On the number of rational points on curves lying on a surface in \mathbb{P}^3

Elena Berardini¹ & Jade Nardi²

- 1. Eindhoven University of Technology
 - 2. IRMAR, CNRS, Univ Rennes 1

16 November 2022 Sabancı Algebra Seminar

https://arxiv.org/abs/2111.09578 (To appear in Acta Arithmetica)

Outline of the presentation

- Pre-existing results and motivations
- Our strategy
- 3 Preliminaries: geometry of space curves
- Technical details
- **5** Final result and open question

We let \mathbb{F}_q denote a finite field with q elements, and $\overline{\mathbb{F}}_q$ an algebraic closure of it. The projective space \mathbb{P}^n is the set of equivalence classes of points in $\mathbb{A}^{n+1}\setminus\{0\}$ under the relation $(a_0,\ldots,a_n)\sim(\lambda a_0,\ldots,\lambda a_n)$ for every $\lambda\in\overline{\mathbb{F}}_q\setminus\{0\}$.

We let \mathbb{F}_q denote a finite field with q elements, and $\overline{\mathbb{F}}_q$ an algebraic closure of it. The projective space \mathbb{P}^n is the set of equivalence classes of points in $\mathbb{A}^{n+1}\setminus\{0\}$ under the relation $(a_0,\ldots,a_n)\sim(\lambda a_0,\ldots,\lambda a_n)$ for every $\lambda\in\overline{\mathbb{F}}_q\setminus\{0\}$.

The set of \mathbb{F}_q -rational points of \mathbb{P}^n is $\mathbb{P}^n(\mathbb{F}_q) \stackrel{\mathsf{def}}{=} \{ P = (a_0 : \cdots : a_n) \in \mathbb{P}^n \mid \forall i, \ a_i \in \mathbb{F}_q \}.$

We let \mathbb{F}_a denote a finite field with q elements, and $\overline{\mathbb{F}}_a$ an algebraic closure of it. The projective space \mathbb{P}^n is the set of equivalence classes of points in $\mathbb{A}^{n+1}\setminus\{0\}$ under the relation $(a_0,\ldots,a_n)\sim(\lambda a_0,\ldots,\lambda a_n)$ for every $\lambda\in\overline{\mathbb{F}}_a\setminus\{0\}$.

The set of \mathbb{F}_a -rational points of \mathbb{P}^n is $\mathbb{P}^n(\mathbb{F}_a) \stackrel{\text{def}}{=} \{P = (a_0 : \cdots : a_n) \in \mathbb{P}^n \mid \forall i, a_i \in \mathbb{F}_a\}.$

An algebraic projective variety X defined over \mathbb{F}_q is the set of zeros of homogenous polynomials $f_1, \ldots, f_r \in \mathbb{F}_q[x_0, \ldots, x_n]$ irreducible over \mathbb{F}_q :

$$X \stackrel{\mathsf{def}}{=} \{ P \in \mathbb{P}^n \mid f_1(P) = \dots = f_r(P) = 0 \}.$$

We let \mathbb{F}_q denote a finite field with q elements, and $\overline{\mathbb{F}}_q$ an algebraic closure of it. The projective space \mathbb{P}^n is the set of equivalence classes of points in $\mathbb{A}^{n+1}\setminus\{0\}$ under the relation $(a_0,\ldots,a_n)\sim(\lambda a_0,\ldots,\lambda a_n)$ for every $\lambda\in\overline{\mathbb{F}}_q\setminus\{0\}$.

The set of \mathbb{F}_q -rational points of \mathbb{P}^n is $\mathbb{P}^n(\mathbb{F}_q) \stackrel{\mathsf{def}}{=} \{P = (a_0 : \cdots : a_n) \in \mathbb{P}^n \mid \forall i, \ a_i \in \mathbb{F}_q\}.$

An algebraic projective variety X defined over \mathbb{F}_q is the set of zeros of homogenous polynomials $f_1, \ldots, f_r \in \mathbb{F}_q[x_0, \ldots, x_n]$ irreducible over \mathbb{F}_q :

$$X \stackrel{\mathsf{def}}{=} \{ P \in \mathbb{P}^n \mid f_1(P) = \dots = f_r(P) = 0 \}.$$

The set of rational points of X is $X(\mathbb{F}_q) \stackrel{\text{def}}{=} X \cap \mathbb{P}^n(\mathbb{F}_q)$

We let \mathbb{F}_q denote a finite field with q elements, and $\overline{\mathbb{F}}_q$ an algebraic closure of it. The projective space \mathbb{P}^n is the set of equivalence classes of points in $\mathbb{A}^{n+1}\setminus\{0\}$ under the relation $(a_0,\ldots,a_n)\sim(\lambda a_0,\ldots,\lambda a_n)$ for every $\lambda\in\overline{\mathbb{F}}_q\setminus\{0\}$.

