Weil polynomials of abelian varieties over finite fields with many rational points

Elena Berardini¹ & A. J. Giangreco–Maidana²

Eindhoven University of Technology
Universidad Nacional de Asunción

DIAMANT Symposium Autumn 2022

Elena Berardini has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 899987.

Introduction and main results ●00			
Main characters o	f the talk		

Introduction and main results ●00	Abelian varieties 000000	Algebraic integers	
Main characters of	the talk		

Maximality: maximal number of rational points.

Introduction and main results •୦୦	Abelian varieties 000000	Algebraic integers 00	Main results and proof	Conclusion
Main characters of t	he talk			

Maximality: maximal number of rational points.

 \mathfrak{f}_g

the minimal polynomial of an algebraic totally positive integer of degree g with minimal trace and which is "maximal".

Introduction and main results •୦୦	Abelian varieties 000000	Algebraic integers 00	Main results and proof	Conclusion
Main characters of t	he talk			

Maximality: maximal number of rational points.

 \mathfrak{f}_g

the minimal polynomial of an algebraic totally positive integer of degree g with minimal trace and which is "maximal".

Maximality: under a certain order relation (defined later).

Introduction and main results	Algebraic integers	
000		
Speiler		
Spoller		

Let g be an positive integer and let r_1, \ldots, r_g be the roots of the polynomial f_g . Then, there exists a real number c_g such that for any $q = p^{2e} > c_g$ (q is an even power of a prime p), coprime with $f_g(0)$, the isogeny class $\mathcal{I}_{max}^0(g, q)$ exists and has Weil polynomial $h_g(t, \sqrt{q})$, where

$$h_g(t, X) \coloneqq \prod_{i=1}^g (t^2 + (2X - r_i)t + X^2).$$

Introduction and main results	Algebraic integers	
000		
Spoiler		
JUUIEI		

Let g be an positive integer and let r_1, \ldots, r_g be the roots of the polynomial f_g . Then, there exists a real number c_g such that for any $q = p^{2e} > c_g$ (q is an even power of a prime p), coprime with $f_g(0)$, the isogeny class $\mathcal{I}_{max}^0(g, q)$ exists and has Weil polynomial $h_g(t, \sqrt{q})$, where

$$h_g(t, X) \coloneqq \prod_{i=1}^g (t^2 + (2X - r_i)t + X^2).$$

Corollary (B., Giangreco '22)

 $\mathcal{I}^0_{max}(g,q)$ is ℓ -cyclic for all prime numbers ℓ that do not divide

 $N_g \coloneqq \mathfrak{f}_g(4)\mathfrak{f}_g(0)\Delta_g$,

where Δ_g is the discriminant of \mathfrak{f}_g .

Introduction and main results		
Some motivations		

Weil polynomials are a fundamental tool to study isogeny classes of abelian varieties

Introduction and main results		
000		
Some motivations		

Weil polynomials are a fundamental tool to study isogeny classes of abelian varieties

 \rightarrow precise criteria for determining if a polynomial is the Weil polynomial of an isogeny class are known only in "small" dimension (Deuring, Waterhouse, Rück, Xing, Haloui,...)

Introduction and main results	Algebraic integers	
000		
Some motivations		

Weil polynomials are a fundamental tool to study isogeny classes of abelian varieties

 \rightarrow precise criteria for determining if a polynomial is the Weil polynomial of an isogeny class are known only in "small" dimension (Deuring, Waterhouse, Rück, Xing, Haloui,...)

Abelian varieties and their groups of rational points intervene in cryptography and geometric coding theory

	Abelian varieties		
	●00000		
Abelian varieties: first	st step		

An abelian variety A defined over a field k is a connected and completed variety with a group structure over $A(\bar{k})$. It is called simple if it does not contain proper abelian sub-varieties $\neq 0$.

Example: elliptic curves are abelian varieties of dimension 1.

