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Main characters of the talk

70 (2.q) the maximal simple ?nd or.dinary iso'geny class of abelian varieties of
maxas: dimension g, defined over .

Maximality: maximal number of rational points.

the minimal polynomial of an algebraic totally positive integer of
degree g with minimal trace and which is “maximal”.

fe

Maximality: under a certain order relation (defined later).
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Spoiler

Theorem (B., Giangreco '22)

Let g be an positive integer and let ry, ..., rg be the roots of the polynomial f5. Then, there
exists a real number cg such that for any q = B cg (q is an even power of a prime p),

coprime with f¢(0), the isogeny class I9,,,(g, q) exists and has Weil polynomial hg (t, /q),
where

hg(t, X) = ﬁ(t2 + (2X — )t + X?).
i=1

3/16



Introduction and main results Abelian varieties Algebraic integers Main results and proof
oeo 000000 [e]e] o]e]

Spoiler

Theorem (B., Giangreco '22)

Let g be an positive integer and let ry, ..., rg be the roots of the polynomial f5. Then, there
exists a real number cg such that for any q = B cg (q is an even power of a prime p),
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Conclusion
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Corollary (B., Giangreco '22)

79...(g., q) is £-cyclic for all prime numbers { that do not divide

Ng = fg(4)fg(0)Ag,

where Ag is the discriminant of fg.
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Some motivations

Weil polynomials are a fundamental tool to study isogeny classes of abelian varieties

— precise criteria for determining if a polynomial is the Weil polynomial of an isogeny class are
known only in “small” dimension (Deuring, Waterhouse, Riick, Xing, Haloui,...)

Abelian varieties and their groups of rational points intervene in cryptography and
geometric coding theory
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duction and main results

Abelian varieties: first step

Definition
An abelian variety A defined over a field k is a connected and completed variety with a group
structure over A(k). It is called simple if it does not contain proper abelian sub-varieties # 0.

Example: elliptic curves are abelian varieties of dimension 1.
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Abelian varieties: first step

Definition

An abelian variety A defined over a field k is a connected and completed variety with a group
structure over A(k). It is called simple if it does not contain proper abelian sub-varieties # 0.

Example: elliptic curves are abelian varieties of dimension 1.

Definition

An isogeny is a surjective homomorphism from A to B with dim(A) = dim(B). An isogeny
from A to B implies the existence of an isogeny from B to A. This defines an equivalence
relation. We say that A and B are isogenous, A ~ B. We denote A an isogeny class.

Theorem (Poincaré Splitting Theorem)

An abelian variety A defined over a field k is (uniquely) isogenous to the product
A~ Bt X x B

where the abelian varieties B; are simple and pairwise non isogenous over k.
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Abelian varieties: second step

fa(t) : the characteristic polynomial of the Frobenius endomorphism

Multiplication map:
mag:A— A

P~ mP

p-rank and ordinary varieties:
Let g = p", we define B
Alp)(Fy) = ker(pa).

We call the p-rank of A the dimension of A[p](Fg).

Definition

An abelian variety with maximal p-rank is called ordinary.
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Weil polynomials

Definition
Let g = p". A Weil g-polynomial is a monic even degree polynomial with integer coefficients,

whose all roots are algebraic integers of absolute value /q. Over the real numbers, it is of the
form

1—[(1'2 +xt+4q), xi€Rand|x| <2/q.
i

It is called ordinary if the middle coefficient is not divisible by p.

2/16



Introduction and main results Abelian varieties Algebraic integers Main results and proof Conclusion
000 [e]e] lele]e] [e]e] [e]e] [e]e)

Weil polynomials

Definition

Let g = p". A Weil g-polynomial is a monic even degree polynomial with integer coefficients,
whose all roots are algebraic integers of absolute value /q. Over the real numbers, it is of the
form

1—[(1'2 +xt+4q), xi€Rand|x| <2/q.
i

It is called ordinary if the middle coefficient is not divisible by p.

Weil:  f4(t) is a Weil g-polynomial

Tate: A~ B <= fa(t) = fg(t)

2/16



Introduction and main results Abelian varieties Algebraic integers Main results and proof Conclusion
000 [e]e] lele]e] [e]e] [e]e] [e]e)

Weil polynomials

Definition

Let g = p". A Weil g-polynomial is a monic even degree polynomial with integer coefficients,
whose all roots are algebraic integers of absolute value /q. Over the real numbers, it is of the
form

1—[(1'2 +xt+4q), xi€Rand|x| <2/q.
i

It is called ordinary if the middle coefficient is not divisible by p.

