AG codes over abelian surfaces containing no absolutely irreducible curves of low genus

Elena Berardini

joint work with Yves Aubry, Fabien Herbaut, Marc Perret

Aix*Marseille université

AGC²T (Gilles Lachaud Conference) 14/06/19

Table of Contents

- I. Algebraic Geometry codes: from curves to surfaces
- II. Abelian Surfaces
- III. A bound for the minimum distance
- IV. Abelian surfaces containing no curves of low genus

Goppa codes

Let C be a *curve* of genus g and D a divisor on C. Consider the Riemann-Roch space

$$L(D) = \{ f \in \mathbb{F}_q(C) \setminus \{0\} \mid (f) + D \ge 0 \} \cup \{0\}.$$

Definition:

Set $C(\mathbb{F}_q) = \{P_1, \dots, P_n\}$. The code C(C, D) is defined to be the image of the evaluation map

$$\operatorname{ev}: L(D) \longrightarrow \mathbb{F}_q^n, \quad f \longmapsto (f(P_1), \dots, f(P_n)).$$

$$n=\#\mathcal{C}(\mathbb{F}_q)$$
 $\dim(\mathcal{C}(\mathcal{C},\mathcal{D}))=\dim_{\mathbb{F}_q} L(\mathcal{D})\geq \deg \mathcal{D}+1-g$ $d\geq n-\deg \mathcal{D}$

 X/\mathbb{F}_q smooth, projective, absolutely irreducible algebraic surface

 X/\mathbb{F}_q smooth, projective, absolutely irreducible algebraic surface $D\in \mathrm{Div}(X)$, a formal sum of irreducible curves on X

 X/\mathbb{F}_q smooth, projective, absolutely irreducible algebraic surface

 $D \in Div(X)$, a formal sum of irreducible curves on X

Linear equivalence: $D \sim D' \iff D - D' = (f)$

 X/\mathbb{F}_q smooth, projective, absolutely irreducible algebraic surface

 $D \in Div(X)$, a formal sum of irreducible curves on X

Linear equivalence: $D \sim D' \iff D - D' = (f)$

- $\cdot: \operatorname{Div}(X) imes \operatorname{Div}(X) o \mathbb{Z}$ the intersection pairing
 - if C and D meet transversally then $C.D = \#(C \cap D)$
 - symmetric
 - additive
 - it depends only on the linear equivalence classes

 X/\mathbb{F}_q smooth, projective, absolutely irreducible algebraic surface

 $D \in Div(X)$, a formal sum of irreducible curves on X

Linear equivalence: $D \sim D' \iff D - D' = (f)$

- $\cdot: \mathrm{Div}(X) imes \mathrm{Div}(X) o \mathbb{Z}$ the intersection pairing
 - if C and D meet transversally then $C.D = \#(C \cap D)$
 - symmetric
 - additive
 - it depends only on the linear equivalence classes

Ample divisor: a divisor such that some multiple is a very ample divisor

 X/\mathbb{F}_q smooth, projective, absolutely irreducible algebraic surface

 $D \in \operatorname{Div}(X)$, a formal sum of irreducible curves on X

Linear equivalence: $D \sim D' \iff D - D' = (f)$

- $\cdot: \mathrm{Div}(X) imes \mathrm{Div}(X) o \mathbb{Z}$ the intersection pairing
 - if C and D meet transversally then $C.D = \#(C \cap D)$
 - symmetric
 - additive
 - it depends only on the linear equivalence classes

Ample divisor, the Nakai-Moishezon criterion: H on X is ample $\iff H^2 > 0$ and $H.D > 0 \; \forall$ irreducible curve D on X

Evaluation codes

Let X be a surface and rH a very ample divisor on X. Consider the Riemann-Roch space

$$L(rH) = \{ f \in \mathbb{F}_q(X) \setminus \{0\} \mid (f) + rH \ge 0 \} \cup \{0\}.$$

Definition:

Set $X(\mathbb{F}_q) = \{P_1, \dots, P_n\}$. The code $\mathcal{C}(X, rH)$ is defined to be the image of the evaluation map

$$\begin{array}{ccc} \mathrm{ev}: & L(rH) \longrightarrow \mathbb{F}_q^n \\ & f & \longmapsto (f(P_1), \dots, f(P_n)). \end{array}$$