The set of \mathbb{F}_q -rational points of \mathbb{P}^n is $\mathbb{P}^n(\mathbb{F}_q) \stackrel{\mathsf{def}}{=} \{ P = (a_0 : \cdots : a_n) \in \mathbb{P}^n \mid \forall i, \ a_i \in \mathbb{F}_q \}.$

An algebraic projective variety X defined over \mathbb{F}_q is the set of zeros of homogenous polynomials $f_1, \ldots, f_r \in \mathbb{F}_q[x_0, \ldots, x_n]$ irreducible over \mathbb{F}_q :

$$X \stackrel{\mathsf{def}}{=} \{ P \in \mathbb{P}^n \mid f_1(P) = \dots = f_r(P) = 0 \}.$$

The set of rational points of X is $X(\mathbb{F}_q) \stackrel{\mathsf{def}}{=} X \cap \mathbb{P}^n(\mathbb{F}_q) = \{P \in X \mid \Phi(P) = P\}.$

We let \mathbb{F}_q denote a finite field with q elements, and $\overline{\mathbb{F}}_q$ an algebraic closure of it. The projective space \mathbb{P}^n is the set of equivalence classes of points in $\mathbb{A}^{n+1}\setminus\{0\}$ under the relation $(a_0,\ldots,a_n)\sim(\lambda a_0,\ldots,\lambda a_n)$ for every $\lambda\in\overline{\mathbb{F}}_q\setminus\{0\}$.

The set of \mathbb{F}_q -rational points of \mathbb{P}^n is $\mathbb{P}^n(\mathbb{F}_q) \stackrel{\mathsf{def}}{=} \{P = (a_0 : \cdots : a_n) \in \mathbb{P}^n \mid \forall i, \ a_i \in \mathbb{F}_q\}.$

An algebraic projective variety X defined over \mathbb{F}_q is the set of zeros of homogenous polynomials $f_1, \ldots, f_r \in \mathbb{F}_q[x_0, \ldots, x_n]$ irreducible over \mathbb{F}_q :

$$X \stackrel{\mathsf{def}}{=} \{ P \in \mathbb{P}^n \mid f_1(P) = \dots = f_r(P) = 0 \}.$$

The set of rational points of X is $X(\mathbb{F}_q) \stackrel{\mathsf{def}}{=} X \cap \mathbb{P}^n(\mathbb{F}_q) = \{P \in X \mid \Phi(P) = P\}.$

Today: algebraic varieties of dimension one (curves C) and two (surfaces S) in \mathbb{P}^3 .

We let \mathbb{F}_q denote a finite field with q elements, and $\overline{\mathbb{F}}_q$ an algebraic closure of it. The projective space \mathbb{P}^n is the set of equivalence classes of points in $\mathbb{A}^{n+1}\setminus\{0\}$ under the relation $(a_0,\ldots,a_n)\sim(\lambda a_0,\ldots,\lambda a_n)$ for every $\lambda\in\overline{\mathbb{F}}_q\setminus\{0\}$.

The set of \mathbb{F}_q -rational points of \mathbb{P}^n is $\mathbb{P}^n(\mathbb{F}_q) \stackrel{\mathsf{def}}{=} \{ P = (a_0 : \cdots : a_n) \in \mathbb{P}^n \mid \forall i, \ a_i \in \mathbb{F}_q \}.$

An algebraic projective variety X defined over \mathbb{F}_q is the set of zeros of homogenous polynomials $f_1, \ldots, f_r \in \mathbb{F}_q[x_0, \ldots, x_n]$ irreducible over \mathbb{F}_q :

$$X \stackrel{\mathsf{def}}{=} \{ P \in \mathbb{P}^n \mid f_1(P) = \dots = f_r(P) = 0 \}.$$

The set of rational points of X is $X(\mathbb{F}_q) \stackrel{\mathsf{def}}{=} X \cap \mathbb{P}^n(\mathbb{F}_q) = \{P \in X \mid \Phi(P) = P\}.$

Today: algebraic varieties of dimension one (curves C) and two (surfaces S) in \mathbb{P}^3 .

Degree of a variety $\subset \mathbb{P}^3$ (examples):

$$S: (f=0) \Rightarrow \deg S = \deg f$$
 (Surfaces)
 $C: f=g=0 \Rightarrow \deg \mathcal{C} = \deg f \times \deg g.$ (Complete intersection)

Existing bounds

Theorem [Hasse-Weil, 1948]

If C is an absolutely irreducible smooth curve of genus g defined over the finite field \mathbb{F}_q , then $\#C(\mathbb{F}_q) \leq q+1+2g\sqrt{q}$.

Theorem [Hasse-Weil, 1948, Aubry-Perret, 1993]

If C is an absolutely irreducible smooth curve of arithmetic genus π defined over the finite field \mathbb{F}_q , then $\#C(\mathbb{F}_q) \leq q + 1 + 2\pi\sqrt{q}$.

Theorem [Hasse-Weil, 1948, Aubry-Perret, 1993]

If C is an absolutely irreducible curve of arithmetic genus π defined over the finite field \mathbb{F}_q , then $\#C(\mathbb{F}_q) \leq q+1+2\pi\sqrt{q}$.