	Abelian varieties		
	000000		
Abelian varieties: firs	st step		

An abelian variety A defined over a field k is a connected and completed variety with a group structure over $A(\bar{k})$. It is called simple if it does not contain proper abelian sub-varieties $\neq 0$.

Example: elliptic curves are abelian varieties of dimension 1.

Definition

An isogeny is a surjective homomorphism from A to B with dim $(A) = \dim(B)$. An isogeny from A to B implies the existence of an isogeny from B to A. This defines an equivalence relation. We say that A and B are isogenous, $A \sim B$. We denote A an isogeny class.

	Abelian varieties ●00000		
Abelian varieties: firs	st step		

An abelian variety A defined over a field k is a connected and completed variety with a group structure over $A(\bar{k})$. It is called simple if it does not contain proper abelian sub-varieties $\neq 0$.

Example: elliptic curves are abelian varieties of dimension 1.

Definition

An isogeny is a surjective homomorphism from A to B with $\dim(A) = \dim(B)$. An isogeny from A to B implies the existence of an isogeny from B to A. This defines an equivalence relation. We say that A and B are isogenous, $A \sim B$. We denote A an isogeny class.

Theorem (Poincaré Splitting Theorem)

An abelian variety A defined over a field k is (uniquely) isogenous to the product

$$A \sim B_1^{e_1} \times \cdots \times B_n^{e_n}$$

where the abelian varieties B_i are simple and pairwise non isogenous over k.

	Abelian varieties ○●○○○○		
Abelian varieties:	second step		

 $f_A(t)$: the characteristic polynomial of the Frobenius endomorphism

Multiplication map:

$$egin{array}{ll} m_{A}:A o A\ P\mapsto mP \end{array}$$

p-rank and ordinary varieties: Let $q = p^r$, we define

$$A[p](\overline{\mathbb{F}}_q) \coloneqq \ker(p_A).$$

We call the *p*-rank of *A* the dimension of $A[p](\overline{\mathbb{F}}_q)$.

Definition

An abelian variety with maximal p-rank is called ordinary.

	Abelian varieties		
	00000		
Weil polynomials			

Let $q = p^r$. A Weil q-polynomial is a monic even degree polynomial with integer coefficients, whose all roots are algebraic integers of absolute value \sqrt{q} . Over the real numbers, it is of the form

$$\prod_i (t^2 + x_i t + q), \quad x_i \in \mathbb{R} ext{ and } |x_i| \leq 2\sqrt{q}.$$

It is called ordinary if the middle coefficient is not divisible by p.

	Abelian varieties		
	00000		
Weil polynomials			

Let $q = p^r$. A Weil q-polynomial is a monic even degree polynomial with integer coefficients, whose all roots are algebraic integers of absolute value \sqrt{q} . Over the real numbers, it is of the form

$$\prod_i (t^2 + x_i t + q), \quad x_i \in \mathbb{R} ext{ and } |x_i| \leq 2\sqrt{q}.$$

It is called ordinary if the middle coefficient is not divisible by p.

Weil: $f_A(t)$ is a Weil *q*-polynomial

Tate:
$$A \sim B \iff f_A(t) = f_B(t)$$

	Abelian varieties		
	00000		
Weil polynomials			

Let $q = p^r$. A Weil q-polynomial is a monic even degree polynomial with integer coefficients, whose all roots are algebraic integers of absolute value \sqrt{q} . Over the real numbers, it is of the form

$$\prod_i (t^2 + x_i t + q), \quad x_i \in \mathbb{R} ext{ and } |x_i| \leq 2\sqrt{q}.$$

It is called ordinary if the middle coefficient is not divisible by p.

