AN INTRODUCTION TO ALGEBRAIC GEOMETRY CODES

Elena Berardini

Eindhoven University of Technology
TU/e 555 - sonarotsrogme

ICTLab Group meeting
4th April 2023

Personal webpage: http://www.elenaberardini.it/
Questions? e.berardini@tue.nl

An introduction to Algebraic Geometry codes Elena Berardini 1/14


http://www.elenaberardini.it/
e.berardini@tue.nl

@ Linear codes and Reed—Solomon codes

@® Algebraic geometry codes

An introduction to Algebraic Geometry codes Elena Berardini



Linear codes and Reed-Solomon codes ®000

@ Linear codes and Reed—Solomon codes

An introduction to Algebraic Geometry codes Elena Berardini



Linear codes and Reed—Solomon codes O®00
Linear codes

Let I, denote the finite field with ¢ elements.
A linear code C on I, of length n is a vector subspace of Fy. Let k be its dimension.

A G matrix of C' is a matrix whose rows form a basis of C'. (often taken in row-reduced echelon form)
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Linear codes

Let I, denote the finite field with ¢ elements.
A linear code C on I, of length n is a vector subspace of Fy. Let k be its dimension.

A G matrix of C' is a matrix whose rows form a basis of C'. (often taken in row-reduced echelon form)

Let ¢ € C. The weight of the word x is given by w(x) = #{ie{1,...,n}| =; # 0}.
Ex: the weight of (1,0,2,0,0,0) € F§ is 2.
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Linear codes and Reed—Solomon codes O®00
Linear codes

Let I, denote the finite field with ¢ elements.
A linear code C on I, of length n is a vector subspace of Fy. Let k be its dimension.

A G matrix of C' is a matrix whose rows form a basis of C'. (often taken in row-reduced echelon form)

Let ¢ € C. The weight of the word x is given by w(x) = #{ie{1,...,n}| =; # 0}.
Ex: the weight of (1,0,2,0,0,0) € F§ is 2.

Let «, y € C. The Hamming distance between x and y is defined by

dz,y)=#{ie{l,....,n}|z; +y;} =w(x - y).
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Linear codes and Reed—Solomon codes O®00
Linear codes

Let I, denote the finite field with ¢ elements.
A linear code C on I, of length n is a vector subspace of Fy. Let k be its dimension.

A G matrix of C' is a matrix whose rows form a basis of C'. (often taken in row-reduced echelon form)

Let ¢ € C. The weight of the word x is given by w(x) = #{ie{1,...,n}| =; # 0}.
Ex: the weight of (1,0,2,0,0,0) € F§ is 2.

Let «, y € C. The Hamming distance between x and y is defined by
d(m,y) =#{ie{1,....n} [z; # y;} = w(@ - y).

The minimum distance of the code C is defined by d,(C) 4 1nin d(z,y) = min w(x).
:ciy:yc xeC~\{0}
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Linear codes and Reed—Solomon codes O®00
Linear codes

Let I, denote the finite field with ¢ elements.
A linear code C on I, of length n is a vector subspace of Fy. Let k be its dimension.

A G matrix of C' is a matrix whose rows form a basis of C'. (often taken in row-reduced echelon form)

Let ¢ € C. The weight of the word x is given by w(x) = #{ie{1,...,n}| =; # 0}.
Ex: the weight of (1,0,2,0,0,0) € F§ is 2.

Let «, y € C. The Hamming distance between x and y is defined by
d(m,y) =#{ie{1,....n} [z; # y;} = w(@ - y).

The minimum distance of the code C is defined by d,(C) 4 1nin d(z,y) = min w(x).
:ciy:yC xeC~\{0}

[n, k,d],—code: code of length n, dimension k and minimum distance d.

dimension < information rate .
. . . . k+d <n+ 18 Singleton, 1964
minimum distance <> correction capacity
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About parameters of linear codes

o . def . o def
For an [n, k,d]-code C, we define its (transmission) rate r = % and its relative distance § = %.

