AG codes over abelian surfaces containing no absolutely irreducible curves of low genus

Elena Berardini
joint work with Yves Aubry, Fabien Herbaut, Marc Perret

$$
\mathrm{AGC}^{2} \top
$$

(Gilles Lachaud Conference)
14/06/19

Table of Contents

I. Algebraic Geometry codes: from curves to surfaces
II. Abelian Surfaces
III. A bound for the minimum distance
IV. Abelian surfaces containing no curves of low genus

Goppa codes

Let C be a curve of genus g and D a divisor on C.
Consider the Riemann-Roch space

$$
L(D)=\left\{f \in \mathbb{F}_{q}(C) \backslash\{0\} \mid(f)+D \geq 0\right\} \cup\{0\} .
$$

Definition:

Set $C\left(\mathbb{F}_{q}\right)=\left\{P_{1}, \ldots, P_{n}\right\}$. The code $\mathcal{C}(C, D)$ is defined to be the image of the evaluation map

$$
\mathrm{ev}: L(D) \longrightarrow \mathbb{F}_{q}^{n}, \quad f \longmapsto\left(f\left(P_{1}\right), \ldots, f\left(P_{n}\right)\right) .
$$

$$
\begin{gathered}
n=\# C\left(\mathbb{F}_{q}\right) \\
\operatorname{dim}(\mathcal{C}(C, D))=\operatorname{dim}_{\mathbb{F}_{q}} L(D) \geq \operatorname{deg} D+1-g \\
d \geq n-\operatorname{deg} D
\end{gathered}
$$

Basic notions and notations

X / \mathbb{F}_{q} smooth, projective, absolutely irreducible algebraic surface

Basic notions and notations

X / \mathbb{F}_{q} smooth, projective, absolutely irreducible algebraic surface
$D \in \operatorname{Div}(X)$, a formal sum of irreducible curves on X

Basic notions and notations

X / \mathbb{F}_{q} smooth, projective, absolutely irreducible algebraic surface $D \in \operatorname{Div}(X)$, a formal sum of irreducible curves on X Linear equivalence: $D \sim D^{\prime} \Longleftrightarrow D-D^{\prime}=(f)$

Basic notions and notations

X / \mathbb{F}_{q} smooth, projective, absolutely irreducible algebraic surface
$D \in \operatorname{Div}(X)$, a formal sum of irreducible curves on X
Linear equivalence: $D \sim D^{\prime} \Longleftrightarrow D-D^{\prime}=(f)$
$\cdot: \operatorname{Div}(X) \times \operatorname{Div}(X) \rightarrow \mathbb{Z}$ the intersection pairing

- if C and D meet transversally then $C . D=\#(C \cap D)$
- symmetric
- additive
- it depends only on the linear equivalence classes

Basic notions and notations

X / \mathbb{F}_{q} smooth, projective, absolutely irreducible algebraic surface
$D \in \operatorname{Div}(X)$, a formal sum of irreducible curves on X
Linear equivalence: $D \sim D^{\prime} \Longleftrightarrow D-D^{\prime}=(f)$
$\cdot: \operatorname{Div}(X) \times \operatorname{Div}(X) \rightarrow \mathbb{Z}$ the intersection pairing

- if C and D meet transversally then $C . D=\#(C \cap D)$
- symmetric
- additive
- it depends only on the linear equivalence classes

Ample divisor: a divisor such that some multiple is a very ample divisor

Basic notions and notations

X / \mathbb{F}_{q} smooth, projective, absolutely irreducible algebraic surface
$D \in \operatorname{Div}(X)$, a formal sum of irreducible curves on X
Linear equivalence: $D \sim D^{\prime} \Longleftrightarrow D-D^{\prime}=(f)$
$\cdot: \operatorname{Div}(X) \times \operatorname{Div}(X) \rightarrow \mathbb{Z}$ the intersection pairing

- if C and D meet transversally then $C . D=\#(C \cap D)$
- symmetric
- additive
- it depends only on the linear equivalence classes

Ample divisor, the Nakai-Moishezon criterion: H on X is ample $\Longleftrightarrow H^{2}>0$ and $H . D>0 \forall$ irreducible curve D on X

Evaluation codes

Let X be a surface and $r H$ a very ample divisor on X.
Consider the Riemann-Roch space

$$
L(r H)=\left\{f \in \mathbb{F}_{q}(X) \backslash\{0\} \mid(f)+r H \geq 0\right\} \cup\{0\} .
$$