Weil:  f4(t) is a Weil g-polynomial

Tate: A~ B <= fa(t) = fg(t)
Hence, we can talk about the Weil polynomial of an isogeny class A:

fa(t)
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Classical and ordinary Honda—Tate theory

Honda—Tate theory

{isogeny classes of simple abelian

<= {irreducible Weil q-pol, jal
varieties defined over ]Fq} ittt el erpooniib)

/\ not all irreducible Weil g-polynomials are Weil polynomials of a simple isogeny class;
/\ not all simple isogeny classes have an irreducible Weil polynomial.
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Honda—Tate theory
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/\ not all irreducible Weil g-polynomials are Weil polynomials of a simple isogeny class;
/\ not all simple isogeny classes have an irreducible Weil polynomial.

« The Weil polynomial of a simple isogeny class is
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for h(t) € Z[t] an irreducible g-polynomial and e a positive integer.
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Classical and ordinary Honda—Tate theory

Honda—Tate theory

isogeny classes of simple abelian
varieties defined over [Fg

} < {irreducible Weil q-polynomials}

/\ not all irreducible Weil g-polynomials are Weil polynomials of a simple isogeny class;
/\ not all simple isogeny classes have an irreducible Weil polynomial.

« The Weil polynomial of a simple isogeny class is

fa(t) = h(2)<,

for h(t) € Z[t] an irreducible g-polynomial and e a positive integer.

Honda-Tate theory (Ordinary)

An ordinary and irreducible Weil g-polynomial is always the Weil polynomial of a simple
ordinary isogeny class.
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What information do we get from the Weil polynomial?

The cardinality of the group of rational points:

The property of being ordinary:
A is ordinary <= f4(t) is an ordinary Weil g-polynomial
The cyclicity of the group of rational points!: for a prime number ¢ we have
A is l-cyclic <= ¢ does not divide (ig(\l) (1)),

where:

@ an isogeny class A is called ¢-cyclic if A(IFq)y is cyclic for any A € A,
A(IFq), being the (-part of the group of rational points of A;

e for an integer z, Z denotes the quotient of z by its radical.

1A. Giangreco-Maidana, Finite Fields Appl., 57 (2019).
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Weil polynomial of an isogeny class f4(t)

fa(1) ordinary irreducible+ordinary
¥ number of v A ordinary v A simple

rational points
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Weil polynomial of an isogeny class f4(t)

fa(1) ordinary irreducible+ordinary
¥ number of v A ordinary v A simple

rational points

« cyclicity criterion for isogeny classes
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Algebraic integers enter the game

Definition

An algebraic integer is a complex number that is the root of a monic polynomial with
coefficients in Z.. It is called totally positive if all its conjugates are positive real numbers.

Ann.Tnst. Fourier, Grenoble
33,3(1989), 128

TOTALLY POSITIVE ALGEBRAIC INTEGERS
OF SMALL TRACE

by Christopher SMYTH

Let r>0 be a given integer. We describe an algorithm
for finding all totally positive algebraic integers a which satisfy
Tra—dega=r )

(where Tra = trace of a, dega = degree of o). That r must
be non-negative is an immediate consequence of the inequality of
the arithmetic and geometric means. The algorithm is based on
a recent improvement [5] of a result of Siegel [3], combined with
a method of Robinson [1] for enumerating totally real polynomials
of a specific type. The algorithm was implemented on the University
College, Cardiff, Honeywell computer which took 40 minutes
CPU time to find all relevant o with r =0,1,2,...,6. (Almost
all of this time was spent on the last case: =6, dega=7).
The table of these o appears as an appendix to this paper.

‘This work was stimulated by a question of Serre, who asked for
a list of these algebraic integers, for an application connected
with bounding the number of points on algebraic curves over
finite fields.
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Minimal polynomials of algebraic integers

Fg: the set of minimal polynomial of totally positive algebraic integers of degree g;
that is

the set of monic polynomials of degree g with integer coefficients, irreducible
over Q and whose roots are positive real numbers.

}_g‘i": the subset of Fg of minimal trace polynomials.
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Minimal polynomials of algebraic integers

Fg: the set of minimal polynomial of totally positive algebraic integers of degree g;
that is

the set of monic polynomials of degree g with integer coefficients, irreducible
over Q and whose roots are positive real numbers.

]:g‘i": the subset of Fg of minimal trace polynomials.

Lemma (B., Giangreco '22)

Let g be a positive integer. There exists a polynomial fg € ]-"é“i” and a real number ng such
that fg(t) > f(t) for any other polynomial f € Fg and t > ng.

