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Main characters of the talk

I0max(g , q)
the maximal simple and ordinary isogeny class of abelian varieties of

dimension g , defined over Fq.

Maximality: maximal number of rational points.

fg
the minimal polynomial of an algebraic totally positive integer of

degree g with minimal trace and which is “maximal”.

Maximality: under a certain order relation (defined later).
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Spoiler

Theorem (B., Giangreco ’22)

Let g be an positive integer and let r1, . . . , rg be the roots of the polynomial fg . Then, there
exists a real number cg such that for any q = p2e > cg (q is an even power of a prime p),
coprime with fg (0), the isogeny class I0max(g , q) exists and has Weil polynomial hg (t,

√
q),

where

hg (t,X ) :=
g

∏
i=1

(t2 + (2X − ri )t + X 2).

Corollary (B., Giangreco ’22)

I0max(g , q) is `-cyclic for all prime numbers ` that do not divide

Ng := fg (4)fg (0)∆g ,

where ∆g is the discriminant of fg .
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Some motivations

Weil polynomials are a fundamental tool to study isogeny classes of abelian varieties

→ precise criteria for determining if a polynomial is the Weil polynomial of an isogeny class are
known only in “small” dimension (Deuring, Waterhouse, Rück, Xing, Haloui,...)

Abelian varieties and their groups of rational points intervene in cryptography and
geometric coding theory
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Abelian varieties: first step

Definition
An abelian variety A defined over a field k is a connected and completed variety with a group
structure over A(k̄). It is called simple if it does not contain proper abelian sub-varieties 6= 0.

Example: elliptic curves are abelian varieties of dimension 1.

Definition

An isogeny is a surjective homomorphism from A to B with dim(A) = dim(B). An isogeny
from A to B implies the existence of an isogeny from B to A. This defines an equivalence
relation. We say that A and B are isogenous, A ∼ B. We denote A an isogeny class.

Theorem (Poincaré Splitting Theorem)

An abelian variety A defined over a field k is (uniquely) isogenous to the product

A ∼ Be1
1 × · · · × Ben

n

where the abelian varieties Bi are simple and pairwise non isogenous over k .
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Abelian varieties: second step

fA(t) : the characteristic polynomial of the Frobenius endomorphism

Multiplication map:
mA : A→ A

P 7→ mP

p-rank and ordinary varieties:
Let q = pr , we define

A[p](Fq) := ker(pA).

We call the p-rank of A the dimension of A[p](Fq).

Definition
An abelian variety with maximal p-rank is called ordinary.

6 / 16
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Weil polynomials

Definition
Let q = pr . A Weil q-polynomial is a monic even degree polynomial with integer coefficients,
whose all roots are algebraic integers of absolute value

√
q. Over the real numbers, it is of the

form

∏
i

(t2 + xi t + q), xi ∈ R and |xi | ≤ 2
√
q.

It is called ordinary if the middle coefficient is not divisible by p.

Weil: fA(t) is a Weil q-polynomial

Tate: A ∼ B ⇐⇒ fA(t) = fB (t)

Hence, we can talk about the Weil polynomial of an isogeny class A:

fA(t)
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Classical and ordinary Honda–Tate theory

Honda–Tate theory{
isogeny classes of simple abelian

varieties defined over Fq

}
⇐⇒

{
irreducible Weil q-polynomials

}
B not all irreducible Weil q-polynomials are Weil polynomials of a simple isogeny class;
B not all simple isogeny classes have an irreducible Weil polynomial.

Ë The Weil polynomial of a simple isogeny class is

fA(t) = h(t)e ,

for h(t) ∈ Z[t] an irreducible q-polynomial and e a positive integer.

Honda–Tate theory (Ordinary)

An ordinary and irreducible Weil q-polynomial is always the Weil polynomial of a simple
ordinary isogeny class.
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What information do we get from the Weil polynomial?

The cardinality of the group of rational points:

#A(Fq) = fA(1)

The property of being ordinary:

A is ordinary ⇐⇒ fA(t) is an ordinary Weil q-polynomial

The cyclicity of the group of rational points1: for a prime number ` we have

A is `-cyclic ⇐⇒ ` does not divide (f̂A(1), f ′A(1)),

where:
an isogeny class A is called `-cyclic if A(Fq)` is cyclic for any A ∈ A,
A(Fq)` being the `-part of the group of rational points of A;
for an integer z , ẑ denotes the quotient of z by its radical.

1A. Giangreco–Maidana, Finite Fields Appl., 57 (2019).
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So far, so good?

Weil polynomial of an isogeny class fA(t)

fA(1) ordinary irreducible+ordinary

Ë number of
rational points Ë A ordinary Ë A simple

Ë cyclicity criterion for isogeny classes
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Algebraic integers enter the game

Definition
An algebraic integer is a complex number that is the root of a monic polynomial with
coefficients in Z. It is called totally positive if all its conjugates are positive real numbers.
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Minimal polynomials of algebraic integers
Fg : the set of minimal polynomial of totally positive algebraic integers of degree g ;

the set of monic polynomials of degree g with integer coefficients, irreducible
over Q and whose roots are positive real numbers.

Fmin
g : the subset of Fg of minimal trace polynomials.

that is

Lemma (B., Giangreco ’22)

Let g be a positive integer. There exists a polynomial fg ∈ Fmin
g and a real number ng such

that fg (t) > f (t) for any other polynomial f ∈ Fg and t > ng .

In particular, fg is the maximal element of Fmin
g under the order relation:

f1 ≤ f2 ⇐⇒ f2 − f1 has non-negative leading coefficient.

12 / 16
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Main theorem: sketch of the proof

Theorem (B., Giangreco ’22)

Let g be a positive integer and let r1, . . . , rg be the roots of the polynomial fg . Then, there
exists a real number cg such that for any q = p2e > cg (q is the even power of a prime p),
coprime with fg (0), the isogeny class I0max(g , q) exists and has Weil polynomial hg (t,

√
q),

where

hg (t,X ) :=
g

∏
i=1

(t2 + (2X − ri )t + X 2).
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, ordinary, irreducible over Q;
2 apply ordinary Honda–Tate theory ⇒ hg (t,

√
q) is the Weil polynomial of a simple

ordinary isogeny class;
3 #I0max(g , q)(Fq) = hg (1,

√
q) = fg ((

√
q + 1)2);

4 maximality of fg ⇒ maximality of I0max(g , q) within simple ordinary isogeny classes.
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Take away

knowledge of fg ⇐⇒ knowledge of the Weil polynomial of
I0max(g , q) + cyclicity

When the set Fmin
g is known, we deduce fg , hence Ng . Some examples:

fg (t) fg (4) fg (0) ∆g

t − 1 3 -1 1
t2 − 3t + 1 5 1 5

t3 − 5t2 + 6t − 1 7 -1 72

t4 − 7t3 + 14t2 − 8t + 1 1 1 32 × 53

t5 − 9t4 + 28t3 − 35t2 + 15t − 1 11 -1 114

t6 − 11t5 + 45t4 − 84t3 + 70t2 − 21t + 1 13 1 135
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2C. J. Smyth, Ann. Inst. Fourier Grenoble, 34, 1984
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Further research

1 What can we say when q is an odd power of a prime?
→ Is there a polynomial “parametrising” I0

max(g , q)?
→ Are there arbitrarily large prime numbers ` such that I0

max(g , q) is not `-cyclic for some odd
power q?
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→ The maximal simple isogeny class always has a irreducible Weil polynomial?
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Thank you for your attention!
Questions?

e.berardini@tue.nl
agiangreco@ing.una.py
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