

- Singleton bound: $\delta+\kappa \leq 1+\frac{1}{n}$.
- Gilbert-Varshamov "bound":

With fixed q and $n \rightarrow+\infty$, $\sup \{\kappa(C) \mid \delta(C)=\delta\} \geq 1-H_{q}(\delta)$ where H_{q} is the C q-ary
entropy function defined by

$$
H_{q}(\delta) \stackrel{\text { def }}{=} \delta \log _{q}(q-1)-\delta \log _{q} \delta-(1-\delta) \log _{q}(1-\delta)
$$

For an $[n, k, d]$-code C, we define its (transmission) rate $\kappa \stackrel{\text { def }}{=} \frac{k}{n}$ and its relative distance $\delta \stackrel{\text { def }}{=} \frac{d}{n}$. "Good" code : κ and δ close to 1 .

Compromises:

- Singleton bound: $\delta+\kappa \leq 1+\frac{1}{n}$.
- Gilbert-Varshamov "bound":

With fixed q and $n \rightarrow+\infty$, $\sup \{\kappa(C) \mid \delta(C)=\delta\} \geq 1-H_{q}(\delta)$ where H_{q} is the C q-ary
entropy function defined by

$$
H_{q}(\delta) \stackrel{\text { def }}{=} \delta \log _{q}(q-1)-\delta \log _{q} \delta-(1-\delta) \log _{q}(1-\delta)
$$

A random (linear) code of length n and dimension k satifies $\frac{k}{n} \simeq 1-H_{q}\left(\frac{d}{n}\right)$, with probability going to 1 when $n \rightarrow \infty$.

Reed-Solomon codes

Let $\mathbb{F}_{q}[X]_{<k}$ be the set of univariate polynomials with coefficients in \mathbb{F}_{q} and degree $<k$.

Definition

Let $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right) \in\left(\mathbb{F}_{q}\right)^{n}$ s.t. $\forall i \neq j, x_{i} \neq x_{j}$. Then the Reed-Solomon code is defined as

$$
\mathrm{RS}_{k}(\boldsymbol{x}) \stackrel{\text { def }}{=}\left\{\operatorname{ev}(f)(\boldsymbol{x})=\left(f\left(x_{1}\right), f\left(x_{2}\right), f\left(x_{3}\right), \ldots, f\left(x_{n}\right)\right) \mid f \in \mathbb{F}_{q}[X]_{<k}\right\}
$$

Reed-Solomon codes

Let $\mathbb{F}_{q}[X]_{<k}$ be the set of univariate polynomials with coefficients in \mathbb{F}_{q} and degree $<k$.

Definition

Let $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right) \in\left(\mathbb{F}_{q}\right)^{n}$ s.t. $\forall i \neq j, x_{i} \neq x_{j}$. Then the Reed-Solomon code is defined as

$$
\mathrm{RS}_{k}(\boldsymbol{x}) \stackrel{\operatorname{def}}{=}\left\{\operatorname{ev}(f)(\boldsymbol{x})=\left(f\left(x_{1}\right), f\left(x_{2}\right), f\left(x_{3}\right), \ldots, f\left(x_{n}\right)\right) \mid f \in \mathbb{F}_{q}[X]_{<k}\right\}
$$

The length n is $\leq q$: we can choose up to q distinct elements in \mathbb{F}_{q}.
The dimension is k : a basis of $\mathbb{F}_{q}[X]_{<k}$ is given by $\left\{1, X, \ldots, X^{k-1}\right\}$.
The minimum distance is $n-k+1$:

- a polynomial f of degree $k-1$ has at most $k-1$ zeros

$$
\omega(f)=\#\left\{f\left(x_{i}\right) \neq 0\right\}=n-\#\left\{f\left(x_{i}\right)=0\right\} \geq n-(k-1),
$$

- the Singleton bound ensures that $d \leq n-k+1$.

Reed-Solomon codes

Let $\mathbb{F}_{q}[X]_{<k}$ be the set of univariate polynomials with coefficients in \mathbb{F}_{q} and degree $<k$.