In particular, fg is the maximal element of ]-"éf’,“i” under the order relation:

fi < fh < f, — f1 has non-negative leading coefficient.
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Main theorem: sketch of the proof

Theorem (B., Giangreco '22)

Let g be a positive integer and let ry, ..., rg be the roots of the polynomial §g. Then, there
exists a real number cg such that for any q = p%e > ¢z (q is the even power of a prime p),
coprime with f¢(0), the isogeny class 79..(g. q) exists and has Weil polynomial h g (t, /a),
where

g
hg(t,X) =TTt + (2X — )t + X?).
=1

1
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Theorem (B., Giangreco '22)

Let g be a positive integer and let ry, ..., rg be the roots of the polynomial fg. Then, there
exists a real number cg such that for any q = p%e > ¢g (q is the even power of a prime p),
coprime with f¢(0), the isogeny class ZC,,.(g, q) exists and has Weil polynomial hg(t, \/q),
where

hg(t, X) = ﬁ(t2 + (2X — 1)t + X?).
i=1

© show that hg(t,/q) is a Weil g-polynomial
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Conclusion
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© show that hg(t,/q) is a Weil g-polynomial, ordinary, irreducible over Q;

© apply ordinary Honda-Tate theory = hg(t, \/q) is the Weil polynomial of a simple
ordinary isogeny class;
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Main theorem: sketch of the proof

Theorem (B., Giangreco '22)

Let g be a positive integer and let ry, ..., rg be the roots of the polynomial fz. Then, there
exists a real number cg such that for any q = p%e > ¢g (q is the even power of a prime p),
coprime with f¢(0), the isogeny class ZC,,.(g, q) exists and has Weil polynomial hg(t, \/q),
where

hg(t, X) = ﬁ(t2 + (2X — 1)t + X?).
i=1

Conclusion
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© show that hg(t,/q) is a Weil g-polynomial, ordinary, irreducible over Q;

© apply ordinary Honda-Tate theory = hg(t, \/q) is the Weil polynomial of a simple
ordinary isogeny class;

o #Ir(‘)nax(gv q)(]Fq) = hg(lr \/a) = fg((\/a+ 1)2)?
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Main theorem: sketch of the proof

Theorem (B., Giangreco '22)

Let g be a positive integer and let ry, ..., rg be the roots of the polynomial fz. Then, there
exists a real number cg such that for any q = p%e > ¢g (q is the even power of a prime p),
coprime with f¢(0), the isogeny class ZC,,.(g, q) exists and has Weil polynomial hg(t, \/q),
where

hg(t, X) = ﬁ(t2 + (2X — 1)t + X?).
i=1

© show that hg(t,/q) is a Weil g-polynomial, ordinary, irreducible over Q;

© apply ordinary Honda-Tate theory = hg(t, \/q) is the Weil polynomial of a simple
ordinary isogeny class;

o #Ir(‘)nax(gv q)(]Fq) = hg(lr \/a) = fg((\/a+ 1)2)?

Q@ maximality of f; = maximality of Z0,, (g, q) within simple ordinary isogeny classes.
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Main theorem: sketch of the proof

Theorem (B., Giangreco '22)

Let g be a positive integer and let rq, ..., rg be the roots of the polynomial f5. Then, there
exists a real number cg such that for any q = p%e > ¢z (q is the even power of a prime p),
coprime with fg(0), the isogeny class Z3,,.(g, q) exists and has Weil polynomial hg(t, \/q),
where

hg(t, X) = ﬁ(t2 + (2X — )t + X?).
i=1

Conclusion
00

Corollary (B., Giangreco '22)

79 ..(g,q) is l-cyclic for all prime numbers { that do not divide

Ng = fg(4)fg(0)Ag,

where Ag is the discriminant of §g.
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Take away

knowledge of f, <= knowledge of the Weil polynomial of
Ir%ax(gv Q) + cyclicity
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Take away

knowledge of — knowledge of the Weil polynomial of
70..(g, q) + cyclicity

When the set ]-"g‘i" is known, we deduce fg, hence Ng. Some examplesz:

| fg(t) | fg(4) | fg(0) | Ag |
t—1 3 -1 1
t2—3t+1 5 1 5
t3 -5t 4+6t—1 7 -1 72
th — 73+ 142 -8t +1 1 1 32 x 53
2 —0t* +28t3 —35t2 + 15t — 1 11 -1 114
t® —11¢° +45¢% — 8413 +70t2 — 21t +1 | 13 1 13°

2C. J. Smyth, Ann. Inst. Fourier Grenoble, 34, 1984

14 /16



duction and main results i ieti ebraic integers in results and proof Conclusion
0

Further research

© What can we say when q is an odd power of a prime?
— Is there a polynomial “parametrising” Z2,. (g, q)?
— Are there arbitrarily large prime numbers £ such that Z0_. (g, q) is not £-cyclic for some odd
power g?
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Further research

ebraic integers

results and proof

© What can we say when g is an odd power of a prime?
—+ Is there a polynomial “parametrising” Z9,, (g, q)?
— Are there arbitrarily large prime numbers ¢ such that 70, (g, q) is not f-cyclic for some odd
power q?

@ maximal simple ordinary isogeny class <= maximal simple erdtary isogeny class

— The maximal simple isogeny class always has a irreducible Weil polynomial?

\\\|//

/|\\\

15 /16

Conclusion
[ o)



Introduction and main results Abelian varieties Algebraic integers Main results and proof

[e]e]e} 000000 (o]} (o]e]

Conclusion

oce

Thank you for your attention!

Questions?

e.berardini@tue.nl
agiangreco@ing.una.py
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