“Good" code : k and ¢ close to 1.
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About parameters of linear codes

For an [n, k,d]-code C, we define its (transmission) rate k

“Good" code : k and ¢ close to 1.
Compromises:

® Singleton bound: 6 +xk <1+ %

® Gilbert-Varshamov “bound”:
With fixed ¢ and n — +o0,
sup {k(C)|6(C) =06} >1-H,(0) where H, is the
C g-ary
entropy function defined by

H,(6) d—efdlogq(q ~1)~dlog, 0~ (1~-0)log,(1-0).

def
=k .- and its relative distance 6 =

K

1 4

def 4
n’
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Linear codes and Reed—Solomon codes OO®0O
About parameters of linear codes

o . def . o
For an [n, k,d]-code C, we define its (transmission) rate r = % and its relative distance § =

“Good" code : k and ¢ close to 1.
Compromises:

® Singleton bound: 6 +xk <1+ %

® Gilbert-Varshamov “bound”:
With fixed ¢ and n — +o0,
sup {k(C)|6(C) =06} >1-H,(0) where H, is the
C g-ary
entropy function defined by

H,(6) d:efdlogq(q ~1)~dlog, 0~ (1~-0)log,(1-0).

1 4

def g
<.

K

0

A random (linear) code of length n and dimension k satifies £ ~ 1 - H,(<), with probability

going to 1 when n — oo.
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Reed—Solomon codes

Let Fy[X <k be the set of univariate polynomials with coefficients in F, and degree < k.

Let = (z1,...,2,) € (Fy)" s.t. Yi#j, x; #x;. Then the Reed—Solomon code is defined as

def

RSk(z) = {ev(f)(@) = (f(x1), f(22), f(@3), .., f(wn)) | f € F[ Xk}
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Reed—Solomon codes

Let Fy[X )<k be the set of univariate polynomials with coefficients in F, and degree < k.

Let = (z1,...,2,) € (Fy)" s.t. Vi#j, x; #x;. Then the Reed—Solomon code is defined as

RSi(x) € {ev(f)(@) = (f(x1), f(z2), F(x3), -, f(@a)) | f € F o[ Xk}

The length n is < ¢: we can choose up to ¢ distinct elements in IF.
The dimension is k: a basis of F,[ X<y is given by {1, X,..., X*1}.
The minimum distance is n — k + 1:

® a polynomial f of degree k-1 has at most k — 1 zeros

w(f) =#{f(x:) # 0} =n—3#{f(2:) =0} 2n - (k- 1),

® the Singleton bound ensures that d <n -k + 1.
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Reed—Solomon codes

Let Fy[X )<k be the set of univariate polynomials with coefficients in F, and degree < k.

Let = (z1,...,2,) € (Fy)" s.t. Vi#j, x; #x;. Then the Reed—Solomon code is defined as

RSi(x) € {ev(f)(@) = (f(x1), f(z2), F(x3), -, f(@a)) | f € F o[ Xk}

The length n is < ¢: we can choose up to ¢ distinct elements in IF.
The dimension is k: a basis of F,[ X<y is given by {1, X,..., X*1}.
The minimum distance is n — k + 1:

® a polynomial f of degree k-1 has at most k — 1 zeros

w(f) = #{f (i) # 0} =n—#{f(2:) =0} 2n - (k-1),
® the Singleton bound ensures that d <n -k + 1.

Reed—Solomon codes have optimal parameters, attaining the Singleton bound

An introduction to Algebraic Geometry codes Elena Berardini



Linear codes and Reed-Solomon codes OO0 ®

Reed—Solomon codes

Let Fy[X <k be the set of univariate polynomials with coefficients in F, and degree < k.

Let © = (x1,...,2,) € (Fg)" s.t. Vi#j, x; # ;. Then the Reed—Solomon code is defined as

RSk(®) € {ev(f) (@) = (f(21), f(@2), f(23), .-, f(2n)) | f € Fo[ Xk}

A\ The length n is < ¢~ to construct long Reed-Solomon codes we need big finite fields
(the bigger the ¢, the less efficient the arithmetic.)

The dimension is k: a basis of F,[X].; is given by {1, X,..., X*71}.
The minimum distance is n -k + 1:

® a polynomial f of degree k — 1 has at most k — 1 zeros

w(f) =#{f(@:) #0} =n—#{f(z;) =0} 2n - (k-1),
® the Singleton bound ensures that d<n -k + 1.