Definition

Let $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right) \in\left(\mathbb{F}_{q}\right)^{n}$ s.t. $\forall i \neq j, x_{i} \neq x_{j}$. Then the Reed-Solomon code is defined as

$$
\mathrm{RS}_{k}(\boldsymbol{x}) \stackrel{\operatorname{def}}{=}\left\{\operatorname{ev}(f)(\boldsymbol{x})=\left(f\left(x_{1}\right), f\left(x_{2}\right), f\left(x_{3}\right), \ldots, f\left(x_{n}\right)\right) \mid f \in \mathbb{F}_{q}[X]_{<k}\right\}
$$

The length n is $\leq q$: we can choose up to q distinct elements in \mathbb{F}_{q}.
The dimension is k : a basis of $\mathbb{F}_{q}[X]_{<k}$ is given by $\left\{1, X, \ldots, X^{k-1}\right\}$.
The minimum distance is $n-k+1$:

- a polynomial f of degree $k-1$ has at most $k-1$ zeros

$$
\omega(f)=\#\left\{f\left(x_{i}\right) \neq 0\right\}=n-\#\left\{f\left(x_{i}\right)=0\right\} \geq n-(k-1),
$$

- the Singleton bound ensures that $d \leq n-k+1$.

Reed-Solomon codes have optimal parameters, attaining the Singleton bound

Reed-Solomon codes

Let $\mathbb{F}_{q}[X]_{<k}$ be the set of univariate polynomials with coefficients in \mathbb{F}_{q} and degree $<k$.

Definition

Let $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right) \in\left(\mathbb{F}_{q}\right)^{n}$ s.t. $\forall i \neq j, x_{i} \neq x_{j}$. Then the Reed-Solomon code is defined as

$$
\mathrm{RS}_{k}(\boldsymbol{x}) \stackrel{\text { def }}{=}\left\{\operatorname{ev}(f)(\boldsymbol{x})=\left(f\left(x_{1}\right), f\left(x_{2}\right), f\left(x_{3}\right), \ldots, f\left(x_{n}\right)\right) \mid f \in \mathbb{F}_{q}[X]_{<k}\right\}
$$

Ⓣhe length n is $\leq q \leadsto$ to construct long Reed-Solomon codes we need big finite fields
(the bigger the q, the less efficient the arithmetic.)
The dimension is k : a basis of $\mathbb{F}_{q}[X]_{<k}$ is given by $\left\{1, X, \ldots, X^{k-1}\right\}$.
The minimum distance is $n-k+1$:

- a polynomial f of degree $k-1$ has at most $k-1$ zeros

$$
\omega(f)=\#\left\{f\left(x_{i}\right) \neq 0\right\}=n-\#\left\{f\left(x_{i}\right)=0\right\} \geq n-(k-1),
$$

- the Singleton bound ensures that $d \leq n-k+1$.

Reed-Solomon codes have optimal parameters, attaining the Singleton bound

(1) Linear codes and Reed-Solomon codes

(2) Algebraic geometry codes

Reed-Solomon (RS) codes: $\quad f \in \mathbb{F}_{q}[X]_{<k}$

Algebraic geometry codes (AG codes)

Reed-Solomon (RS) codes: $\quad f \in \mathbb{F}_{q}[X]_{<k}$

Algebraic Geometry (AG) codes: let $\mathcal{P}=\left(P_{1}, \ldots, P_{n}\right)$ be a n-tuple of points on an algebraic curve \mathcal{X} and let \mathcal{F} be a vector space of functions over the curve.

Algebraic geometry codes (AG codes)

Algebraic Geometry (AG) codes: let $\mathcal{P}=\left(P_{1}, \ldots, P_{n}\right)$ be a n-tuple of points on an algebraic curve \mathcal{X} and let \mathcal{F} be a vector space of functions over the curve.

1981: Goppa introduced AG codes from algebraic curves. (also called geometric Goppa codes)
1982: Tsfasman, Vlăduț and Zink designed AG codes above Gilbert-Varshamov bound.
XXs: Various families of curves are studied to get good AG codes.
XXIs: AG codes are used in applications in information theory.
(1) Curves and their points:

A plane curve over \mathbb{F}_{q} is defined as the zero set of a bivariate polynomial $f \in \mathbb{F}_{q}[x, y]$:

$$
\mathcal{X} \stackrel{\text { def }}{=}\left\{(a, b) \in \overline{\mathbb{F}}_{q}^{2} \mid f(a, b)=0\right\} .
$$