Evaluation codes

Let X be a surface and rH a very ample divisor on X. Consider the Riemann-Roch space

$$L(rH) = \{ f \in \mathbb{F}_q(X) \setminus \{0\} \mid (f) + rH \ge 0 \} \cup \{0\}.$$

Definition:

Set $X(\mathbb{F}_q) = \{P_1, \dots, P_n\}$. The code $\mathcal{C}(X, rH)$ is defined to be the image of the evaluation map

ev:
$$L(rH) \longrightarrow \mathbb{F}_q^n$$

 $f \longmapsto (f(P_1), \dots, f(P_n)).$

We consider X = A to be an <u>abelian surface</u> and study C(A, rH).

$$n = ?$$

$$dim(C(A, rH)) = ?$$

$$d \ge ?$$

$$n = \#A(\mathbb{F}_q)$$

$$\dim(\mathcal{C}(A,rH))=\dim_{\mathbb{F}_q}L(rH)$$

$$d \ge ?$$

$$n = \#A(\mathbb{F}_q)$$

$$\dim(\mathcal{C}(A, rH)) = \dim_{\mathbb{F}_q} L(rH)$$

For
$$f\in L(rH)\setminus\{0\}$$
, $N(f):=$ number of zero coordinates of $\operatorname{ev}(f)$
$$d=\#A(\mathbb{F}_q)-\max_{f\in L(rH)\setminus\{0\}}N(f)$$

$$n = \#A(\mathbb{F}_q)$$

$$\dim(\mathcal{C}(A, rH)) = \dim_{\mathbb{F}_q} L(rH)$$

For $f \in L(rH) \setminus \{0\}$, N(f) := number of zero coordinates of ev(f)

$$d = \#A(\mathbb{F}_q) - \max_{f \in L(rH) \setminus \{0\}} N(f)$$

dimension of the Riemann-Roch space $\Rightarrow \underline{\dim(\mathcal{C}(A, rH))}$ upper bound for $N(f) \Rightarrow$ lower bound for $\underline{\tanh(f)} \Rightarrow 1$

A lower bound for the price of two upper bounds

Let $f \in L(rH) \setminus \{0\} = \{f \in \mathbb{F}_q(A) \setminus \{0\} \mid Z(f) - P(f) + rH \ge 0\}$. We consider the effective divisor

$$D_f = rH + Z(f) - P(f) = \sum_{i=1}^k n_i D_i$$

where every D_i is an irreducible curve of arithmetic genus π_i and $n_i > 0$. For $f \in L(rH) \setminus \{0\}$ we have

$$\left| \# Z(f) = N(f) \le \sum_{i=1}^k \# D_i(\mathbb{F}_q) \right|$$

A lower bound for the price of two upper bounds

Let $f \in L(rH) \setminus \{0\} = \{f \in \mathbb{F}_q(A) \setminus \{0\} \mid Z(f) - P(f) + rH \ge 0\}$. We consider the effective divisor

$$D_f = rH + Z(f) - P(f) = \sum_{i=1}^k n_i D_i$$

where every D_i is an irreducible curve of arithmetic genus π_i and $n_i > 0$. For $f \in L(rH) \setminus \{0\}$ we have

$$\#Z(f) = N(f) \leq \sum_{i=1}^{k} \#D_i(\mathbb{F}_q)$$

 $\left.\begin{array}{c} \text{upper bound for } k \\ + \\ \text{upper bound for } \#D_i(\mathbb{F}_q) \end{array}\right\} \Rightarrow \text{lower bound for } d$

- Riemann-Roch Theorem: $\dim_{\mathbb{F}_q} L(rH) + \dim_{\mathbb{F}_q} L(K - rH) = \frac{1}{2}rH.(rH - K) + 1 + p_a + s(rH)$

- Riemann-Roch Theorem: $\dim_{\mathbb{F}_q} L(rH) + \dim_{\mathbb{F}_q} L(-rH) = \frac{1}{2}r^2H^2 + s(rH)$