Weil: $f_A(t)$ is a Weil *q*-polynomial

Tate:
$$A \sim B \iff f_A(t) = f_B(t)$$

Hence, we can talk about the Weil polynomial of an isogeny class \mathcal{A} :

 $f_{\mathcal{A}}(t)$

	Abelian varieties	Algebraic integers	
	000000		
Classical and ordin	arv Honda–Tat	te theory	

Honda–Tate theory

 $\left\{ \begin{array}{l} \text{isogeny classes of simple abelian} \\ \text{varieties defined over } \mathbb{F}_q \end{array} \right\} \iff \left\{ \begin{array}{l} \text{irreducible Weil } q\text{-polynomials} \end{array} \right\}$

 \bigwedge not all irreducible Weil q-polynomials are Weil polynomials of a simple isogeny class; \wedge not all simple isogeny classes have an irreducible Weil polynomial.

	Abelian varieties	Algebraic integers					
	000000						
Classical and ordi	Classical and ordinary Honda-Tate theory						

Honda–Tate theory

 $\begin{cases} \text{isogeny classes of simple abelian} \\ \text{varieties defined over } \mathbb{F}_q \end{cases} \iff \{ \text{irreducible Weil } q \text{-polynomials} \}$

 \wedge not all irreducible Weil q-polynomials are Weil polynomials of a simple isogeny class; not all simple isogeny classes have an irreducible Weil polynomial.

The Weil polynomial of a simple isogeny class is

 $f_A(t) = h(t)^e,$

for $h(t) \in \mathbb{Z}[t]$ an irreducible *q*-polynomial and *e* a positive integer.

	Abelian varieties	Algebraic integers					
	000000						
Classical and ordi	Classical and ordinary Honda-Tato theory						

Honda–Tate theory

 $\begin{cases} \text{isogeny classes of simple abelian} \\ \text{varieties defined over } \mathbb{F}_{q} \end{cases} \iff \{ \text{irreducible Weil } q \text{-polynomials} \}$

 \wedge not all irreducible Weil q-polynomials are Weil polynomials of a simple isogeny class; \wedge not all simple isogeny classes have an irreducible Weil polynomial.

✓ The Weil polynomial of a simple isogeny class is

 $f_A(t) = h(t)^e,$

for $h(t) \in \mathbb{Z}[t]$ an irreducible *q*-polynomial and *e* a positive integer.

Honda–Tate theory (Ordinary)

An ordinary and irreducible Weil g-polynomial is always the Weil polynomial of a simple ordinary isogeny class.

	Abelian varieties	Algebraic integers		
	000000			
	I	1 1 1 1	· 10	
VVhat information	do we get from	i the VVeil polvn	omial?	

The cardinality of the group of rational points:

$$\#A(\mathbb{F}_q)=f_A(1)$$

The property of being ordinary:

 \mathcal{A} is ordinary $\iff f_{\mathcal{A}}(t)$ is an ordinary Weil *q*-polynomial

The cyclicity of the group of rational points¹: for a prime number ℓ we have

$$\mathcal{A} \text{ is } \ell\text{-cyclic } \iff \ell \text{ does not divide } (\widehat{f_{\mathcal{A}}(1)}, f'_{\mathcal{A}}(1)),$$

where:

- an isogeny class A is called ℓ-cyclic if A(F_q)_ℓ is cyclic for any A ∈ A, A(F_q)_ℓ being the ℓ-part of the group of rational points of A;
- for an integer z, \hat{z} denotes the quotient of z by its radical.

¹A. Giangreco-Maidana, Finite Fields Appl., 57 (2019).

	Abelian varieties 00000●		
So far, so good?			

	Abelian varieties 00000●		
So far, so good?			

 \checkmark cyclicity criterion for isogeny classes

		Algebraic integers ●0	
Algebraic integers en	ter the game		

An algebraic integer is a complex number that is the root of a monic polynomial with coefficients in \mathbb{Z} . It is called totally positive if all its conjugates are positive real numbers.