Definition:
Set $X\left(\mathbb{F}_{q}\right)=\left\{P_{1}, \ldots, P_{n}\right\}$. The code $\mathcal{C}(X, r H)$ is defined to be the image of the evaluation map

$$
\begin{aligned}
\text { ev : } \quad L(r H) & \longrightarrow \mathbb{F}_{q}^{n} \\
f & \longmapsto\left(f\left(P_{1}\right), \ldots, f\left(P_{n}\right)\right) .
\end{aligned}
$$

Evaluation codes

Let X be a surface and $r H$ a very ample divisor on X.
Consider the Riemann-Roch space

$$
L(r H)=\left\{f \in \mathbb{F}_{q}(X) \backslash\{0\} \mid(f)+r H \geq 0\right\} \cup\{0\} .
$$

Definition:
Set $X\left(\mathbb{F}_{q}\right)=\left\{P_{1}, \ldots, P_{n}\right\}$. The code $\mathcal{C}(X, r H)$ is defined to be the image of the evaluation map

$$
\begin{aligned}
\text { ev : } \quad L(r H) & \longrightarrow \mathbb{F}_{q}^{n} \\
f & \longmapsto\left(f\left(P_{1}\right), \ldots, f\left(P_{n}\right)\right) .
\end{aligned}
$$

We consider $X=A$ to be an abelian surface and study $\mathcal{C}(A, r H)$.

Length, Dimension, Minimum Distance

$$
\begin{gathered}
n=? \\
\operatorname{dim}(\mathcal{C}(A, r H))=?
\end{gathered}
$$

$$
d \geq ?
$$

Length, Dimension, Minimum Distance

$$
n=\# A\left(\mathbb{F}_{q}\right)
$$

$$
\operatorname{dim}(\mathcal{C}(A, r H))=\operatorname{dim}_{\mathbb{P}_{q}} L(r H)
$$

$$
d \geq ?
$$

Length, Dimension, Minimum Distance

$$
n=\# A\left(\mathbb{F}_{q}\right)
$$

$$
\operatorname{dim}(\mathcal{C}(A, r H))=\operatorname{dim}_{\mathbb{F}_{q}} L(r H)
$$

For $f \in L(r H) \backslash\{0\}, N(f):=$ number of zero coordinates of $\operatorname{ev}(f)$

$$
d=\# A\left(\mathbb{F}_{q}\right)-\max _{f \in L(r H) \backslash\{0\}} N(f)
$$

Length, Dimension, Minimum Distance

$$
n=\# A\left(\mathbb{F}_{q}\right)
$$

$$
\operatorname{dim}(\mathcal{C}(A, r H))=\operatorname{dim}_{\mathbb{F}_{q}} L(r H)
$$

For $f \in L(r H) \backslash\{0\}, N(f):=$ number of zero coordinates of $\operatorname{ev}(f)$

$$
d=\# A\left(\mathbb{F}_{q}\right)-\max _{f \in L(r H) \backslash\{0\}} N(f)
$$

dimension of the Riemann-Roch space $\Rightarrow \operatorname{dim}(\mathcal{C}(A, r H))$
upper bound for $\underline{N(f)} \Rightarrow$ lower bound for the minimum distance

A lower bound for the price of two upper bounds
Let $f \in L(r H) \backslash\{0\}=\left\{f \in \mathbb{F}_{q}(A) \backslash\{0\} \mid Z(f)-P(f)+r H \geq 0\right\}$.
We consider the effective divisor

$$
D_{f}=r H+Z(f)-P(f)=\sum_{i=1}^{k} n_{i} D_{i}
$$

where every D_{i} is an irreducible curve of arithmetic genus π_{i} and $n_{i}>0$. For $f \in L(r H) \backslash\{0\}$ we have

$$
\# Z(f)=N(f) \leq \sum_{i=1}^{k} \# D_{i}\left(\mathbb{F}_{q}\right)
$$

A lower bound for the price of two upper bounds
Let $f \in L(r H) \backslash\{0\}=\left\{f \in \mathbb{F}_{q}(A) \backslash\{0\} \mid Z(f)-P(f)+r H \geq 0\right\}$.
We consider the effective divisor