Theorem [Homma, 2012]

If C is a non-degenerate curve defined over \mathbb{F}_q of degree δ in \mathbb{P}^n , with $n \geq 3$, then $\#C(\mathbb{F}_q) \leq (\delta-1)q+1$.

Theorem [Hasse-Weil, 1948, Aubry-Perret, 1993]

If C is an absolutely irreducible curve of arithmetic genus π defined over the finite field \mathbb{F}_a , then $\#C(\mathbb{F}_q) \leq q + 1 + 2\pi\sqrt{q}$.

Theorem [Homma, 2012]

If C is a non-degenerate curve defined over \mathbb{F}_q of degree δ in \mathbb{P}^n , with $n \geq 3$, then $\#C(\mathbb{F}_q) \leq (\delta - 1)q + 1.$

Theorem [Stöhr-Voloch, 1986]

Let C/\mathbb{F}_q be an irreducible smooth curve of genus g and degree δ in \mathbb{P}^n . Let ν_1, \ldots, ν_{n-1} be its Frobenius orders (generically $\nu_i = i$). Then

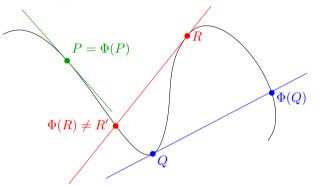
$$\#C(\mathbb{F}_q) \le \frac{1}{n} \left((\nu_1 + \dots + \nu_{n-1})(2g-2) + (q+n)\delta \right).$$

Take C a plane curve of deg. δ defined by f=0 over \mathbb{F}_q . Write Φ for the q-Frobenius morphism.

$$C(\mathbb{F}_q) = \{ P \in C \mid \Phi(P) = P \}$$

$$\mid \cap$$

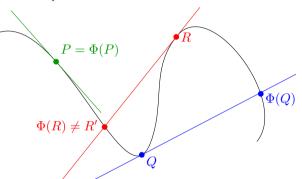
$$\{ P \in C \mid \Phi(P) \in T_P C \} \stackrel{\mathsf{def}}{=} \mathcal{Z}.$$



Take C a plane curve of deg. δ defined by f=0 over \mathbb{F}_q . Write Φ for the q-Frobenius morphism.

$$\begin{array}{lcl} C(\mathbb{F}_q) & = & \{P \in C \mid \Phi(P) = P\} \\ & & \cap \\ & \{P \in C \mid \Phi(P) \in T_P C\} \stackrel{\mathsf{def}}{=} \mathcal{Z}. \end{array}$$

Set
$$g(x,y) = X^q f_X + Y^q f_Y + Z^q f_Z$$
.
Then $\mathcal{Z} = C \cap (g=0)$.



Take C a plane curve of deg. δ defined by f=0 over \mathbb{F}_q . Write Φ for the q-Frobenius morphism.

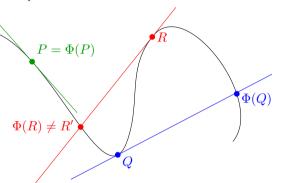
$$C(\mathbb{F}_q) = \{ P \in C \mid \Phi(P) = P \}$$

$$\mid \cap$$

$$\{ P \in C \mid \Phi(P) \in T_P C \} \stackrel{\text{def}}{=} \mathcal{Z}.$$

Set
$$g(x,y) = X^q f_X + Y^q f_Y + Z^q f_Z$$
.
Then $\mathcal{Z} = C \cap (g = 0)$.

Bézout's theorem: if $\dim \mathcal{Z} = 0$, the number of points in \mathcal{Z} counted with *multiplicity* is equal to $(\deg f) \cdot (\deg g) = \delta(\delta + q - 1)$.



Take C a plane curve of deg. δ defined by f=0 over \mathbb{F}_q . Write Φ for the q-Frobenius morphism.

$$C(\mathbb{F}_q) = \{ P \in C \mid \Phi(P) = P \}$$

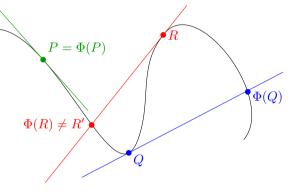
$$\mid \cap$$

$$\{ P \in C \mid \Phi(P) \in T_P C \} \stackrel{\mathsf{def}}{=} \mathcal{Z}.$$

Set
$$g(x,y) = X^q f_X + Y^q f_Y + Z^q f_Z$$
.
Then $\mathcal{Z} = C \cap (g = 0)$.

Bézout's theorem: if $\dim \mathcal{Z} = 0$, the number of points in \mathcal{Z} counted with *multiplicity* is equal to $(\deg f) \cdot (\deg g) = \delta(\delta + q - 1)$.

Multiplicity: If $P \in C(\mathbb{F}_q)$, then $m_P(\mathcal{Z}) \geq 2$.