The rational points (or \mathbb{F}_{q}-points) are the points with coordinates lying in \mathbb{F}_{q}. The set of \mathbb{F}_{q}-points of the curve \mathcal{X} is denoted by $\mathcal{X}\left(\mathbb{F}_{q}\right) \stackrel{\text { def }}{=}\left\{(a, b) \in \mathbb{F}_{q}{ }^{2} \mid f(a, b)=0\right\}$.
(1) Curves and their points:

A plane curve over \mathbb{F}_{q} is defined as the zero set of a bivariate polynomial $f \in \mathbb{F}_{q}[x, y]$:

$$
\mathcal{X} \stackrel{\text { def }}{=}\left\{(a, b) \in \overline{\mathbb{F}}_{q}^{2} \mid f(a, b)=0\right\} .
$$

The rational points (or \mathbb{F}_{q}-points) are the points with coordinates lying in \mathbb{F}_{q}. The set of \mathbb{F}_{q}-points of the curve \mathcal{X} is denoted by $\mathcal{X}\left(\mathbb{F}_{q}\right) \stackrel{\text { def }}{=}\left\{(a, b) \in \mathbb{F}_{q}{ }^{2} \mid f(a, b)=0\right\}$.
(2) Functions over a plane curve:

(1) Curves and their points:

A plane curve over \mathbb{F}_{q} is defined as the zero set of a bivariate polynomial $f \in \mathbb{F}_{q}[x, y]$:

$$
\mathcal{X} \stackrel{\text { def }}{=}\left\{(a, b) \in \overline{\mathbb{F}}_{q}^{2} \mid f(a, b)=0\right\} .
$$

The rational points (or \mathbb{F}_{q}-points) are the points with coordinates lying in \mathbb{F}_{q}.
The set of \mathbb{F}_{q}-points of the curve \mathcal{X} is denoted by $\mathcal{X}\left(\mathbb{F}_{q}\right) \stackrel{\text { def }}{=}\left\{(a, b) \in \mathbb{F}_{q}{ }^{2} \mid f(a, b)=0\right\}$.

(2) Functions over a plane curve:

The function field $\mathbb{F}_{q}(\mathcal{X})$ of a plane curve \mathcal{X} defined by $f=0$ is

$$
\begin{aligned}
\mathbb{F}_{q}(\mathcal{X}) & \stackrel{\text { def }}{=} \operatorname{Frac}\left(\mathbb{F}_{q}[x, y] /\langle f\rangle\right) \\
& =\left\{\frac{h_{1}}{h_{2}}: h_{1}, h_{2} \in \mathbb{F}_{q}[x, y] \text { s.t. } f+h_{2}\right\} / \sim \text { where } \frac{h_{1}}{h_{2}} \sim \frac{h_{1}^{\prime}}{h_{2}^{\prime}} \text { iff } f \mid h_{1} h_{2}^{\prime}-h_{1}^{\prime} h_{2} .
\end{aligned}
$$

Definition

A divisor on a curve \mathcal{X} is a formal sum of points $D=\sum_{P \in \mathcal{X}} n_{P} P$ in which the coefficients $n_{P} \in \mathbb{Z}$ are almost all zero. The support of D is the finite set $\operatorname{Supp} D \stackrel{\text { def }}{=}\left\{P \in \mathcal{X} \mid n_{p} \neq 0\right\}$.

Definition

A divisor on a curve \mathcal{X} is a formal sum of points $D=\sum_{P \in \mathcal{X}} n_{P} P$ in which the coefficients $n_{P} \in \mathbb{Z}$ are almost all zero. The support of D is the finite set $\operatorname{Supp} D \stackrel{\text { def }}{=}\left\{P \in \mathcal{X} \mid n_{p} \neq 0\right\}$.

The set of divisors on \mathcal{X} is endowed with a partial order: $D \leq D^{\prime}$ if $n_{P} \leq n_{P}^{\prime}$ for every point P.

Definition

A divisor on a curve \mathcal{X} is a formal sum of points $D=\sum_{P \in \mathcal{X}} n_{P} P$ in which the coefficients $n_{P} \in \mathbb{Z}$ are almost all zero. The support of D is the finite set $\operatorname{Supp} D \stackrel{\text { def }}{=}\left\{P \in \mathcal{X} \mid n_{p} \neq 0\right\}$.