$$
D_{f}=r H+Z(f)-P(f)=\sum_{i=1}^{k} n_{i} D_{i}
$$

where every D_{i} is an irreducible curve of arithmetic genus π_{i} and $n_{i}>0$. For $f \in L(r H) \backslash\{0\}$ we have

$$
\# Z(f)=N(f) \leq \sum_{i=1}^{k} \# D_{i}\left(\mathbb{F}_{q}\right)
$$

Some tools on abelian surfaces

- Riemann-Roch Theorem: $\operatorname{dim}_{\mathbb{P}_{q}} L(r H)+\operatorname{dim}_{\mathbb{E}_{q}} L(K-r H)=\frac{1}{2} r H .(r H-K)+1+p_{a}+s(r H)$

Some tools on abelian surfaces

- Riemann-Roch Theorem: $\operatorname{dim}_{\mathbb{P}_{q}} L(r H)+\operatorname{dim}_{\mathbb{P}_{q}} L(-r H)=\frac{1}{2} r^{2} H^{2}+s(r H)$

Some tools on abelian surfaces

- Riemann-Roch Theorem: $\operatorname{dim}_{\mathbb{F}_{q}} L(r H)=\frac{1}{2} r^{2} H^{2}$

Some tools on abelian surfaces

- Riemann-Roch Theorem: $\operatorname{dim}_{\mathbb{F}_{q}} L(r H)=\frac{1}{2} r^{2} H^{2}$
- Adjonction Formula: D curve of genus π on X, then

$$
\text { D. }(D+K)=2 \pi-2
$$

Some tools on abelian surfaces

- Riemann-Roch Theorem: $\operatorname{dim}_{\mathbb{F}_{q}} L(r H)=\frac{1}{2} r^{2} H^{2}$
- Adjonction Formula: D curve of genus π on A, then

$$
D^{2}=2 \pi-2
$$

Some tools on abelian surfaces

- Riemann-Roch Theorem: $\operatorname{dim}_{\mathbb{F}_{q}} L(r H)=\frac{1}{2} r^{2} H^{2}$
- Adjonction Formula: D curve of genus π on A, then $D^{2}=2 \pi-2$
- Corollary of Hodge I.T.: H ample, D a divisor, then

$$
(H . D)^{2} \geq H^{2} D^{2}
$$

Some tools on abelian surfaces

- Riemann-Roch Theorem: $\operatorname{dim}_{\mathbb{F}_{q}} L(r H)=\frac{1}{2} r^{2} H^{2}$
- Adjonction Formula: D curve of genus π on A, then $D^{2}=2 \pi-2$
- Corollary of Hodge I.T.: H ample, D a divisor, then (H.D $)^{2} \geq H^{2} D^{2}$
- Rational Points: set $m:=\lfloor 2 \sqrt{q}\rfloor$
- for D an irreducible curve on A of arithmetic genus π we have

$$
\# D\left(\mathbb{F}_{q}\right) \leq q+1-\operatorname{Tr}(A)+|\pi-2| m
$$

- for D a (non absolutely) irreducible curve on A of arithmetic genus π we have

$$
\# D\left(\mathbb{F}_{q}\right) \leq \pi-1
$$

Some tools on abelian surfaces

- Riemann-Roch Theorem: $\operatorname{dim}_{\mathbb{F}_{q}} L(r H)=\frac{1}{2} r^{2} H^{2}$
- Adjonction Formula: D curve of genus π on A, then $D^{2}=2 \pi-2$
- Corollary of Hodge I.T.: H ample, D a divisor, then (H.D $)^{2} \geq H^{2} D^{2}$
- Rational Points: set $m:=\lfloor 2 \sqrt{q}\rfloor$
- for D an irreducible curve on A of arithmetic genus π we have

$$
\# D\left(\mathbb{F}_{q}\right) \leq q+1-\operatorname{Tr}(A)+\underline{|\pi-2|} m
$$