Ann. Inst. Fourier, Grenoble 33, 3 (1984), 1-28

TOTALLY POSITIVE ALGEBRAIC INTEGERS OF SMALL TRACE

by Christopher SMYTH

Let $r \ge 0$ be a given integer. We describe an algorithm for finding all totally positive algebraic integers α which satisfy

 $\operatorname{Tr} \alpha - \deg \alpha = r$ (1)

(where ${\rm Tr}\,\alpha={\rm trac}$ of α , ${\rm deg}\,\alpha={\rm degree}$ of a). That *r* must be non-regative in a immediate consequence of the inequality of the arithmetic and geometric means. The algorithm is based on recent improvement [5] of a result of Segle [13], combined with a method of Robisson [1] for enumerating totally real polynomials of a specific type. The algorithm was implemented on the University Collega, Cardiff, Honeywell computer which took 40 minutes (QU time to find all relevant α with $r=0,1,2,\ldots,6$. (Almost all of this time was spent on the last case: r=6, ${\rm deg}\,\alpha=7$). The table of these capsears an an appendix to this paper.

This work was stimulated by a question of Serre, who asked for a list of these algebraic integers, for an application connected with bounding the number of points on algebraic curves over finite fields.

 \mathcal{F}_{g}^{\min} : the subset of \mathcal{F}_{g} of minimal trace polynomials.

Lemma (B., Giangreco '22)

Let g be a positive integer. There exists a polynomial $\mathfrak{f}_g \in \mathcal{F}_g^{\min}$ and a real number n_g such that $\mathfrak{f}_g(t) > f(t)$ for any other polynomial $f \in \mathcal{F}_g$ and $t > n_g$.

In particular, f_g is the maximal element of \mathcal{F}_g^{\min} under the order relation:

 $f_1 \leq f_2 \iff f_2 - f_1$ has non-negative leading coefficient.

		Algebraic integers	Main results and proof	
			00	
Main theorem: ske	etch of the proc	of		

Let g be a positive integer and let r_1, \ldots, r_g be the roots of the polynomial \mathfrak{f}_g . Then, there exists a real number c_g such that for any $q = p^{2e} > c_g$ (q is the even power of a prime p), coprime with $\mathfrak{f}_g(0)$, the isogeny class $\mathcal{I}^0_{max}(g,q)$ exists and has Weil polynomial $h_g(t,\sqrt{q})$, where

$$h_g(t, X) := \prod_{i=1}^g (t^2 + (2X - r_i)t + X^2).$$

		Algebraic integers	Main results and proof	
			00	
Main theorem: skete	ch of the prod	of		

Let g be a positive integer and let r_1, \ldots, r_g be the roots of the polynomial \mathfrak{f}_g . Then, there exists a real number c_g such that for any $q = p^{2e} > c_g$ (q is the even power of a prime p), coprime with $\mathfrak{f}_g(0)$, the isogeny class $\mathcal{I}_{\max}^0(g,q)$ exists and has Weil polynomial $h_g(t,\sqrt{q})$, where

$$h_g(t, X) \coloneqq \prod_{i=1}^g (t^2 + (2X - r_i)t + X^2).$$

() show that $h_g(t, \sqrt{q})$ is a Weil *q*-polynomial

		Algebraic integers	Main results and proof	
			00	
Main theorem: skete	ch of the proc	of		

Let g be a positive integer and let r_1, \ldots, r_g be the roots of the polynomial \mathfrak{f}_g . Then, there exists a real number c_g such that for any $q = p^{2e} > c_g$ (q is the even power of a prime p), coprime with $\mathfrak{f}_g(0)$, the isogeny class $\mathcal{I}_{\max}^0(g,q)$ exists and has Weil polynomial $h_g(t,\sqrt{q})$, where

$$h_g(t, X) \coloneqq \prod_{i=1}^g (t^2 + (2X - r_i)t + X^2).$$

• show that $h_g(t, \sqrt{q})$ is a Weil *q*-polynomial, ordinary

		Algebraic integers	Main results and proof	
			00	
Main theorem: sket	ch of the prod	of		