Reed—-Solomon codes have optimal parameters, attaining the Singleton bound
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Algebraic Geometry codes 08000000
Algebraic geometry codes (AG codes)

Reed-Solomon (RS) codes: feF[X]
QL‘.l J;g 7;3 x‘n

RSw(x) € {(f(x1), f(x2), f(@3), -, [(@a)) | [ € Fo[X]ex}
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Algebraic Geometry codes 08000000
Algebraic geometry codes (AG codes)

Reed-Solomon (RS) codes: feF[X]
QL‘.l ];2 7;3 x‘n

RSw(x) € {(f(x1), f(x2), f(@3), -, [(@a)) | [ € Fo[X]ex}

Algebraic Geometry (AG) codes: let P = (Py,..., P, ) be a n—tuple of points on an algebraic
curve X and let F be a vector space of functions over the curve.

geF

PIA//l T,
P,
P3
Py
“ A
def

C(X,P,F) = {(9(P1),9(P2),9(Ps),...,9(Pn)) | g€ F}
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Algebraic Geometry codes 08000000
Algebraic geometry codes (AG codes)

Algebraic Geometry (AG) codes: let P = (Py,...,P,) be a n—tuple of points on an algebraic
curve X and let F be a vector space of functions over the curve.

C(vavf) dz&f{(g(Pl)ag(P2)7g(P3)7"'ag(Pn)) | 96‘7:}

1981: Goppa introduced AG codes from algebraic curves. (also called geometric Goppa codes)
1982: Tsfasman, VIddut and Zink designed AG codes above Gilbert—Varshamov bound.
XXs: Various families of curves are studied to get good AG codes.

XXls: AG codes are used in applications in information theory.

Elena Berardini
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Algebraic Geometry codes OO®00000
Plane algebraic curves and their functions

® Curves and their points:
A plane curve over F, is defined as the zero set of a bivariate polynomial f e F,[z,y] :

X € {(a,b) € 7,2 | f(a,b) = 0}.

The rational points (or F,—points) are the points with coordinates lying in F,.
The set of Fy—points of the curve X is denoted by X (FF,) f {(a,b) € ¥ 2| f(a,b) = 0}.
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Plane algebraic curves and their functions

® Curves and their points:
A plane curve over F, is defined as the zero set of a bivariate polynomial f e F,[z,y] :

X € {(a,b) € 7,2 | f(a,b) = 0}.

The rational points (or F,—points) are the points with coordinates lying in F,.
The set of Fy—points of the curve X is denoted by X (FF,) f {(a,b) € ¥ 2| f(a,b) = 0}.

® Functions over a plane curve:
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Algebraic Geometry codes OO®00000
Plane algebraic curves and their functions

® Curves and their points:
A plane curve over F, is defined as the zero set of a bivariate polynomial f e F,[z,y] :

A= {(a,b) €77 f(a,b) = 0.
The rational points (or F,—points) are the points with coordinates lying in F,.

The set of Fy—points of the curve X is denoted by X (FF,) f {(a,b) € ¥ 2| f(a,b) = 0}.

® Functions over a plane curve:

The function field F,(X) of a plane curve X defined by f =0 is

F,(X) € Frac (Fy [, y]/(/))

’
= {E Zhl, hg EFq[QJ,y] s.t. f + hQ}/N where % ~ # iff f | hlhlz —h’lhg.
2

I
ha 5
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Algebraic Geometry codes OOO®0000

Divisors on a curve and Riemann—Roch spaces

A divisor on a curve X is a formal sum of points D = Z npP in which the coefficients np € Z
PeXx

are almost all zero. The support of D is the finite set Supp D i {PeX|n,=+0}.
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Divisors on a curve and Riemann—Roch spaces

A divisor on a curve X is a formal sum of points D = Z npP in which the coefficients np € Z
PeXx

are almost all zero. The support of D is the finite set Supp D i {PeX|n,=+0}.

The set of divisors on X is endowed with a partial order: D < D' if np <n', for every point P.
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Divisors on a curve and Riemann—Roch spaces

A divisor on a curve X is a formal sum of points D = Z npP in which the coefficients np € Z
PeXx

are almost all zero. The support of D is the finite set Supp D i {PeX|n,=+0}.