- for D a (non absolutely) irreducible curve on A of arithmetic genus π we have

$$
\# D\left(\mathbb{F}_{q}\right) \leq \pi-1
$$

More tools on SIMPLE abelian surfaces

- Riemann-Roch Theorem: $\operatorname{dim}_{\mathbb{F}_{q}} L(r H)=\frac{1}{2} r^{2} H^{2}$
- Adjonction Formula: D curve of genus π on A, then $D^{2}=2 \pi-2$
- Corollary of Hodge I.T.: H ample, D a divisor, then $(H . D)^{2} \geq H^{2} D^{2}$
- Rational Points: set $m:=\lfloor 2 \sqrt{q}\rfloor$
- for D an irreducible curve on A of arithmetic genus π we have

$$
\# D\left(\mathbb{F}_{q}\right) \leq q+1-\operatorname{Tr}(A)+|\pi-2| m
$$

- for D a (non absolutely) irreducible curve on A of arithmetic genus π we have

$$
\# D\left(\mathbb{F}_{q}\right) \leq \pi-1
$$

- let D be an irreducible curve of arithmetic genus π on a simple abelian surface A, then $\pi \geq 2$

More tools on SIMPLE abelian surfaces

- Riemann-Roch Theorem: $\operatorname{dim}_{\mathbb{F}_{q}} L(r H)=\frac{1}{2} r^{2} H^{2}$
- Adjonction Formula: D curve of genus π on A, then $D^{2}=2 \pi-2$
- Corollary of Hodge I.T.: H ample, D a divisor, then $(H . D)^{2} \geq H^{2} D^{2}$
- Rational Points: set $m:=\lfloor 2 \sqrt{q}\rfloor$
- for D an irreducible curve on A of arithmetic genus π we have

$$
\# D\left(\mathbb{F}_{q}\right) \leq q+1-\operatorname{Tr}(A)+(\pi-2) m
$$

- for D a (non absolutely) irreducible curve on A of arithmetic genus π we have

$$
\# D\left(\mathbb{F}_{q}\right) \leq \pi-1
$$

- let D be an irreducible curve of arithmetic genus π on a simple abelian surface A, then $\pi \geq 2$

Length, Dimension, Minimum Distance

$$
n=\# A\left(\mathbb{F}_{q}\right)
$$

$$
\operatorname{dim}(\mathcal{C}(A, r H))=\operatorname{dim}_{\mathbb{P}_{q}} L(r H)
$$

$$
d \geq ?
$$

Length, Dimension, Minimum Distance

$$
\begin{gathered}
n=\# A\left(\mathbb{F}_{q}\right) \\
\operatorname{dim}(\mathcal{C}(A, r H))=\frac{1}{2} r^{2} H^{2}
\end{gathered}
$$

$N(f):=$ number of zero coordinates of $\operatorname{ev}(f)$

$$
d=\# A\left(\mathbb{F}_{q}\right)-\max _{f \in L(r H) \backslash\{0\}} N(f)
$$

upper bound for $\underline{N(f)} \Rightarrow$ lower bound for the minimum distance

Bound for $N(f)$

Let A be a simple abelian surface such that every absolutely irreducible curve on it has arithmetic genus $\pi>\ell$, for a positive integer ℓ.

Bound for $N(f)$

Let A be a simple abelian surface such that every absolutely irreducible curve on it has arithmetic genus $\pi>\ell$, for a positive integer ℓ.

$$
N(f) \leq \sum_{i=1}^{k} \# D_{i}\left(\mathbb{F}_{q}\right)
$$

Write $k=k_{1}+k_{2}$ where

$$
\begin{aligned}
& k_{1}=\#\left\{D_{i} \mid \pi_{i}>\ell\right\} \\
& k_{2}=\#\left\{D_{i} \mid \pi_{i} \leq \ell\right\}
\end{aligned}
$$

Bound for $N(f)$

Let A be a simple abelian surface such that every absolutely irreducible curve on it has arithmetic genus $\pi>\ell$, for a positive integer ℓ.

$$
N(f) \leq \sum_{i=1}^{k} \# D_{i}\left(\mathbb{F}_{q}\right)
$$

Write $k=k_{1}+k_{2}$ where

$$
\begin{aligned}
& k_{1}=\#\left\{D_{i} \mid \pi_{i}>\ell\right\} \rightarrow \# D\left(\mathbb{F}_{q}\right) \leq q+1-\operatorname{Tr}(A)+(\pi-2) m \\
& k_{2}=\#\left\{D_{i} \mid \pi_{i} \leq \ell\right\}
\end{aligned}
$$

Bound for $N(f)$

Let A be a simple abelian surface such that every absolutely irreducible curve on it has arithmetic genus $\pi>\ell$, for a positive integer ℓ.