The set of divisors on \mathcal{X} is endowed with a partial order: $D \leq D^{\prime}$ if $n_{P} \leq n_{P}^{\prime}$ for every point P. Any non-zero function $g=h_{1} / h_{2}$ on \mathcal{X} defines a divisor

$$
\operatorname{div}(g)=\sum_{P \in \mathcal{X}} v_{P}(g) P
$$

where $v_{P}(g)$ is the valuation of g at $P\left(v_{P}(g)>0\right.$ if P is a zero of $h_{1}, v_{P}(g)<0$ if P is a zero of $\left.h_{2}\right)$

Definition

A divisor on a curve \mathcal{X} is a formal sum of points $D=\sum_{P \in \mathcal{X}} n_{P} P$ in which the coefficients $n_{P} \in \mathbb{Z}$ are almost all zero. The support of D is the finite set $\operatorname{Supp} D \stackrel{\text { def }}{=}\left\{P \in \mathcal{X} \mid n_{p} \neq 0\right\}$.

The set of divisors on \mathcal{X} is endowed with a partial order: $D \leq D^{\prime}$ if $n_{P} \leq n_{P}^{\prime}$ for every point P. Any non-zero function $g=h_{1} / h_{2}$ on \mathcal{X} defines a divisor

$$
\operatorname{div}(g)=\sum_{P \in \mathcal{X}} v_{P}(g) P
$$

where $v_{P}(g)$ is the valuation of g at $P\left(v_{P}(g)>0\right.$ if P is a zero of $h_{1}, v_{P}(g)<0$ if P is a zero of $\left.h_{2}\right)$
(3) The Riemann-Roch space associated to a divisor $D=\sum n_{P} P$ is the \mathbb{F}_{q}-vector space

$$
L(D)=\left\{g=h_{1} / h_{2} \in \mathbb{F}_{q}(\mathcal{X}) \mid D \geq-\operatorname{div}(g)\right\}
$$

- if $n_{P}<0$ then P must be a zero of h_{1} (of multiplicity $\geqslant-n_{P}$),
- if $n_{P}>0$ then P can be a zero of h_{2} (of multiplicity $\leqslant n_{P}$),
- h_{2} has no other zeros outside the points P with $n_{P}>0$.

Definition

A divisor on a curve \mathcal{X} is a formal sum of points $D=\sum_{P \in \mathcal{X}} n_{P} P$ in which the coefficients $n_{P} \in \mathbb{Z}$ are almost all zero. The support of D is the finite set $\operatorname{Supp} D \stackrel{\text { def }}{=}\left\{P \in \mathcal{X} \mid n_{p} \neq 0\right\}$.

The set of divisors on \mathcal{X} is endowed with a partial order: $D \leq D^{\prime}$ if $n_{P} \leq n_{P}^{\prime}$ for every point P. Any non-zero function $g=h_{1} / h_{2}$ on \mathcal{X} defines a divisor

$$
\operatorname{div}(g)=\sum_{P \in \mathcal{X}} v_{P}(g) P
$$

where $v_{P}(g)$ is the valuation of g at $P\left(v_{P}(g)>0\right.$ if P is a zero of $h_{1}, v_{P}(g)<0$ if P is a zero of $\left.h_{2}\right)$
(3) The Riemann-Roch space associated to a divisor $D=\sum n_{P} P$ is the \mathbb{F}_{q}-vector space

$$
L(D)=\left\{g=h_{1} / h_{2} \in \mathbb{F}_{q}(\mathcal{X}) \mid D \geq-\operatorname{div}(g)\right\}
$$

- if $n_{P}<0$ then P must be a zero of h_{1} (of multiplicity $\geqslant-n_{P}$),

Computing a basis of

- if $n_{P}>0$ then P can be a zero of h_{2} (of multiplicity $\leqslant n_{P}$),
$L(D)$ on any \mathcal{X} is hard!
- h_{2} has no other zeros outside the points P with $n_{P}>0$.