Let g be a positive integer and let r_1, \ldots, r_g be the roots of the polynomial \mathfrak{f}_g . Then, there exists a real number c_g such that for any $q = p^{2e} > c_g$ (q is the even power of a prime p), coprime with $\mathfrak{f}_g(0)$, the isogeny class $\mathcal{I}^0_{\max}(g,q)$ exists and has Weil polynomial $h_g(t,\sqrt{q})$, where

$$h_g(t, X) \coloneqq \prod_{i=1}^g (t^2 + (2X - r_i)t + X^2).$$

() show that $h_g(t, \sqrt{q})$ is a Weil *q*-polynomial, ordinary, irreducible over Q;

		Algebraic integers	Main results and proof	
			00	
Main theorem: skete	ch of the proc	of		

Let g be a positive integer and let r_1, \ldots, r_g be the roots of the polynomial \mathfrak{f}_g . Then, there exists a real number c_g such that for any $q = p^{2e} > c_g$ (q is the even power of a prime p), coprime with $\mathfrak{f}_g(0)$, the isogeny class $\mathcal{I}_{\max}^0(g,q)$ exists and has Weil polynomial $h_g(t,\sqrt{q})$, where

$$h_g(t, X) \coloneqq \prod_{i=1}^g (t^2 + (2X - r_i)t + X^2).$$

() show that $h_g(t, \sqrt{q})$ is a Weil *q*-polynomial, ordinary, irreducible over Q;

apply ordinary Honda−Tate theory \Rightarrow h_g(t, \sqrt{q}) is the Weil polynomial of a simple ordinary isogeny class;

		Algebraic integers	Main results and proof	
			00	
Main theorem: skete	ch of the proc	of		

Let g be a positive integer and let r_1, \ldots, r_g be the roots of the polynomial \mathfrak{f}_g . Then, there exists a real number c_g such that for any $q = p^{2e} > c_g$ (q is the even power of a prime p), coprime with $\mathfrak{f}_g(0)$, the isogeny class $\mathcal{I}_{\max}^0(g,q)$ exists and has Weil polynomial $h_g(t,\sqrt{q})$, where

$$h_g(t, X) \coloneqq \prod_{i=1}^g (t^2 + (2X - r_i)t + X^2).$$

- **()** show that $h_g(t, \sqrt{q})$ is a Weil *q*-polynomial, ordinary, irreducible over \mathbb{Q} ;
- apply ordinary Honda−Tate theory \Rightarrow h_g(t, \sqrt{q}) is the Weil polynomial of a simple ordinary isogeny class;

		Algebraic integers	Main results and proof	
			00	
Main theorem: skete	ch of the proc	of		

Let g be a positive integer and let r_1, \ldots, r_g be the roots of the polynomial \mathfrak{f}_g . Then, there exists a real number c_g such that for any $q = p^{2e} > c_g$ (q is the even power of a prime p), coprime with $\mathfrak{f}_g(0)$, the isogeny class $\mathcal{I}^0_{\max}(g,q)$ exists and has Weil polynomial $h_g(t,\sqrt{q})$, where

$$h_g(t, X) \coloneqq \prod_{i=1}^g (t^2 + (2X - r_i)t + X^2).$$

- **()** show that $h_g(t, \sqrt{q})$ is a Weil *q*-polynomial, ordinary, irreducible over \mathbb{Q} ;
- apply ordinary Honda−Tate theory \Rightarrow $h_g(t, \sqrt{q})$ is the Weil polynomial of a simple ordinary isogeny class;
- maximality of $\mathfrak{f}_g \Rightarrow$ maximality of $\mathcal{I}^0_{\max}(g, q)$ within simple ordinary isogeny classes.