$$
N(f) \leq \sum_{i=1}^{k} \# D_{i}\left(\mathbb{F}_{q}\right)
$$

Write $k=k_{1}+k_{2}$ where

$$
\begin{array}{ll}
k_{1}=\#\left\{D_{i} \mid \pi_{i}>\ell\right\} \rightarrow & \# D\left(\mathbb{F}_{q}\right) \leq q+1-\operatorname{Tr}(A)+(\pi-2) m \\
k_{2}=\#\left\{D_{i} \mid \pi_{i} \leq \ell\right\} \rightarrow & \# D\left(\mathbb{F}_{q}\right) \leq \pi-1
\end{array}
$$

Bound for $N(f)$

Let A be a simple abelian surface such that every absolutely irreducible curve on it has arithmetic genus $\pi>\ell$, for a positive integer ℓ.

$$
N(f) \leq \sum_{i=1}^{k} \# D_{i}\left(\mathbb{F}_{q}\right)
$$

Write $k=k_{1}+k_{2}$ where

$$
\begin{aligned}
k_{1}= & \#\left\{D_{i} \mid \pi_{i}>\ell\right\} \rightarrow \quad \# D\left(\mathbb{F}_{q}\right) \leq q+1-\operatorname{Tr}(A)+(\pi-2) m \\
k_{2}= & \#\left\{D_{i} \mid \pi_{i} \leq \ell\right\} \rightarrow \quad \# D\left(\mathbb{F}_{q}\right) \leq \pi-1 \\
& N(f) \leq k_{1}(q+1-\operatorname{Tr}(A)-2 m)+m \sum_{i=1}^{k_{1}} \pi_{i}+k_{2}(\ell-1)
\end{aligned}
$$

Bound for $N(f)$

Lemma:

1. $k_{2} \leq r \sqrt{\frac{\mu^{2}}{2}}-k_{1} \sqrt{\ell}$,
2. $k_{1} \sqrt{\ell} \leq r \sqrt{\frac{\mu^{2}}{2}}$,
3. $\sum_{i=1}^{k_{1}} \pi_{i} \leq\left(r \sqrt{H^{2} / 2}-k_{1} \sqrt{\ell}\right)^{2}+r \sqrt{2 H^{2} \ell}+(1-\ell) k_{1}$.

Bound for $N(f)$

Lemma:

1. $k_{2} \leq r \sqrt{\frac{\mu^{2}}{2}}-k_{1} \sqrt{\ell}$,
2. $k_{1} \sqrt{\ell} \leq r \sqrt{\frac{\mu^{2}}{2}}$,
3. $\sum_{i=1}^{k_{1}} \pi_{i} \leq\left(r \sqrt{H^{2} / 2}-k_{1} \sqrt{\ell}\right)^{2}+r \sqrt{2 H^{2} \ell}+(1-\ell) k_{1}$.

$$
N(f) \leq \phi\left(k_{1}\right),
$$

$\phi\left(k_{1}\right):=m \ell k_{1}^{2}+k_{1}\left(q+1-\operatorname{Tr}(A)-m(\ell+1)-m r \sqrt{2 H^{2} \ell}-\sqrt{\ell}(\ell-1)\right)$

$$
+m H^{2} r^{2} / 2+m r \sqrt{2 H^{2} \ell}+r \sqrt{H^{2} / 2}(\ell-1)
$$

and $k_{1} \in\left[1, \sqrt{\frac{H^{2}}{2 \ell}} r\right]$.

Bound for the minimum distance

We have:

$$
N(f) \leq\left\{\begin{array}{l}
\phi\left(\sqrt{\frac{H^{2}}{2 \ell}} r\right) \text { if } \sqrt{\frac{2 \ell}{H^{2}}} \leq r \leq \frac{\sqrt{2}(q+1-\operatorname{Tr}(A)-m-\sqrt{\ell}(\ell-1))}{m \sqrt{H^{2} \ell}}, \\
\phi(1) \text { otherwise. }
\end{array}\right.
$$

Bound for the minimum distance

We have:

$$
N(f) \leq\left\{\begin{array}{l}
\phi\left(\sqrt{\frac{H^{2}}{2 \ell}} r\right) \text { if } \sqrt{\frac{2 \ell}{H^{2}}} \leq r \leq \frac{\sqrt{2}(q+1-\operatorname{Tr}(A)-m-\sqrt{\ell}(\ell-1))}{m \sqrt{H^{2} \ell}} \\
\phi(1) \text { otherwise }
\end{array}\right.
$$

