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Goppa codes

Let C be a curve of genus g and D a divisor on C .
Consider the Riemann-Roch space

L(D) = {f ∈ Fq(C ) \ {0} | (f ) + D ≥ 0} ∪ {0}.

Definition:
Set C (Fq) = {P1, . . . ,Pn}. The code C(C ,D) is defined to be the image
of the evaluation map

ev : L(D) −→ Fn
q, f 7−→ (f (P1), . . . , f (Pn)).

n = #C (Fq)

dim(C(C ,D)) = dimFq L(D) ≥ degD + 1− g

d ≥ n − degD
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Basic notions and notations

X/Fq smooth, projective, absolutely irreducible algebraic surface

D ∈ Div(X ), a formal sum of irreducible curves on X

Linear equivalence: D ∼ D ′ ⇐⇒ D − D ′ = (f )

· : Div(X )×Div(X )→ Z the intersection pairing

- if C and D meet transversally then C .D = #(C ∩ D)

- symmetric
- additive
- it depends only on the linear equivalence classes
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D ∈ Div(X ), a formal sum of irreducible curves on X

Linear equivalence: D ∼ D ′ ⇐⇒ D − D ′ = (f )

· : Div(X )×Div(X )→ Z the intersection pairing

- if C and D meet transversally then C .D = #(C ∩ D)

- symmetric
- additive
- it depends only on the linear equivalence classes

Ample divisor, the Nakai-Moishezon criterion:
H on X is ample ⇐⇒ H2 > 0 and H.D > 0 ∀ irreducible curve D on X
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Evaluation codes

Let X be a surface and rH a very ample divisor on X .
Consider the Riemann-Roch space

L(rH) = {f ∈ Fq(X ) \ {0} | (f ) + rH ≥ 0} ∪ {0}.

Definition:
Set X (Fq) = {P1, . . . ,Pn}. The code C(X , rH) is defined to be the
image of the evaluation map

ev : L(rH) −→ Fn
q

f 7−→ (f (P1), . . . , f (Pn)).

We consider X = A to be an abelian surface and study C(A, rH).
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Length, Dimension, Minimum Distance

n =?

dim(C(A, rH)) =?

d ≥ ?
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Length, Dimension, Minimum Distance

n = #A(Fq)

dim(C(A, rH)) = dimFq L(rH)

For f ∈ L(rH) \ {0}, N(f ) := number of zero coordinates of ev(f )

d = #A(Fq)− max
f∈L(rH)\{0}

N(f )
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Length, Dimension, Minimum Distance

n = #A(Fq)

dim(C(A, rH)) = dimFq L(rH)

For f ∈ L(rH) \ {0}, N(f ) := number of zero coordinates of ev(f )

d = #A(Fq)− max
f∈L(rH)\{0}

N(f )

dimension of the Riemann-Roch space ⇒ dim(C(A, rH))

upper bound for N(f ) ⇒ lower bound for the minimum distance
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A lower bound for the price of two upper bounds

Let f ∈ L(rH) \ {0} = {f ∈ Fq(A) \ {0} | Z (f )− P(f ) + rH ≥ 0}.
We consider the effective divisor

Df = rH + Z (f )− P(f ) =
k∑

i=1

niDi

where every Di is an irreducible curve of arithmetic genus πi and ni > 0.
For f ∈ L(rH) \ {0} we have

#Z (f ) = N(f ) ≤
k∑

i=1

#Di (Fq)

upper bound for k
+

upper bound for #Di (Fq)

⇒ lower bound for d
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Some tools on abelian surfaces

- Riemann-Roch Theorem:
dimFq L(rH) + dimFq L(K − rH) = 1

2 rH.(rH − K ) + 1+ pa + s(rH)
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More tools on SIMPLE abelian surfaces

- Riemann-Roch Theorem: dimFq L(rH) = 1
2 r

2H2

- Adjonction Formula: D curve of genus π on A, then D2 = 2π − 2

- Corollary of Hodge I.T.: H ample, D a divisor, then (H.D)2 ≥ H2D2

- Rational Points: set m := b2√qc
I for D an irreducible curve on A of arithmetic genus π we have

#D(Fq) ≤ q + 1− Tr(A) + |π − 2|m

I for D a (non absolutely) irreducible curve on A of arithmetic genus π
we have

#D(Fq) ≤ π − 1

- let D be an irreducible curve of arithmetic genus π on a simple
abelian surface A, then π ≥ 2
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Length, Dimension, Minimum Distance

n = #A(Fq)

dim(C(A, rH)) =
1
2
r2H2

N(f ) := number of zero coordinates of ev(f )

d = #A(Fq)− max
f∈L(rH)\{0}

N(f )

upper bound for N(f ) ⇒ lower bound for the minimum distance
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Bound for N(f )

Let A be a simple abelian surface such that every absolutely irreducible
curve on it has arithmetic genus π > `, for a positive integer `.

N(f ) ≤
k∑

i=1

#Di (Fq)
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Let A be a simple abelian surface such that every absolutely irreducible
curve on it has arithmetic genus π > `, for a positive integer `.