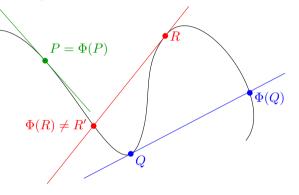
Take C a plane curve of deg. δ defined by f=0 over \mathbb{F}_q . Write Φ for the q-Frobenius morphism.

$$\begin{array}{lcl} C(\mathbb{F}_q) & = & \{P \in C \mid \Phi(P) = P\} \\ & & \cap \\ & \{P \in C \mid \Phi(P) \in T_PC\} \stackrel{\mathsf{def}}{=} \mathcal{Z}. \end{array}$$

Set
$$g(x,y) = X^q f_X + Y^q f_Y + Z^q f_Z$$
.
Then $\mathcal{Z} = C \cap (g = 0)$.

Bézout's theorem: if $\dim \mathbb{Z} = 0$, the number of points in \mathbb{Z} counted with *multiplicity* is equal to $(\deg f) \cdot (\deg g) = \delta(\delta + q - 1)$.

Multiplicity: If $P \in C(\mathbb{F}_q)$, then $m_P(\mathcal{Z}) \geq 2$.



Theorem [Stöhr-Voloch, 1986]

If C has at least a non-flex point $(\Rightarrow \dim \mathcal{Z} = 0)$, then $\#C(\mathbb{F}_q) \leq \frac{1}{2}\delta(\delta + q - 1)$.

Ideas & Motivations

Let $C \subset S \longrightarrow \mathbb{P}^n$ (via a very ample divisor).

Goal: bounding $\#C(\mathbb{F}_q)$ in terms of the embedding.

(features of the surface S and the ambient \mathbb{P}^n)

Main motivations:

• New bound for the number of rational points on projective curves.

(hopefully improving the previous ones)

Application to geometric coding theory.

Ideas & Motivations

Let $C \subset S \longrightarrow \mathbb{P}^n$ (via a very ample divisor).

Goal: bounding $\#C(\mathbb{F}_q)$ in terms of the embedding.

(features of the surface S and the ambient \mathbb{P}^n)

Main motivations:

• New bound for the number of rational points on projective curves.

(hopefully improving the previous ones)

Application to geometric coding theory.

Code from a surface S:

divisor
$$\mathsf{C}(S,\mathcal{P},D) = \{(f(P_1),\ldots,f(P_n)) \mid f \in L(D)\}$$

where
$$\mathcal{P} = (P_1, \dots, P_n) \subseteq S(\mathbb{F}_q)$$
.

$$\text{Minimum distance: } \min_{f \in L(D) \setminus \{0\}} \#\{i \mid f(P_i) \neq 0\} \geq n - \sum \#C(\mathbb{F}_q).$$

Let $C \subset S \longrightarrow \mathbb{P}^n$ (via a very ample divisor).

Goal: bounding $\#C(\mathbb{F}_q)$ in terms of the embedding.

(features of the surface S and the ambient \mathbb{P}^n)

Main motivations:

• New bound for the number of rational points on projective curves.

(hopefully improving the previous ones)

Application to geometric coding theory.

Code from a surface S:

divisor Riemann-Roch space divisor $\mathsf{C}(S,\mathcal{P},D) = \{(f(P_1),\ldots,f(P_n)) \mid f \in L(D)\}$

where $\mathcal{P} = (P_1, \dots, P_n) \subseteq S(\mathbb{F}_q)$.

Minimum distance: $\min_{f \in L(D) \setminus \{0\}} \#\{i \mid f(P_i) \neq 0\} \geq n - \sum \#C(\mathbb{F}_q).$

Bounding the minimum distance

of a code from a surface S

Better lower bound for the minimum distance

Bounding $\#C(\mathbb{F}_q)$ for the irreducible curves C on S

Better upper bound for $\#C(\mathbb{F}_q)$

On the number of rational points on curves lying on a surface in \mathbb{P}^3

Strategy (n=3)

Let $S:(f=0)\subset \mathbb{P}^3$ be a smooth irreducible algebraic surface of degree d defined $\mathbb{F}_q.$

Set $C_{\Phi}^S \stackrel{\text{def}}{=} \{P \in S \mid \Phi(P) \in T_P S\}$. Then $S(\mathbb{F}_q) \subset C_{\Phi}^S$.

Strategy (n = 3)

Let $S:(f=0)\subset \mathbb{P}^3$ be a smooth irreducible algebraic surface of degree d defined \mathbb{F}_q .

Set
$$C_{\Phi}^S \stackrel{\text{def}}{=} \{P \in S \mid \Phi(P) \in T_P S\}$$
. Then $S(\mathbb{F}_q) \subset C_{\Phi}^S$.

$$C_{\Phi}^{S}: f = h = 0 \text{ for } h := X_{0}^{q} f_{0} + X_{1}^{q} f_{1} + X_{2}^{q} f_{2} + X_{3}^{q} f_{3} \Rightarrow \deg h = d + q - 1.$$

Strategy (n=3)

Let $S:(f=0)\subset\mathbb{P}^3$ be a smooth irreducible algebraic surface of degree d defined \mathbb{F}_a .