- Riemann-Roch Theorem: $\dim_{\mathbb{F}_q} L(rH) = \frac{1}{2}r^2H^2$

- Riemann-Roch Theorem: $\dim_{\mathbb{F}_q} L(rH) = \frac{1}{2}r^2H^2$
- Adjonction Formula: D curve of genus π on X, then

$$D.(D+K)=2\pi-2$$

- Riemann-Roch Theorem: $\dim_{\mathbb{F}_q} L(rH) = \frac{1}{2}r^2H^2$
- Adjonction Formula: D curve of genus π on A, then

$$D^2 = 2\pi - 2$$

- Riemann-Roch Theorem: dim $_{\mathbb{F}_q} L(rH) = \frac{1}{2}r^2H^2$
- Adjonction Formula: D curve of genus π on A, then $D^2=2\pi-2$
- Corollary of Hodge I.T.: H ample, D a divisor, then

$$(H.D)^2 \ge H^2 D^2$$

- Riemann-Roch Theorem: dim $_{\mathbb{F}_q} L(rH) = \frac{1}{2} r^2 H^2$
- Adjonction Formula: D curve of genus π on A, then $D^2=2\pi-2$
- Corollary of Hodge I.T.: H ample, D a divisor, then $(H.D)^2 \geq H^2 D^2$
- Rational Points: set $m := \lfloor 2\sqrt{q} \rfloor$
 - for D an irreducible curve on A of arithmetic genus π we have

$$\#D(\mathbb{F}_q) \leq q+1-\mathrm{Tr}(A)+|\pi-2|m$$

• for D a (non absolutely) irreducible curve on A of arithmetic genus π we have

$$\#D(\mathbb{F}_q) \leq \pi - 1$$

- Riemann-Roch Theorem: $\dim_{\mathbb{F}_q} L(rH) = \frac{1}{2}r^2H^2$
- Adjonction Formula: D curve of genus π on A, then $D^2=2\pi-2$
- Corollary of Hodge I.T.: H ample, D a divisor, then $(H.D)^2 \geq H^2 D^2$
- Rational Points: set $m := \lfloor 2\sqrt{q} \rfloor$
 - for D an irreducible curve on A of arithmetic genus π we have

$$\#D(\mathbb{F}_q) \leq q+1-\mathrm{Tr}(A)+|\pi-2|m$$

• for D a (non absolutely) irreducible curve on A of arithmetic genus π we have

$$\#D(\mathbb{F}_q) \leq \pi - 1$$

More tools on SIMPLE abelian surfaces

- Riemann-Roch Theorem: dim $_{\mathbb{F}_q} L(rH) = \frac{1}{2} r^2 H^2$
- Adjonction Formula: D curve of genus π on A, then $D^2=2\pi-2$
- Corollary of Hodge I.T.: H ample, D a divisor, then $(H.D)^2 \ge H^2D^2$
- Rational Points: set $m := \lfloor 2\sqrt{q} \rfloor$
 - for D an irreducible curve on A of arithmetic genus π we have

$$\#D(\mathbb{F}_q) \leq q + 1 - \operatorname{Tr}(A) + \underline{|\pi - 2|}m$$

• for D a (non absolutely) irreducible curve on A of arithmetic genus π we have

$$\#D(\mathbb{F}_q) \leq \pi - 1$$

- let D be an irreducible curve of arithmetic genus π on a simple abelian surface A, then $\pi > 2$

More tools on SIMPLE abelian surfaces

- Riemann-Roch Theorem: $\dim_{\mathbb{F}_q} L(rH) = \frac{1}{2}r^2H^2$
- Adjonction Formula: D curve of genus π on A, then $D^2=2\pi-2$
- Corollary of Hodge I.T.: H ample, D a divisor, then $(H.D)^2 \ge H^2D^2$
- Rational Points: set $m := \lfloor 2\sqrt{q} \rfloor$
 - for D an irreducible curve on A of arithmetic genus π we have

$$\#D(\mathbb{F}_q) \leq q+1-\mathrm{Tr}(A)+(\pi-2)m$$

• for D a (non absolutely) irreducible curve on A of arithmetic genus π we have

$$\#D(\mathbb{F}_q) \leq \pi - 1$$

- let D be an irreducible curve of arithmetic genus π on a simple abelian surface A, then $\pi > 2$

$$n = \#A(\mathbb{F}_q)$$

$$\dim(\mathcal{C}(A, rH)) = \dim_{\mathbb{F}_q} L(rH)$$

$$d \ge ?$$

$$n = \#A(\mathbb{F}_q)$$

$$\dim(\mathcal{C}(A,rH)) = \frac{1}{2}r^2H^2$$

$$N(f) := ext{number of zero coordinates of } \operatorname{ev}(f)$$

$$d = \#A(\mathbb{F}_q) - \max_{f \in L(rH) \setminus \{0\}} N(f)$$

upper bound for $N(f) \Rightarrow$ lower bound for the minimum distance

Let A be a simple abelian surface such that every absolutely irreducible curve on it has arithmetic genus $\pi > \ell$, for a positive integer ℓ .