		Algebraic integers	Main results and proof	
			00	
Main theorem: sket	ch of the proc	of		

Let g be a positive integer and let r_1, \ldots, r_g be the roots of the polynomial \mathfrak{f}_g . Then, there exists a real number c_g such that for any $q = p^{2e} > c_g$ (q is the even power of a prime p), coprime with $\mathfrak{f}_g(0)$, the isogeny class $\mathcal{I}^0_{max}(g,q)$ exists and has Weil polynomial $h_g(t,\sqrt{q})$, where

$$h_g(t,X) \coloneqq \prod_{i=1}^g (t^2 + (2X - r_i)t + X^2).$$

Corollary (B., Giangreco '22)

 $\mathcal{I}^0_{max}(g,q)$ is ℓ -cyclic for all prime numbers ℓ that do not divide

 $N_g \coloneqq \mathfrak{f}_g(4)\mathfrak{f}_g(0)\Delta_g$,

where Δ_g is the discriminant of \mathfrak{f}_g .

		Main results and proof ○●	
Take away			

knowledge of \mathfrak{f}_g

 $\iff \qquad \mbox{knowledge of the Weil polynomial of} \\ \mathcal{I}^0_{\max}(g,q) + \mbox{cyclicity}$

		Main results and proof	
		00	
Talas			
таке аway			

knowledge of $\mathfrak{f}_g \iff$ knowledge of the Weil polynomial of $\mathcal{I}^0_{\max}(g,q)$ + cyclicity

When the set \mathcal{F}_{g}^{\min} is known, we deduce \mathfrak{f}_{g} , hence N_{g} . Some examples²:

$\mathfrak{f}_{g}(t)$	$\mathfrak{f}_{g}(4)$	$\mathfrak{f}_{g}(0)$	Δ_g
t-1	3	-1	1
$t^2 - 3t + 1$	5	1	5
$t^3 - 5t^2 + 6t - 1$	7	-1	7 ²
$t^4 - 7t^3 + 14t^2 - 8t + 1$	1	1	$3^2 imes 5^3$
$t^5 - 9t^4 + 28t^3 - 35t^2 + 15t - 1$	11	-1	11^{4}
$t^{6} - 11t^{5} + 45t^{4} - 84t^{3} + 70t^{2} - 21t + 1$	13	1	13 ⁵

²C. J. Smyth, Ann. Inst. Fourier Grenoble, 34, 1984

		Conclusion
		00
Further research		

- What can we say when q is an odd power of a prime?
 - ightarrow Is there a polynomial "parametrising" $\mathcal{I}^0_{\mathsf{max}}(g,q)$?
 - \rightarrow Are there arbitrarily large prime numbers ℓ such that $\mathcal{I}_{\max}^0(g,q)$ is not ℓ -cyclic for some odd power q?

		Conclusion ●○
Further research		

- What can we say when q is an odd power of a prime?

 - → Is there a polynomial "parametrising" $\mathcal{I}_{max}^{0}(g,q)$? → Are there arbitrarily large prime numbers ℓ such that $\mathcal{I}_{max}^{0}(g,q)$ is not ℓ -cyclic for some odd power q?
- So maximal simple ordinary isogeny class $\stackrel{?}{\Leftrightarrow}$ maximal simple ordinary isogeny class

		Conclusion ●○
Further research		

Solution What can we say when q is an odd power of a prime?

- ightarrow Is there a polynomial "parametrising" $\mathcal{I}^0_{\mathsf{max}}(g,q)$?
- \rightarrow Are there arbitrarily large prime numbers ℓ such that $\mathcal{I}_{\max}^0(g,q)$ is not ℓ -cyclic for some odd power q?
- \bigcirc maximal simple ordinary isogeny class $\stackrel{?}{\Leftrightarrow}$ maximal simple ordinary isogeny class
 - ightarrow The maximal simple isogeny class always has a irreducible Weil polynomial?

		Algebraic integers		Conclusion
000	000000	00	00	00

Thank you for your attention!

Questions?

e.berardini@tue.nl agiangreco@ing.una.py