The set of divisors on X is endowed with a partial order: D < D' if np <n', for every point P.

Any non—zero function g = hi/hy on X defines a divisor

div(g) = Y vp(g)P,

PeX

where vp(g) is the valuation of g at P (vp(g) >0 if P is a zero of h1, vp(g) <0 if P is a zero of ho)
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Divisors on a curve and Riemann—Roch spaces

A divisor on a curve X is a formal sum of points D = Z npP in which the coefficients np € Z
PeXx

are almost all zero. The support of D is the finite set Supp D i {PeX|n,=+0}.

The set of divisors on X is endowed with a partial order: D < D' if np <n', for every point P.
Any non—zero function g = hi/hy on X defines a divisor

div(g) = > vp(g)P,

PeX

where vp(g) is the valuation of g at P (vp(g) >0 if P is a zero of h1, vp(g) <0 if P is a zero of ho)

©® The Riemann—Roch space associated to a divisor D = . npP is the [ -vector space
L(D)={g=hi/hs e Fy(X)| D > —div(g)}.

® if np <0 then P must be a zero of hy (of multiplicity > -np),
® if np >0 then P can be a zero of ha (of multiplicity < np),
® hy has no other zeros outside the points P with np > 0.
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Divisors on a curve and Riemann—Roch spaces

A divisor on a curve X is a formal sum of points D = Z npP in which the coefficients np € Z
PeXx

are almost all zero. The support of D is the finite set Supp D i {PeX|n,=+0}.

The set of divisors on X is endowed with a partial order: D < D' if np <n', for every point P.
Any non—zero function g = hi/hy on X defines a divisor

div(g) = > vp(g)P,

PeX

where vp(g) is the valuation of g at P (vp(g) >0 if P is a zero of h1, vp(g) <0 if P is a zero of ho)

©® The Riemann—Roch space associated to a divisor D = . npP is the [ -vector space
L(D)={g=hi/hs e Fy(X)| D > —div(g)}.

® if np <0 then P must be a zero of hy (of multiplicity > -np), Computing a basis of
® if np >0 then P can be a zero of ha (of multiplicity < np), L(D) on any X is hard!
® hy has no other zeros outside the points P with np > 0.
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Algebraic Geometry codes 00O0®000

Fix two points P, @ € X(Fg). Then

L(mP) ={g=nhi/ha € Fg(X) | ho has a zero of order at most m at P},
L(mP -nQ) ={g = h1/hz2 € L(mP) | h1 vanishes with order at least n at Q}.
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Algebraic Geometry codes 00O0®000

Fix two points P, @ € X(Fg). Then

L(mP) ={g=nhi/ha € Fg(X) | ho has a zero of order at most m at P},
L(mP -nQ) ={g = h1/hz2 € L(mP) | h1 vanishes with order at least n at Q}.

Some MAGMA code :

> K:=FiniteField(11);

> R<x>:=PolynomialRing(K);

> E:=EllipticCurve(x~3+x); defines the curve y2 =3+
> P:=PointsAtInfinity(E) [1]; (unique) point at infinity
> FF<x,y>:=FunctionField(E);

> Basis(5*Divisor(P)) ; return a basis of the Riemann-Roch space L(5P.)
[x*y,y,x"2,x%,1]

> Basis(5*Divisor (P)-Divisor(E ! [0,0,1]1)); basis of L(5Pw — Fp)
[x*y,y,x"2,x]
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Algebraic Geometry codes 00000®00
AG codes

Let X be a curve defined over Fy, a divisor D on X and P = {P,...,P,} ¢ X(F,) such that
P nSupp D = @. We define the associated Algebraic Geometry code (or AG code) as

C(X,P,D) < {evp(h) = (h(P)),...,h(P,)) | he L(D)}.

If P e P with np >0, functions in L(D) may have poles at P and the evaluation is not well defined.
If np <0, the coordinate corresponding to P is always zero.
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Algebraic Geometry codes 000000®0
Parameters of AG codes

An algebraic curve X comes with a geometric invariant, its genus g € N.
The genus of a plane curve defined by a degree m polynomial is equal to g = (m-1)(m-2)

2

Length n = #P < #X(F,).