Set
$$C_{\Phi}^S \stackrel{\text{def}}{=} \{P \in S \mid \Phi(P) \in T_P S\}$$
. Then $S(\mathbb{F}_q) \subset C_{\Phi}^S$.

$$C_{\Phi}^{S}: f = h = 0 \text{ for } h := X_{0}^{q} f_{0} + X_{1}^{q} f_{1} + X_{2}^{q} f_{2} + X_{3}^{q} f_{3} \Rightarrow \deg h = d + q - 1.$$

Take a curve $C \subset S$ of degree δ . Then $C(\mathbb{F}_q) \subseteq C \cap C^S_{\Phi}$.

If $C \cap C_x^S$ is a finite set of points, then

$$\#C(\mathbb{F}_q) \le \frac{\deg(C \cap C_{\Phi}^S)}{\min_{P \in C(\mathbb{F}_q)} m_P(C, C_{\Phi}^S)} \le \frac{\delta(d+q-1)}{2}.$$

duction 0000 Strategy 0●0 Geometry of curves 0000 Curves over Frobenius classical surfaces 0000 Result and conclusion 00

Comparisons with pre-existing bounds

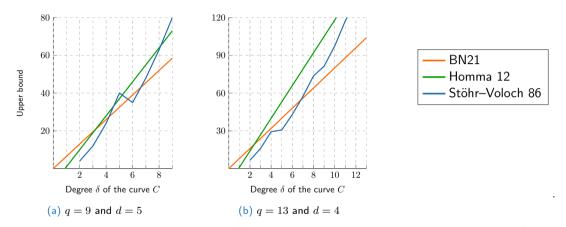


Figure: Bounds on the number of \mathbb{F}_q -points on a non-plane curve C on a degree d surface $S \subset \mathbb{P}^3$.

 \rightarrow It is worth working on this bound!

Let $S:(f=0)\subset\mathbb{P}^3$ be a smooth irreducible algebraic surface of degree d defined \mathbb{F}_q .

Set
$$C_{\Phi}^S \stackrel{\text{def}}{=} \{P \in S \mid \Phi(P) \in T_P S\}$$
. Then $S(\mathbb{F}_q) \subset C_{\Phi}^S$.

$$C_{\Phi}^{S}: f = h = 0 \text{ for } h := X_{0}^{q} f_{0} + X_{1}^{q} f_{1} + X_{2}^{q} f_{2} + X_{3}^{q} f_{3} \Rightarrow \deg h = d + q - 1.$$

Take a curve $C \subset S$ of degree δ . Then $C(\mathbb{F}_q) \subseteq C \cap C_{\Phi}^S$.

If $C \cap C_{\Phi}^S$ is a finite set of points, then

$$\#C(\mathbb{F}_q) \le \frac{\deg(C \cap C_{\Phi}^S)}{\min\limits_{P \in C(\mathbb{F}_q)} m_P(C, C_{\Phi}^S)} \le \frac{\delta(d+q-1)}{2}.$$

Two necessary conditions for $\dim(C \cap C_{\Phi}^S) = 0$:

Let $S:(f=0)\subset\mathbb{P}^3$ be a smooth irreducible algebraic surface of degree d defined \mathbb{F}_q .

Set
$$C_{\Phi}^S \stackrel{\text{def}}{=} \{P \in S \mid \Phi(P) \in T_P S\}$$
. Then $S(\mathbb{F}_q) \subset C_{\Phi}^S$.

$$C_{\Phi}^{S}: f = h = 0 \text{ for } h := X_{0}^{q} f_{0} + X_{1}^{q} f_{1} + X_{2}^{q} f_{2} + X_{3}^{q} f_{3} \Rightarrow \deg h = d + q - 1.$$

Take a curve $C \subset S$ of degree δ . Then $C(\mathbb{F}_q) \subseteq C \cap C^S_{\Phi}$.

If $C \cap C_{\Phi}^S$ is a finite set of points, then

$$\#C(\mathbb{F}_q) \le \frac{\deg(C \cap C_{\Phi}^S)}{\min_{P \in C(\mathbb{F}_q)} m_P(C, C_{\Phi}^S)} \le \frac{\delta(d+q-1)}{2}.$$

Two necessary conditions for $\dim(C \cap C_{\Phi}^S) = 0$:

① $\dim C_{\Phi}^S=1$: in this case, the surface is said to be *Frobenius classical*; Counterexample: the Hermitian surface $X^{\sqrt{q}+1}+Y^{\sqrt{q}+1}+Z^{\sqrt{q}+1}+T^{\sqrt{q}+1}=0$ over \mathbb{F}_q .

Let $S:(f=0)\subset\mathbb{P}^3$ be a smooth irreducible algebraic surface of degree d defined \mathbb{F}_q .