Let A be a simple abelian surface such that every absolutely irreducible curve on it has arithmetic genus $\pi > \ell$, for a positive integer ℓ .

$$N(f) \leq \sum_{i=1}^k \# D_i(\mathbb{F}_q)$$

$$k_1 = \#\{D_i \mid \pi_i > \ell\}$$

$$k_2 = \#\{D_i \mid \pi_i \leq \ell\}$$

Let A be a simple abelian surface such that every absolutely irreducible curve on it has arithmetic genus $\pi > \ell$, for a positive integer ℓ .

$$N(f) \leq \sum_{i=1}^k \#D_i(\mathbb{F}_q)$$

$$k_1 = \#\{D_i \mid \pi_i > \ell\} \to \#D(\mathbb{F}_q) \le q + 1 - \text{Tr}(A) + (\pi - 2)m$$

 $k_2 = \#\{D_i \mid \pi_i \le \ell\}$

Let A be a simple abelian surface such that every absolutely irreducible curve on it has arithmetic genus $\pi > \ell$, for a positive integer ℓ .

$$N(f) \leq \sum_{i=1}^{k} \# D_i(\mathbb{F}_q)$$

$$k_1 = \#\{D_i \mid \pi_i > \ell\} \to \#D(\mathbb{F}_q) \le q + 1 - \text{Tr}(A) + (\pi - 2)m$$

 $k_2 = \#\{D_i \mid \pi_i \le \ell\} \to \#D(\mathbb{F}_q) \le \pi - 1$

Let A be a simple abelian surface such that every absolutely irreducible curve on it has arithmetic genus $\pi > \ell$, for a positive integer ℓ .

$$N(f) \leq \sum_{i=1}^k \#D_i(\mathbb{F}_q)$$

$$egin{aligned} k_1 &= \#\{D_i \mid \pi_i > \ell\} \to & \#D(\mathbb{F}_q) \leq q + 1 - \mathrm{Tr}(A) + (\pi - 2)m \ k_2 &= \#\{D_i \mid \pi_i \leq \ell\} \to & \#D(\mathbb{F}_q) \leq \pi - 1 \end{aligned}$$

$$N(f) \leq k_1(q+1-\mathrm{Tr}(A)-2m)+m\sum_{i=1}^{k_1}\pi_i+k_2(\ell-1)$$

Lemma:

1.
$$k_2 \le r\sqrt{\frac{H^2}{2}} - k_1\sqrt{\ell}$$
,

$$2. \ k_1\sqrt{\ell} \le r\sqrt{\frac{H^2}{2}},$$

3.
$$\sum_{i=1}^{k_1} \pi_i \le \left(r\sqrt{H^2/2} - k_1\sqrt{\ell}\right)^2 + r\sqrt{2H^2\ell} + (1-\ell)k_1$$
.

Lemma:

1.
$$k_2 \le r\sqrt{\frac{H^2}{2}} - k_1\sqrt{\ell}$$
,

$$2. \ k_1\sqrt{\ell} \le r\sqrt{\frac{H^2}{2}},$$

3.
$$\sum_{i=1}^{k_1} \pi_i \leq \left(r\sqrt{H^2/2} - k_1\sqrt{\ell}\right)^2 + r\sqrt{2H^2\ell} + (1-\ell)k_1$$
.

$$N(f) \leq \phi(k_1),$$

$$\phi(k_1) := m\ell k_1^2 + k_1 \left(q + 1 - \text{Tr}(A) - m(\ell+1) - mr\sqrt{2H^2\ell} - \sqrt{\ell}(\ell-1) \right) + mH^2r^2/2 + mr\sqrt{2H^2\ell} + r\sqrt{H^2/2}(\ell-1)$$

and
$$k_1 \in \left[1, \sqrt{\frac{H^2}{2\ell}}r\right]$$
 .