Fix two points $P, Q \in \mathcal{X}\left(\mathbb{F}_{q}\right)$. Then

$$
\begin{aligned}
L(m P) & =\left\{g=h_{1} / h_{2} \in \mathbb{F}_{q}(\mathcal{X}) \mid h_{2} \text { has a zero of order at most } m \text { at } P\right\}, \\
L(m P-n Q) & =\left\{g=h_{1} / h_{2} \in L(m P) \mid h_{1} \text { vanishes with order at least } n \text { at } Q\right\} .
\end{aligned}
$$

Fix two points $P, Q \in \mathcal{X}\left(\mathbb{F}_{q}\right)$. Then

$$
\begin{aligned}
L(m P) & =\left\{g=h_{1} / h_{2} \in \mathbb{F}_{q}(\mathcal{X}) \mid h_{2} \text { has a zero of order at most } m \text { at } P\right\}, \\
L(m P-n Q) & =\left\{g=h_{1} / h_{2} \in L(m P) \mid h_{1} \text { vanishes with order at least } n \text { at } Q\right\} .
\end{aligned}
$$

Some Magma code :
> K:=FiniteField(11);
> R〈x>:=PolynomialRing(K);
$>$ E:=EllipticCurve (x^3+x);
defines the curve $y^{2}=x^{3}+x$ (unique) point at infinity
> P:=PointsAtInfinity (E) [1];
$>\mathrm{FF}<\mathrm{x}, \mathrm{y}>:=$ FunctionField(E);
$>$ Basis (5*Divisor (P)) ; return a basis of the Riemann-Roch space $L\left(5 P_{\infty}\right)$ [$\mathrm{x} * \mathrm{y}, \mathrm{y}, \mathrm{x} \sim 2, \mathrm{x}, 1$]
$>$ Basis(5*Divisor (P)-Divisor (E ! [0,0,1])); basis of $L\left(5 P_{\infty}-P_{0}\right)$ [$\mathrm{x} * \mathrm{y}, \mathrm{y}, \mathrm{x}$ ~2, x]

Let \mathcal{X} be a curve defined over \mathbb{F}_{q}, a divisor D on \mathcal{X} and $\mathcal{P}=\left\{P_{1}, \ldots, P_{n}\right\} \subseteq \mathcal{X}\left(\mathbb{F}_{q}\right)$ such that $\mathcal{P} \cap \operatorname{Supp} D=\varnothing$. We define the associated Algebraic Geometry code (or AG code) as

$$
\mathcal{C}(\mathcal{X}, \mathcal{P}, D) \stackrel{\operatorname{def}}{=}\left\{\operatorname{ev}_{\mathcal{P}}(h)=\left(h\left(P_{1}\right), \ldots, h\left(P_{n}\right)\right) \mid h \in L(D)\right\} .
$$

If $P \in \mathcal{P}$ with $n_{P}>0$, functions in $L(D)$ may have poles at P and the evaluation is not well defined. If $n_{P}<0$, the coordinate corresponding to P is always zero.

An algebraic curve \mathcal{X} comes with a geometric invariant, its genus $g \in \mathbb{N}$.
The genus of a plane curve defined by a degree m polynomial is equal to $g=\frac{(m-1)(m-2)}{2}$.
Length $n=\# \mathcal{P} \leq \# \mathcal{X}\left(\mathbb{F}_{q}\right)$.

Hasse-Weil-Serre bound

The number of \mathbb{F}_{q}-points of a smooth projective curve \mathcal{X} defined over \mathbb{F}_{q} satisfies

$$
\# \mathcal{X}\left(\mathbb{F}_{q}\right) \leq q+1+2 g \sqrt{q} .
$$

An algebraic curve \mathcal{X} comes with a geometric invariant, its genus $g \in \mathbb{N}$.
The genus of a plane curve defined by a degree m polynomial is equal to $g=\frac{(m-1)(m-2)}{2}$.
Length $n=\# \mathcal{P} \leq \# \mathcal{X}\left(\mathbb{F}_{q}\right)$.

Hasse-Weil-Serre bound

The number of \mathbb{F}_{q}-points of a smooth projective curve \mathcal{X} defined over \mathbb{F}_{q} satisfies

$$
\# \mathcal{X}\left(\mathbb{F}_{q}\right) \leq q+1+2 g \sqrt{q} .
$$

Dimension $k \leq$ dimension of $L(D)$.

Riemann-Roch Theorem

Let $D=\sum n_{p} P$ such that $\operatorname{Supp} D \subseteq \mathcal{X}\left(\mathbb{F}_{q}\right)$. Define $\operatorname{deg} D \stackrel{\text { def }}{=} \sum n_{P}$. Then

$$
\operatorname{dim} L(D) \geq \operatorname{deg} D+1-g, \text { with equality if } \operatorname{deg} D \geq 2 g-1 .
$$

An algebraic curve \mathcal{X} comes with a geometric invariant, its genus $g \in \mathbb{N}$.
The genus of a plane curve defined by a degree m polynomial is equal to $g=\frac{(m-1)(m-2)}{2}$.
Length $n=\# \mathcal{P} \leq \# \mathcal{X}\left(\mathbb{F}_{q}\right)$.