Set
$$C_{\Phi}^S \stackrel{\text{def}}{=} \{P \in S \mid \Phi(P) \in T_P S\}$$
. Then $S(\mathbb{F}_q) \subset C_{\Phi}^S$.

$$C_{\Phi}^{S}: f = h = 0 \text{ for } h := X_{0}^{q} f_{0} + X_{1}^{q} f_{1} + X_{2}^{q} f_{2} + X_{3}^{q} f_{3} \Rightarrow \deg h = d + q - 1.$$

Take a curve $C \subset S$ of degree δ . Then $C(\mathbb{F}_q) \subseteq C \cap C_{\Phi}^S$.

If $C \cap C_{\Phi}^S$ is a finite set of points, then

$$\#C(\mathbb{F}_q) \le \frac{\deg(C \cap C_{\Phi}^S)}{\min\limits_{P \in C(\mathbb{F}_q)} m_P(C, C_{\Phi}^S)} \le \frac{\delta(d+q-1)}{2}.$$

Two necessary conditions for $\dim(C \cap C_{\Phi}^S) = 0$:

 $\mathbf{0}$ $\dim C_{\Phi}^S=1$: in this case, the surface is said to be *Frobenius classical*; Counterexample: the Hermitian surface $X^{\sqrt{q}+1}+Y^{\sqrt{q}+1}+Z^{\sqrt{q}+1}+T^{\sqrt{q}+1}=0$ over \mathbb{F}_q . $\checkmark p \nmid d(d-1) \Rightarrow S$ is Frobenius classical.

Let $S:(f=0)\subset\mathbb{P}^3$ be a smooth irreducible algebraic surface of degree d defined \mathbb{F}_q .

Set $C_{\Phi}^S \stackrel{\text{def}}{=} \{P \in S \mid \Phi(P) \in T_P S\}$. Then $S(\mathbb{F}_q) \subset C_{\Phi}^S$.

$$C_{\Phi}^{S}: f = h = 0 \text{ for } h := X_{0}^{q} f_{0} + X_{1}^{q} f_{1} + X_{2}^{q} f_{2} + X_{3}^{q} f_{3} \Rightarrow \deg h = d + q - 1.$$

Take a curve $C \subset S$ of degree δ . Then $C(\mathbb{F}_q) \subseteq C \cap C^S_{\Phi}$.

If $C \cap C_{\Phi}^S$ is a finite set of points, then

$$\#C(\mathbb{F}_q) \le \frac{\deg(C \cap C_{\Phi}^S)}{\min_{P \in C(\mathbb{F}_q)} m_P(C, C_{\Phi}^S)} \le \frac{\delta(d+q-1)}{2}.$$

Two necessary conditions for $\dim(C \cap C_{\Phi}^S) = 0$:

- $oldsymbol{d} \dim C_{\Phi}^S=1$: in this case, the surface is said to be *Frobenius classical*; Counterexample: the Hermitian surface $X^{\sqrt{q}+1}+Y^{\sqrt{q}+1}+Z^{\sqrt{q}+1}+T^{\sqrt{q}+1}=0$ over \mathbb{F}_q . $\checkmark p \nmid d(d-1) \Rightarrow S$ is Frobenius classical.
- **2** C does not share any components with C_{Φ}^S . Counterexample: if S contains a \mathbb{F}_q -line L, then $L \subset C_{\Phi}^S$. The bound does not hold.

Let $S:(f=0)\subset \mathbb{P}^3$ be a smooth irreducible algebraic surface of degree d defined \mathbb{F}_q .

Set
$$C_{\Phi}^S \stackrel{\text{def}}{=} \{P \in S \mid \Phi(P) \in T_P S\}$$
. Then $S(\mathbb{F}_q) \subset C_{\Phi}^S$.

$$C_{\Phi}^{S}: f = h = 0 \text{ for } h := X_{0}^{q} f_{0} + X_{1}^{q} f_{1} + X_{2}^{q} f_{2} + X_{3}^{q} f_{3} \Rightarrow \deg h = d + q - 1.$$

Take a curve $C \subset S$ of degree δ . Then $C(\mathbb{F}_q) \subseteq C \cap C_{\Phi}^S$.

If $C \cap C_{\Phi}^{S}$ is a finite set of points, then

$$\#C(\mathbb{F}_q) \le \frac{\deg(C \cap C_{\Phi}^S)}{\min_{P \in C(\mathbb{F}_q)} m_P(C, C_{\Phi}^S)} \le \frac{\delta(d+q-1)}{2}.$$

Two necessary conditions for $\dim(C \cap C_{\Phi}^S) = 0$:

- $oldsymbol{d} \dim C_{\Phi}^S=1$: in this case, the surface is said to be *Frobenius classical*; Counterexample: the Hermitian surface $X^{\sqrt{q}+1}+Y^{\sqrt{q}+1}+Z^{\sqrt{q}+1}+T^{\sqrt{q}+1}=0$ over \mathbb{F}_q . $\checkmark p \nmid d(d-1) \Rightarrow S$ is Frobenius classical.
- **2** C does not share any components with C_{Φ}^S . Counterexample: if S contains a \mathbb{F}_q -line L, then $L \subset C_{\Phi}^S$. The bound does not hold.

