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Linear codes

Let Fq denote the finite field with q elements.
A linear code C on Fq of length n is a vector subspace of Fn

q . Let k be its dimension.

A G matrix of C is a matrix whose rows form a basis of C. (often taken in row-reduced echelon form)

Let x ∈ C. The weight of the word x is given by ω(x) =#{i ∈ {1, . . . , n} ∣ xi ≠ 0}.
Ex: the weight of (1,0,2,0,0,0) ∈ F6

3 is 2.

Let x, y ∈ C. The Hamming distance between x and y is defined by

d(x,y) =#{i ∈ {1, . . . , n} ∣ xi ≠ yi} = ω(x − y).

The minimum distance of the code C is defined by dmin(C) def= min
x,y∈C
x≠y

d(x,y) = min
x∈C∖{0}

ω(x).

[n, k, d]q–code: code of length n, dimension k and minimum distance d.

dimension↔ information rate

minimum distance↔ correction capacity
} k + d ⩽ n + 1 Y Singleton, 1964
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About parameters of linear codes

For an [n, k, d]–code C, we define its (transmission) rate κ
def= k

n
and its relative distance δ

def= d
n

.

“Good” code : κ and δ close to 1.

Compromises:

● Singleton bound: δ + κ ≤ 1 + 1
n

.

● Gilbert-Varshamov “bound”:
With fixed q and n→ +∞,
sup

C q−ary
{κ(C) ∣ δ(C) = δ} ≥ 1 −Hq(δ) where Hq is the

entropy function defined by

Hq(δ) def= δ logq(q − 1) − δ logq δ − (1 − δ) logq(1 − δ).

A random (linear) code of length n and dimension k satifies k
n
≃ 1 −Hq( d

n
), with probability

going to 1 when n→∞.
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Reed–Solomon codes

Let Fq[X]<k be the set of univariate polynomials with coefficients in Fq and degree < k.

Definition

Let x = (x1, . . . , xn) ∈ (Fq)n s.t. ∀i ≠ j, xi ≠ xj . Then the Reed–Solomon code is defined as

RSk(x) def= {ev(f)(x) = (f(x1), f(x2), f(x3), . . . , f(xn)) ∣ f ∈ Fq[X]<k}

The dimension is k: a basis of Fq[X]<k is given by {1,X, . . . ,Xk−1}.

The minimum distance is n − k + 1:

● a polynomial f of degree k − 1 has at most k − 1 zeros

ω(f) =#{f(xi) ≠ 0} = n −#{f(xi) = 0} ≥ n − (k − 1),

● the Singleton bound ensures that d ≤ n − k + 1.

Reed–Solomon codes have optimal parameters, attaining the Singleton bound
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Algebraic geometry codes (AG codes)

Reed–Solomon (RS) codes: f ∈ Fq[X]<k

RSk(x) def= {(f(x1), f(x2), f(x3), . . . , f(xn)) ∣ f ∈ Fq[X]<k}

●
x3

●
x2

●
x1

●
xn

Algebraic Geometry (AG) codes: let P = (P1, . . . , Pn) be a n–tuple of points on an algebraic
curve X and let F be a vector space of functions over the curve.

g ∈ F

C(X ,P,F) def= {(g(P1), g(P2), g(P3), . . . , g(Pn)) ∣ g ∈ F}

●
P3●

P2

●P1 ●
Pn

1981: Goppa introduced AG codes from algebraic curves. (also called geometric Goppa codes)

1982: Tsfasman, Vlăduţ and Zink designed AG codes above Gilbert–Varshamov bound.

XXs: Various families of curves are studied to get good AG codes.

XXIs: AG codes are used in applications in information theory.
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Plane algebraic curves and their functions

1 Curves and their points:
A plane curve over Fq is defined as the zero set of a bivariate polynomial f ∈ Fq[x, y] :

X def= {(a, b) ∈ Fq
2 ∣ f(a, b) = 0}.

The rational points (or Fq–points) are the points with coordinates lying in Fq.

The set of Fq–points of the curve X is denoted by X(Fq) def= {(a, b) ∈ Fq
2 ∣ f(a, b) = 0}.