N(f ) ≤
k∑

i=1

#Di (Fq)

Write k = k1 + k2 where

k1 = #{Di | πi > `} → #D(Fq) ≤ q + 1− Tr(A) + (π − 2)m
k2 = #{Di | πi ≤ `} → #D(Fq) ≤ π − 1

N(f ) ≤ k1(q + 1− Tr(A)− 2m) +m
k1∑
i=1

πi + k2(`− 1)

11 / 19



Bound for N(f )

Lemma:

1. k2 ≤ r
√

H2

2 − k1
√
`,

2. k1
√
` ≤ r

√
H2

2 ,

3.
∑k1

i=1 πi ≤
(
r
√

H2/2− k1
√
`
)2

+ r
√
2H2`+ (1− `)k1.
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Bound for N(f )

Lemma:

1. k2 ≤ r
√

H2

2 − k1
√
`,

2. k1
√
` ≤ r

√
H2

2 ,

3.
∑k1

i=1 πi ≤
(
r
√

H2/2− k1
√
`
)2

+ r
√
2H2`+ (1− `)k1.

N(f ) ≤ φ(k1),

φ(k1) := m`k2
1+k1

(
q + 1− Tr(A)−m(`+ 1)−mr

√
2H2`−

√
`(`− 1)

)
+mH2r2/2+mr

√
2H2`+ r

√
H2/2(`− 1)

and k1 ∈
[
1,
√

H2

2` r

]
.
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Bound for the minimum distance

We have:

N(f ) ≤

φ
(√

H2

2` r

)
if
√

2`
H2 ≤ r ≤

√
2(q+1−Tr(A)−m−

√
`(`−1))

m
√
H2`

,

φ (1) otherwise.
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We have:

N(f ) ≤

φ
(√

H2

2` r

)
if
√

2`
H2 ≤ r ≤

√
2(q+1−Tr(A)−m−

√
`(`−1))

m
√
H2`

,

φ (1) otherwise.

Recall that
d = #A(Fq)− max

f∈L(rH)\{0}
N(f )
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Bound for the minimum distance

Theorem: (Aubry, B., Herbaut, Perret)
Let A be a simple abelian surface of trace Tr(A) such that every
irreducible curve on it has arithmetic genus π > `, for a positive integer
`. Then the minimum distance d of the code C(A, rH) satisfies:

d ≥ #A(Fq)− r

√
H2

2`
(q + 1− Tr(A) + (`− 1)m)

if
√

2`
H2 ≤ r ≤

√
2(q+1−Tr(A)−m−

√
`(`−1))

m
√
H2`

, otherwise

d ≥ #A(Fq)− (q + 1− Tr(A))−m(r2H2/2− 1)− r

√
H2

2
(`− 1).
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Length, Dimension, Minimum Distance

n = #A(Fq)

dim(C(A, rH)) =
1
2
r2H2

d ≥ #A(Fq)− r

√
H2

2`
(q + 1− Tr(A) + (`− 1)m)

14 / 19



Improving the lower bound for the minimum distance

d ≥ #A(Fq)− r

√
H2

2`
(q + 1− Tr(A) + (`− 1)m)

dmin −#A(Fq) ∼
q→∞

−r
√

H2

2`
q.

Remark: the bound for ` = 2 is better than the one for ` = 1!

Question: There exist abelian surfaces which do not contain absolutely
irreducible curves of arithmetic genus 0, 1 nor 2?

YES!
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Abelian surfaces without curves of low genus: starting point

Lemma:
An abelian surface A contains no absolutely irreducible curves of
arithmetic genus 0, 1 nor 2 ⇐⇒ A is simple and not isogenous to a
Jacobian surface.
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Abelian surfaces without curves of low genus: starting point

Lemma:
An abelian surface A contains no absolutely irreducible curves of
arithmetic genus 0, 1 nor 2 ⇐⇒ A is simple and not isogenous to a
Jacobian surface.

Abelian surfaces that might have the property we are searching for:

- Weil restrictions of polarized elliptic curves over a quadratic
extension of k ,

- abelian surfaces defined over k that do not admit a principal
polarization.
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Abelian surfaces containing no curves of genus 0, 1 nor 2

Proposition: (Aubry, B., Herbaut, Perret)

(i) Let A be an abelian surface defined over Fq which does not admit a
principal polarization. Then A does not contain absolutely
irreducible curves of arithmetic genus 0, 1 nor 2.

(ii) Let q = pe . Let E be and elliptic curve defined over Fq2 of trace
Tr(E/Fq2). Let A be the Fq2/Fq-Weil restriction of the elliptic
curve E . Then A does not contain absolutely irreducible curves
defined over Fq of arithmetic genus 0, 1 nor 2 if and only if one of
the following cases holds:
(1) Tr(E/Fq2) = 2q − 1;
(2) p > 2 and Tr(E/Fq2) = 2q − 2;
(3) p ≡ 11 mod 12 or p = 3, q = � and Tr(E/Fq2) = q;
(4) p = 2, q 6= � and Tr(E/Fq2) = q;
(5) q = 2 or q = 3, and Tr(E/Fq2) = 2q.
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What’s next? Some ideas...

I) Genus 3 curves. There exist surfaces which do not contain absolutely
irreducible genus 3 curves as well? If so, under which condition(s)?
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Partial answer: YES (Thanks to Elisa Lorenzo García and
Christophe Ritzenthaler using Marseglia’s algorithm)
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Work in progress...with the same old team (MYFE)
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Thank you for your attention!
(Questions?)

He who asks a question is a fool for five minutes;
he who does not ask a question remains a fool forever.

Confucius
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