Bound for the minimum distance

We have:

$$N(f) \leq egin{cases} \phi\left(\sqrt{rac{H^2}{2\ell}}r
ight) & ext{if } \sqrt{rac{2\ell}{H^2}} \leq r \leq rac{\sqrt{2}(q+1- ext{Tr}(A)-m-\sqrt{\ell}(\ell-1))}{m\sqrt{H^2\ell}}, \ \phi\left(1
ight) & ext{otherwise}. \end{cases}$$

Bound for the minimum distance

We have:

$$N(f) \leq egin{cases} \phi\left(\sqrt{rac{H^2}{2\ell}}r
ight) & ext{if } \sqrt{rac{2\ell}{H^2}} \leq r \leq rac{\sqrt{2}(q+1- ext{Tr}(A)-m-\sqrt{\ell}(\ell-1))}{m\sqrt{H^2\ell}}, \ \phi\left(1
ight) & ext{otherwise}. \end{cases}$$

Recall that

$$d = \#A(\mathbb{F}_q) - \max_{f \in L(rH) \setminus \{0\}} N(f)$$

Bound for the minimum distance

Theorem: (Aubry, B., Herbaut, Perret)

Let A be a simple abelian surface of trace $\operatorname{Tr}(A)$ such that every irreducible curve on it has arithmetic genus $\pi > \ell$, for a positive integer ℓ . Then the minimum distance d of the code $\mathcal{C}(A, rH)$ satisfies:

$$d \geq \#A(\mathbb{F}_q) - r\sqrt{\frac{H^2}{2\ell}}\left(q+1-\operatorname{Tr}(A)+(\ell-1)m\right)$$

if
$$\sqrt{\frac{2\ell}{H^2}} \le r \le \frac{\sqrt{2}(q+1-\mathrm{Tr}(A)-m-\sqrt{\ell}(\ell-1))}{m\sqrt{H^2\ell}}$$
, otherwise

$$d \geq \#A(\mathbb{F}_q) - (q+1-\mathrm{Tr}(A)) - m(r^2H^2/2 - 1) - r\sqrt{\frac{H^2}{2}}(\ell-1).$$

Length, Dimension, Minimum Distance

$$n = \#A(\mathbb{F}_q)$$

$$\dim(\mathcal{C}(A, rH)) = \frac{1}{2}r^2H^2$$

$$d \geq \#A(\mathbb{F}_q) - r\sqrt{\frac{H^2}{2\ell}}\left(q + 1 - \operatorname{Tr}(A) + (\ell - 1)m\right)$$

Improving the lower bound for the minimum distance

$$d \geq \#A(\mathbb{F}_q) - r\sqrt{\frac{H^2}{2\ell}}\left(q+1-\operatorname{Tr}(A)+(\ell-1)m\right)$$

Improving the lower bound for the minimum distance

$$d \geq \#A(\mathbb{F}_q) - r\sqrt{rac{H^2}{2\ell}}\left(q + 1 - \operatorname{Tr}(A) + (\ell - 1)m
ight)$$

$$d_{min} - \#A(\mathbb{F}_q) \mathop{\sim}_{q o \infty} - r\sqrt{rac{H^2}{2\ell}} q.$$

Remark: the bound for $\ell=2$ is better than the one for $\ell=1!$

Question: There exist abelian surfaces which do not contain absolutely irreducible curves of arithmetic genus 0, 1 nor 2?

Improving the lower bound for the minimum distance

$$d \geq \#A(\mathbb{F}_q) - r\sqrt{\frac{H^2}{2\ell}}\left(q+1-\operatorname{Tr}(A)+(\ell-1)m\right)$$

$$d_{min} - \#A(\mathbb{F}_q) \mathop{\sim}\limits_{q o \infty} -r\sqrt{rac{H^2}{2\ell}} q.$$

Remark: the bound for $\ell=2$ is better than the one for $\ell=1!$

 $\frac{\text{Question:}}{\text{irreducible curves of arithmetic genus 0, 1 } \frac{\text{nor 2?}}{\text{YES!}}$

Lemma:

An abelian surface A contains no absolutely irreducible curves of arithmetic genus 0, 1 nor 2 \iff A is simple and not isogenous to a Jacobian surface.

Lemma:

An abelian surface A contains no absolutely irreducible curves of arithmetic genus 0, 1 nor 2 \iff A is simple and not isogenous to a Jacobian surface.