Recall that

$$
d=\# A\left(\mathbb{F}_{q}\right)-\max _{f \in L(r H) \backslash\{0\}} N(f)
$$

Bound for the minimum distance

Theorem: (Aubry, B., Herbaut, Perret)
Let A be a simple abelian surface of trace $\operatorname{Tr}(A)$ such that every irreducible curve on it has arithmetic genus $\pi>\ell$, for a positive integer ℓ. Then the minimum distance d of the $\operatorname{code} \mathcal{C}(A, r H)$ satisfies:

$$
d \geq \# A\left(\mathbb{F}_{q}\right)-r \sqrt{\frac{H^{2}}{2 \ell}}(q+1-\operatorname{Tr}(A)+(\ell-1) m)
$$

if $\sqrt{\frac{2 \ell}{H^{2}}} \leq r \leq \frac{\sqrt{2}(q+1-\operatorname{Tr}(A)-m-\sqrt{\ell}(\ell-1))}{m \sqrt{H^{2} \ell}}$, otherwise

$$
d \geq \# A\left(\mathbb{F}_{q}\right)-(q+1-\operatorname{Tr}(A))-m\left(r^{2} H^{2} / 2-1\right)-r \sqrt{\frac{H^{2}}{2}}(\ell-1) .
$$

Length, Dimension, Minimum Distance

$$
\begin{gathered}
n=\# A\left(\mathbb{F}_{q}\right) \\
\operatorname{dim}(\mathcal{C}(A, r H))=\frac{1}{2} r^{2} H^{2} \\
d \geq \# A\left(\mathbb{F}_{q}\right)-r \sqrt{\frac{H^{2}}{2 \ell}}(q+1-\operatorname{Tr}(A)+(\ell-1) m)
\end{gathered}
$$

Improving the lower bound for the minimum distance

$$
d \geq \# A\left(\mathbb{F}_{q}\right)-r \sqrt{\frac{H^{2}}{2 \ell}}(q+1-\operatorname{Tr}(A)+(\ell-1) m)
$$

Improving the lower bound for the minimum distance

$$
\begin{gathered}
d \geq \# A\left(\mathbb{F}_{q}\right)-r \sqrt{\frac{H^{2}}{2 \ell}}(q+1-\operatorname{Tr}(A)+(\ell-1) m) \\
d_{\text {min }}-\# A\left(\mathbb{F}_{q}\right) \underset{q \rightarrow \infty}{\sim}-r \sqrt{\frac{H^{2}}{2 \ell}} q .
\end{gathered}
$$

Remark: the bound for $\ell=2$ is better than the one for $\ell=1$!
Question: There exist abelian surfaces which do not contain absolutely irreducible curves of arithmetic genus 0,1 nor 2 ?

Improving the lower bound for the minimum distance

$$
\begin{gathered}
d \geq \# A\left(\mathbb{F}_{q}\right)-r \sqrt{\frac{H^{2}}{2 \ell}}(q+1-\operatorname{Tr}(A)+(\ell-1) m) \\
d_{\text {min }}-\# A\left(\mathbb{F}_{q}\right) \underset{q \rightarrow \infty}{\sim}-r \sqrt{\frac{H^{2}}{2 \ell}} q .
\end{gathered}
$$

Remark: the bound for $\ell=2$ is better than the one for $\ell=1$!
Question: There exist abelian surfaces which do not contain absolutely irreducible curves of arithmetic genus 0,1 nor 2? YES!

Abelian surfaces without curves of low genus: starting point

Lemma:
An abelian surface A contains no absolutely irreducible curves of arithmetic genus 0,1 nor $2 \Longleftrightarrow A$ is simple and not isogenous to a Jacobian surface.

Abelian surfaces without curves of low genus: starting point

Lemma:

An abelian surface A contains no absolutely irreducible curves of arithmetic genus 0,1 nor $2 \Longleftrightarrow A$ is simple and not isogenous to a Jacobian surface.

Theorem: (Weil)

Let (A, λ) be a principally polarized abelian surface defined over the finite field k. Then (A, λ) is either

1. the polarized Jacobian of a genus 2 curve over k,
2. the product of two polarized elliptic curves over k,
3. the Weil restriction of a polarized elliptic curves over a quadratic extension of k.