2 Functions over a plane curve:

The function field Fq(X) of a plane curve X defined by f = 0 is

Fq(X) def= Frac (Fq[x, y]/⟨f⟩)

= {h1
h2

∶ h1, h2 ∈ Fq[x, y] s.t. f ∤ h2} / ∼ where
h1
h2

∼ h
′
1

h′2
iff f ∣ h1h′2 − h′1h2.
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Divisors on a curve and Riemann–Roch spaces

Definition

A divisor on a curve X is a formal sum of points D = ∑
P ∈X

nPP in which the coefficients nP ∈ Z

are almost all zero. The support of D is the finite set SuppD
def= {P ∈ X ∣ np ≠ 0}.

The set of divisors on X is endowed with a partial order : D ≤D′ if nP ≤ n′P for every point P .

Any non–zero function g = h1/h2 on X defines a divisor

div(g) = ∑
P ∈X

vP (g)P,

where vP (g) is the valuation of g at P (vP (g) > 0 if P is a zero of h1, vP (g) < 0 if P is a zero of h2)

3 The Riemann–Roch space associated to a divisor D = ∑nPP is the Fq-vector space

L(D) = {g = h1/h2 ∈ Fq(X) ∣D ≥ −div(g)}.

● if nP < 0 then P must be a zero of h1 (of multiplicity ⩾ −nP ),
● if nP > 0 then P can be a zero of h2 (of multiplicity ⩽ nP ),
● h2 has no other zeros outside the points P with nP > 0.

Computing a basis of

L(D) on any X is hard!
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Fix two points P, Q ∈ X(Fq). Then

L(mP ) = {g = h1/h2 ∈ Fq(X) ∣ h2 has a zero of order at most m at P},
L(mP − nQ) = {g = h1/h2 ∈ L(mP ) ∣ h1 vanishes with order at least n at Q}.

Some Magma code :
> K:=FiniteField(11);

> R<x>:=PolynomialRing(K);

> E:=EllipticCurve(x^3+x); defines the curve y2 = x3 + x
> P:=PointsAtInfinity(E)[1]; (unique) point at infinity

> FF<x,y>:=FunctionField(E);

> Basis(5*Divisor(P)); return a basis of the Riemann-Roch space L(5P∞)
[x*y,y,x^2,x,1]

> Basis(5*Divisor(P)-Divisor(E ! [0,0,1])); basis of L(5P∞ − P0)
[x*y,y,x^2,x]
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AG codes

Let X be a curve defined over Fq, a divisor D on X and P = {P1, . . . , Pn} ⊆ X(Fq) such that
P ∩ SuppD = ∅. We define the associated Algebraic Geometry code (or AG code) as

C(X ,P,D) def= {evP(h) = (h(P1), . . . , h(Pn)) ∣ h ∈ L(D)} .

If P ∈ P with nP > 0, functions in L(D) may have poles at P and the evaluation is not well defined.
If nP < 0, the coordinate corresponding to P is always zero.
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Parameters of AG codes

An algebraic curve X comes with a geometric invariant, its genus g ∈ N.

The genus of a plane curve defined by a degree m polynomial is equal to g = (m−1)(m−2)
2

.

Length n =#P ≤#X(Fq).

Hasse–Weil–Serre bound

The number of Fq–points of a smooth projective curve X defined over Fq satisfies

#X(Fq) ≤ q + 1 + 2g
√
q.

Dimension k ≤ dimension of L(D).

Riemann–Roch Theorem

Let D = ∑npP such that SuppD ⊆ X(Fq). Define degD
def= ∑nP . Then

dimL(D) ≥ degD + 1 − g, with equality if degD ≥ 2g − 1.

Minimum distance d ≥ d∗ where d∗
def= n − degD.

⇒ If 2g − 1 ≤ deg(D) < n, then dim(C(X ,P,D)) = degD − g + 1.

⇒ n + 1 − g ≤ k + d ≤ n + 1. ; AG codes are g-far from optimality.
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Encoding and decoding of AG codes

To use an AG code C(X ,P,D) in practice we need to

1 encode:

basis of L(D) + (fast) evaluation at points of P;

Several algorithms to compute Riemann–Roch spaces:
● Arithmetic method

Hensel–Landberg (1902), Coated (1970), Davenport (1981), Hess (2001)...
● Geometric method

Goppa, Le Brigand–Risler (80’s), Huang–Ierardi (90’s), Khuri–Makdisi (2007), Le
Gluher–Spaenlehauer (2018), Abelard–B–Couvreur–Lecerf (2022),...

Fast encoding on families of curves with structured P Beelen–Rosenkilde–Solomatov (2020)

2 decode:

● Unique decoding Pelikaan (1992), Kötter (1992)
● List decoding Couvreur–Panaccione (2020)

Thank you for your attention!
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