Theorem: (Weil)

Let (A, λ) be a principally polarized abelian surface defined over the finite field k. Then (A, λ) is either

- 1. the polarized Jacobian of a genus 2 curve over k,
- 2. the product of two polarized elliptic curves over k,
- 3. the Weil restriction of a polarized elliptic curves over a quadratic extension of k.

Lemma:

An abelian surface A contains no absolutely irreducible curves of arithmetic genus 0, 1 nor 2 \iff A is simple and not isogenous to a Jacobian surface.

Theorem: (Weil)

Let (A, λ) be a principally polarized abelian surface defined over the finite field k. Then (A, λ) is either

- 1. the polarized Jacobian of a genus 2 curve over k,
- 2. the product of two polarized elliptic curves over k,
- 3. the Weil restriction of a polarized elliptic curve over a quadratic extension of k.

Lemma:

An abelian surface A contains no absolutely irreducible curves of arithmetic genus 0, 1 nor 2 \iff A is simple and not isogenous to a Jacobian surface.

Abelian surfaces that might have the property we are searching for:

- Weil restrictions of polarized elliptic curves over a quadratic extension of k,
- abelian surfaces defined over *k* that do not admit a principal polarization.

Abelian surfaces containing no curves of genus $0,\,1$ nor 2

Proposition: (Aubry, B., Herbaut, Perret)

- (i) Let A be an abelian surface defined over \mathbb{F}_q which does not admit a principal polarization. Then A does not contain absolutely irreducible curves of arithmetic genus 0, 1 nor 2.
- (ii) Let $q=p^e$. Let E be and elliptic curve defined over \mathbb{F}_{q^2} of trace $\mathrm{Tr}(E/\mathbb{F}_{q^2})$. Let A be the $\mathbb{F}_{q^2}/\mathbb{F}_q$ -Weil restriction of the elliptic curve E. Then A does not contain absolutely irreducible curves defined over \mathbb{F}_q of arithmetic genus 0, 1 nor 2 if and only if one of the following cases holds:
 - (1) $Tr(E/\mathbb{F}_{q^2}) = 2q 1$;
 - (2) p > 2 and $Tr(E/\mathbb{F}_{q^2}) = 2q 2$;
 - (3) $p \equiv 11 \mod 12$ or p = 3, $q = \square$ and $\operatorname{Tr}(E/\mathbb{F}_{q^2}) = q$;
 - (4) $p=2, q \neq \square$ and $\operatorname{Tr}(E/\mathbb{F}_{q^2})=q$;
 - (5) q = 2 or q = 3, and $Tr(E/\mathbb{F}_{q^2}) = 2q$.

1) Genus 3 curves. There exist surfaces which do not contain absolutely irreducible genus 3 curves as well? If so, under which condition(s)?

 Genus 3 curves. There exist surfaces which do not contain absolutely irreducible genus 3 curves as well? If so, under which condition(s)?
 Partial answer: YES (Thanks to Elisa Lorenzo García and Christophe Ritzenthaler using Marseglia's algorithm)

- I) Genus 3 curves. There exist surfaces which do not contain absolutely irreducible genus 3 curves as well? If so, under which condition(s)?
- II) Other surfaces. Applying these methods to other algebraic surfaces will give something (more) interesting?

- I) Genus 3 curves. There exist surfaces which do not contain absolutely irreducible genus 3 curves as well? If so, under which condition(s)?
- II) Other surfaces. Applying these methods to other algebraic surfaces will give something (more) interesting?Work in progress...with the same old team (MYFE)

- I) Genus 3 curves. There exist surfaces which do not contain absolutely irreducible genus 3 curves as well? If so, under which condition(s)?
- II) Other surfaces. Applying these methods to other algebraic surfaces will give something (more) interesting?
- III) Coffee. Isn't it time for coffee break?

- I) Genus 3 curves. There exist surfaces which do not contain absolutely irreducible genus 3 curves as well? If so, under which condition(s)?
- II) Other surfaces. Applying these methods to other algebraic surfaces will give something (more) interesting?
- III) Coffee. Isn't it time for coffee break?

Thank you for your attention!

(Questions?)

He who asks a question is a fool for five minutes; he who does not ask a question remains a fool forever.

Confucius