Abelian surfaces without curves of low genus: starting point

Lemma:

An abelian surface A contains no absolutely irreducible curves of arithmetic genus 0,1 nor $2 \Longleftrightarrow A$ is simple and not isogenous to a Jacobian surface.

Theorem: (Weil)
Let (A, λ) be a principally polarized abelian surface defined over the finite field k. Then (A, λ) is either

1. the polarized Jacobian of a genus 2 curve over k,
2. the product of two polarized elliptic curves over k,
3. the Weil restriction of a polarized elliptic curve over a quadratic extension of k.

Abelian surfaces without curves of low genus: starting point

Lemma:

An abelian surface A contains no absolutely irreducible curves of arithmetic genus 0,1 nor $2 \Longleftrightarrow A$ is simple and not isogenous to a Jacobian surface.

Abelian surfaces that might have the property we are searching for:

- Weil restrictions of polarized elliptic curves over a quadratic extension of k,
- abelian surfaces defined over k that do not admit a principal polarization.

Abelian surfaces containing no curves of genus 0,1 nor 2

Proposition: (Aubry, B., Herbaut, Perret)
(i) Let A be an abelian surface defined over \mathbb{F}_{q} which does not admit a principal polarization. Then A does not contain absolutely irreducible curves of arithmetic genus 0,1 nor 2 .
(ii) Let $q=p^{e}$. Let E be and elliptic curve defined over $\mathbb{F}_{q^{2}}$ of trace $\operatorname{Tr}\left(E / \mathbb{F}_{q^{2}}\right)$. Let A be the $\mathbb{F}_{q^{2}} / \mathbb{F}_{q^{\prime}}$-Weil restriction of the elliptic curve E. Then A does not contain absolutely irreducible curves defined over \mathbb{F}_{q} of arithmetic genus 0,1 nor 2 if and only if one of the following cases holds:
(1) $\operatorname{Tr}\left(E / \mathbb{F}_{q^{2}}\right)=2 q-1$;
(2) $p>2$ and $\operatorname{Tr}\left(E / \mathbb{F}_{q^{2}}\right)=2 q-2$;
(3) $p \equiv 11 \bmod 12$ or $p=3, q=\square$ and $\operatorname{Tr}\left(E / \mathbb{F}_{q^{2}}\right)=q$;
(4) $p=2, q \neq \square$ and $\operatorname{Tr}\left(E / \mathbb{F}_{q^{2}}\right)=q$;
(5) $q=2$ or $q=3$, and $\operatorname{Tr}\left(E / \mathbb{F}_{q^{2}}\right)=2 q$.

What's next? Some ideas...

I) Genus 3 curves. There exist surfaces which do not contain absolutely irreducible genus 3 curves as well? If so, under which condition(s)?

What's next? Some ideas...

I) Genus 3 curves. There exist surfaces which do not contain absolutely irreducible genus 3 curves as well? If so, under which condition(s)? Partial answer: YES (Thanks to Elisa Lorenzo García and Christophe Ritzenthaler using Marseglia's algorithm)

What's next? Some ideas...

I) Genus 3 curves. There exist surfaces which do not contain absolutely irreducible genus 3 curves as well? If so, under which condition(s)?
II) Other surfaces. Applying these methods to other algebraic surfaces will give something (more) interesting?

What's next? Some ideas...

I) Genus 3 curves. There exist surfaces which do not contain absolutely irreducible genus 3 curves as well? If so, under which condition(s)?
II) Other surfaces. Applying these methods to other algebraic surfaces will give something (more) interesting? Work in progress...with the same old team (MYFE)

What's next? Some ideas...

I) Genus 3 curves. There exist surfaces which do not contain absolutely irreducible genus 3 curves as well? If so, under which condition(s)?
II) Other surfaces. Applying these methods to other algebraic surfaces will give something (more) interesting?
III) Coffee. Isn't it time for coffee break?

A S

What's next? Some ideas...

I) Genus 3 curves. There exist surfaces which do not contain absolutely irreducible genus 3 curves as well? If so, under which condition(s)?
II) Other surfaces. Applying these methods to other algebraic surfaces will give something (more) interesting?
III) Coffee. Isn't it time for coffee break?

IS ALWEYS A

Thank you for your attention!
 (Questions?)

He who asks a question is a fool for five minutes; he who does not ask a question remains a fool forever.

Confucius