Aim: understanding the components of the curve C_{Φ}^{S} for a Frobenius classical surface.

Osculating spaces and P-orders (Stöhr-Voloch theory 1)

Let $C\subset \mathbb{P}^3$ be an absolutely irreducible projective curve defined over \mathbb{F}_q . Fix $P\in C$. An integer j is a P-order if there exists a plane intersecting the curve C with multiplicity j at P. If C is non-plane and P is non-singular, there are exactly four distinct P-orders:

$$j_0 = 0 < j_1 < j_2 < j_3.$$

Remark: $j_1 = 1 \Leftrightarrow C$ is non-singular at the point P.

Osculating spaces and P-orders (Stöhr–Voloch theory 1)

Let $C \subset \mathbb{P}^3$ be an absolutely irreducible projective curve defined over \mathbb{F}_q . Fix $P \in C$. An integer j is a P-order if there exists a plane intersecting the curve C with multiplicity j at P. If C is non-plane and P is non-singular, there are exactly four distinct P-orders:

$$j_0 = 0 < j_1 < j_2 < j_3.$$

Remark: $j_1 = 1 \Leftrightarrow C$ is non-singular at the point P.

For almost every point $P \in C$, the sequence of P-orders is the same, say $(\varepsilon_0, \varepsilon_1, \varepsilon_2, \varepsilon_3)$. There are only finitely many points such that $(j_0, j_1, j_2, j_3) \neq (\varepsilon_0, \varepsilon_1, \varepsilon_2, \varepsilon_3)$, which are called the Weierstrass points of the curve.

Remark: $\varepsilon_1=1$ since almost every point is non–singular.

A curve is said to be classical if $(\varepsilon_0, \varepsilon_1, \varepsilon_2, \varepsilon_3) = (0, 1, 2, 3)$ and non-classical otherwise.

Osculating spaces (Stöhr-Voloch theory 2)

Fix $P \in C \subset \mathbb{P}^3$ with P-orders $(0, j_1, j_2, j_3)$.

Osculating spaces: $T_P^{(i)}C = \bigcap \{ \text{planes } H \text{ s.t. } m_P(C,H) \geq j_{i+1} \}.$

$$\begin{array}{ll} T_P^{(0)}C &= P, \\ & \cap \\ T_P^{(1)}C &= \text{tangent line for a non-singular point } P, \\ & \cap \\ T_P^{(2)}C &= \text{osculating plane of } C \text{ at } P. \\ & \cap \\ \mathbb{P}^3 \end{array}$$

Osculating spaces (Stöhr-Voloch theory 2)

Fix $P \in C \subset \mathbb{P}^3$ with P-orders $(0, i_1, i_2, i_3)$.

Osculating spaces: $T_P^{(i)}C = \bigcap \{ \text{planes } H \text{ s.t. } m_P(C,H) > j_{i+1} \}.$

$$\begin{array}{ll} T_P^{(0)}C &= P, \\ & \cap \\ T_P^{(1)}C &= \text{tangent line for a non-singular point } P, \\ & \cap \\ T_P^{(2)}C &= \text{osculating plane of } C \text{ at } P. \\ & \cap \end{array}$$

$$T_P^{(2)}C \quad = \text{osculating plane of } C \text{ at } P.$$

$$\mathbb{P}^3 \qquad \left| \begin{array}{cccc} X_0 & X_1 & X_2 & X_3 \\ x_0 & x_1 & x_2 & x_3 \\ D_t^{(j_1)}x_0 & D_t^{(j_1)}x_1 & D_t^{(j_1)}x_2 & D_t^{(j_1)}x_3 \\ D_t^{(j_2)}x_0 & D_t^{(j_2)}x_1 & D_t^{(j_2)}x_2 & D_t^{(j_2)}x_3 \end{array} \right| = 0$$
 Equation of the osculating plane $T_P^{(j)}$ and $T_P^{(j)}$ and

where $D_t^{(j)}$ are the Hasse derivatives with respect to a a local parameter t at P defined by

$$D_t^{(i)}t^k = \binom{k}{i}t^{k-i}.$$

Frobenius orders (Stöhr-Voloch theory 3)

Fix $P \in C \subset \mathbb{P}^3$ with P-orders $(0, j_1, j_2, j_3)$. Then $\Phi(P) \in T_P^{(2)}C$ if and only if

$$\begin{vmatrix} x_0^q & x_1^q & x_2^q & x_3^q \\ x_0 & x_1 & x_2 & x_3 \\ D_t^{(j_1)} x_0 & D_t^{(j_1)} x_1 & D_t^{(j_1)} x_2 & D_t^{(j_1)} x_3 \\ D_t^{(j_2)} x_0 & D_t^{(j_2)} x_1 & D_t^{(j_2)} x_2 & D_t^{(j_2)} x_3 \end{vmatrix} = 0$$