Hasse-Weil-Serre bound

The number of \mathbb{F}_{q}-points of a smooth projective curve \mathcal{X} defined over \mathbb{F}_{q} satisfies

$$
\# \mathcal{X}\left(\mathbb{F}_{q}\right) \leq q+1+2 g \sqrt{q} .
$$

Dimension $k \leq$ dimension of $L(D)$.

Riemann-Roch Theorem

Let $D=\sum n_{p} P$ such that $\operatorname{Supp} D \subseteq \mathcal{X}\left(\mathbb{F}_{q}\right)$. Define $\operatorname{deg} D \stackrel{\text { def }}{=} \sum n_{P}$. Then $\operatorname{dim} L(D) \geq \operatorname{deg} D+1-g$, with equality if $\operatorname{deg} D \geq 2 g-1$.
Minimum distance $d \geq d^{*}$ where $d^{*} \stackrel{\text { def }}{=} n-\operatorname{deg} D$.
\Rightarrow If $2 g-1 \leq \operatorname{deg}(D)<n$, then $\operatorname{dim}(C(\mathcal{X}, \mathcal{P}, D))=\operatorname{deg} D-g+1$.
$\Rightarrow n+1-g \leq k+d \leq n+1 . \leadsto \mathrm{AG}$ codes are g-far from optimality.

To use an AG code $C(\mathcal{X}, \mathcal{P}, D)$ in practice we need to (1) encode:
(2) decode:

To use an AG code $C(\mathcal{X}, \mathcal{P}, D)$ in practice we need to
(1) encode: basis of $L(D)+$ (fast) evaluation at points of \mathcal{P};

Several algorithms to compute Riemann-Roch spaces:

- Arithmetic method Hensel-Landberg (1902), Coated (1970), Davenport (1981), Hess (2001)...
- Geometric method Goppa, Le Brigand-Risler (80's), Huang-lerardi (90's), Khuri-Makdisi (2007), Le Gluher-Spaenlehauer (2018), Abelard-B-Couvreur-Lecerf (2022),...
Fast encoding on families of curves with structured \mathcal{P} Beelen-Rosenkilde-Solomatov (2020)
(2) decode:

To use an AG code $C(\mathcal{X}, \mathcal{P}, D)$ in practice we need to
(1) encode: basis of $L(D)+$ (fast) evaluation at points of \mathcal{P};

Several algorithms to compute Riemann-Roch spaces:

- Arithmetic method Hensel-Landberg (1902), Coated (1970), Davenport (1981), Hess (2001)...
- Geometric method Goppa, Le Brigand-Risler (80's), Huang-lerardi (90's), Khuri-Makdisi (2007), Le Gluher-Spaenlehauer (2018), Abelard-B-Couvreur-Lecerf (2022),...
Fast encoding on families of curves with structured \mathcal{P} Beelen-Rosenkilde-Solomatov (2020)
(2) decode:
- Unique decoding
- List decoding

Pelikaan (1992), Kötter (1992)
Couvreur-Panaccione (2020)

To use an AG code $C(\mathcal{X}, \mathcal{P}, D)$ in practice we need to
(1) encode: basis of $L(D)+$ (fast) evaluation at points of \mathcal{P};

Several algorithms to compute Riemann-Roch spaces:

- Arithmetic method Hensel-Landberg (1902), Coated (1970), Davenport (1981), Hess (2001)...
- Geometric method Goppa, Le Brigand-Risler (80's), Huang-lerardi (90's), Khuri-Makdisi (2007), Le Gluher-Spaenlehauer (2018), Abelard-B-Couvreur-Lecerf (2022), ...
Fast encoding on families of curves with structured \mathcal{P} Beelen-Rosenkilde-Solomatov (2020)
(2) decode:
- Unique decoding
- List decoding

Pelikaan (1992), Kötter (1992)
Couvreur-Panaccione (2020)

Thank you for your attention!

[^0]: Personal webpage: http://www.elenaberardini.it/ Questions? e.berardini@tue.nl