Hasse—Weil-Serre bound

The number of F,—points of a smooth projective curve X defined over F, satisfies
#X(Fq) <q+1+ 2{/\/(_].
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Parameters of AG codes

An algebraic curve X comes with a geometric invariant, its genus g € N.
The genus of a plane curve defined by a degree m polynomial is equal to g =

Length n = #P < #X(F,).

(m-1)(m-2)
-

Hasse—Weil-Serre bound

The number of F,—points of a smooth projective curve X defined over I, satisfies
#X(F,)<qg+1+ 29./q.

Dimension & < dimension of L(D).

Riemann—Roch Theorem

Let D = ¥ n, P such that Supp D € X(F,). Define deg D " S np. Then
dim L(D) > deg D + 1 — g, with equality if deg D > 2¢ — 1.
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Parameters of AG codes

An algebraic curve X comes with a geometric invariant, its genus g € N.
The genus of a plane curve defined by a degree m polynomial is equal to g =

Length n = #P < #X(F,).

(m-1)(m-2)
-

Hasse—Weil-Serre bound

The number of F,—points of a smooth projective curve X defined over I, satisfies
#X(F,)<qg+1+ 29./q.
Dimension & < dimension of L(D).

Riemann—Roch Theorem
Let D = ¥ n, P such that Supp D € X(F,). Define deg D " S np. Then
dim L(D) > deg D + 1 — g, with equality if deg D > 2¢ — 1.

Minimum distance d > d* where d* % n — deg D.

= If 29 -1 < deg(D) < n, then dim(C(X,P,D))=degD —g + 1.

=>n+1l-g<k+d<n+1.~ AG codes are g-far from optimality.
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Algebraic Geometry codes 0000000®
Encoding and decoding of AG codes

To use an AG code C'(X,P, D) in practice we need to

® encode:

® decode:
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Algebraic Geometry codes 0000000®
Encoding and decoding of AG codes

To use an AG code C'(X,P, D) in practice we need to
@ encode: basis of L(D) + (fast) evaluation at points of P;

Several algorithms to compute Riemann—Roch spaces:

® Arithmetic method
Hensel-Landberg (1902), Coated (1970), Davenport (1981), Hess (2001)...

® Geometric method
Goppa, Le Brigand—Risler (80’s), Huang—lerardi (90's), Khuri-Makdisi (2007), Le
Gluher—Spaenlehauer (2018), Abelard—B—Couvreur—Lecerf (2022),...

Fast encoding on families of curves with structured P Beelen—Rosenkilde—Solomatov (2020)

® decode:
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Algebraic Geometry codes 0000000®
Encoding and decoding of AG codes

To use an AG code C'(X,P, D) in practice we need to
@ encode: basis of L(D) + (fast) evaluation at points of P;

Several algorithms to compute Riemann—Roch spaces:
® Arithmetic method
Hensel-Landberg (1902), Coated (1970), Davenport (1981), Hess (2001)...
® Geometric method
Goppa, Le Brigand—Risler (80’s), Huang—lerardi (90's), Khuri-Makdisi (2007), Le
Gluher—Spaenlehauer (2018), Abelard—B—Couvreur—Lecerf (2022),...

Fast encoding on families of curves with structured P Beelen—Rosenkilde—Solomatov (2020)

® decode:
® Unique decoding Pelikaan (1992), Kotter (1992)
® List decoding Couvreur—Panaccione (2020)
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Algebraic Geometry codes 0000000®
Encoding and decoding of AG codes

To use an AG code C'(X,P, D) in practice we need to
@ encode: basis of L(D) + (fast) evaluation at points of P;

Several algorithms to compute Riemann—Roch spaces:
® Arithmetic method
Hensel-Landberg (1902), Coated (1970), Davenport (1981), Hess (2001)...
® Geometric method
Goppa, Le Brigand—Risler (80’s), Huang—lerardi (90's), Khuri-Makdisi (2007), Le
Gluher—Spaenlehauer (2018), Abelard—B—Couvreur—Lecerf (2022),...

Fast encoding on families of curves with structured P Beelen—Rosenkilde—Solomatov (2020)

® decode:
® Unique decoding Pelikaan (1992), Kotter (1992)
® List decoding Couvreur—Panaccione (2020)

Thank you for your attention!
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