Frobenius orders (Stöhr-Voloch theory 3)

Fix $P \in C \subset \mathbb{P}^3$ with P-orders $(0, j_1, j_2, j_3)$. Then $\Phi(P) \in T_P^{(2)}C$ if and only if

$$\begin{vmatrix} x_0^q & x_1^q & x_2^q & x_3^q \\ x_0 & x_1 & x_2 & x_3 \\ D_t^{(j_1)} x_0 & D_t^{(j_1)} x_1 & D_t^{(j_1)} x_2 & D_t^{(j_1)} x_3 \\ D_t^{(j_2)} x_0 & D_t^{(j_2)} x_1 & D_t^{(j_2)} x_2 & D_t^{(j_2)} x_3 \end{vmatrix} = 0$$

Theorem [Stöhr-Voloch, 1986]

There exist integers $\nu_1 < \nu_2$ s.t. $\begin{vmatrix} x_0^q & x_1^q & x_2^q & x_3^q \\ x_0 & x_1 & x_2 & x_3 \\ D_t^{(\nu_1)} x_0 & D_t^{(\nu_1)} x_1 & D_t^{(\nu_1)} x_2 & D_t^{(\nu_1)} x_3 \\ D_t^{(\nu_2)} x_0 & D_t^{(\nu_2)} x_1 & D_t^{(\nu_2)} x_2 & D_t^{(\nu_2)} x_3 \end{vmatrix}$ is a nonzero function. Choose them minimally with respect to the lexicographic order. Then $\{\nu_1, \nu_2\} \subset \{\varepsilon_1, \varepsilon_2, \varepsilon_3\}$.

The integers $\nu_0 = 0, \nu_1, \nu_2$ are called the *Frobenius orders* of C.

The curve C is Frobenius classical if $(\nu_1, \nu_2) = (1, 2)$, Frobenius non-classical otherwise.

Remark: Frobenius non-classical \Rightarrow non-classical for $p \neq 2, 3$.

Let $C\subset S$. Fix a general point P on C, w.l.o.g. P is a non–singular point. We choose affine coordinates such that P=(0,0,0) and S and C are locally given by

$$S: z = u(x, y),$$

$$C: \begin{cases} y = g(x), \\ z = u(x, g(x)). \end{cases}$$

Denote by $(\tilde{x}, \tilde{y}, \tilde{z}) \stackrel{\text{def}}{=} \Phi(x, y, z)$. Note that $(\tilde{x}, \tilde{y}, \tilde{z}) = (x^q, y^q, z^q)$ if and only if $P \in C(\mathbb{F}_q)$.

Notations

Let $C\subset S$. Fix a general point P on C, w.l.o.g. P is a non–singular point. We choose affine coordinates such that P=(0,0,0) and S and C are locally given by

$$S: z = u(x, y),$$

$$C: \begin{cases} y = g(x), \\ z = u(x, g(x)). \end{cases}$$

Denote by $(\tilde{x}, \tilde{y}, \tilde{z}) \stackrel{\text{def}}{=} \Phi(x, y, z)$. Note that $(\tilde{x}, \tilde{y}, \tilde{z}) = (x^q, y^q, z^q)$ if and only if $P \in C(\mathbb{F}_q)$. For integers $1 \leq i < j$, we consider the function

$$\Delta(i,j) \stackrel{\text{def}}{=} \det \begin{pmatrix} 1 & \tilde{x} & \tilde{y} & \tilde{z} \\ 1 & x & y & z \\ 0 & x^{(i)} & g^{(i)} & u(x,g(x))^{(i)} \\ 0 & 0 & g^{(j)} & u(x,g(x))^{(j)} \end{pmatrix}.$$

Notations

Let $C \subset S$. Fix a general point P on C, w.l.o.g. P is a non-singular point. We choose affine coordinates such that P = (0,0,0) and S and C are locally given by

$$S: z = u(x, y), \qquad C: \begin{cases} y = g(x), \\ z = u(x, g(x)). \end{cases}$$

Denote by $(\tilde{x}, \tilde{y}, \tilde{z}) \stackrel{\text{def}}{=} \Phi(x, y, z)$. Note that $(\tilde{x}, \tilde{y}, \tilde{z}) = (x^q, y^q, z^q)$ if and only if $P \in C(\mathbb{F}_q)$. For integers $1 \le i < j$, we consider the function

$$\Delta(i,j) \stackrel{\text{def}}{=} \det \begin{pmatrix} 1 & \tilde{x} & \tilde{y} & \tilde{z} \\ 1 & x & y & z \\ 0 & x^{(i)} & g^{(i)} & u(x,g(x))^{(i)} \\ 0 & 0 & g^{(j)} & u(x,g(x))^{(j)} \end{pmatrix}.$$

Stöhr-Voloch Theorem $\Rightarrow \exists \nu_1, \nu_2 \text{ s.t. } \Delta(\nu_1, \nu_2) \text{ is a nonzero function if } C \text{ is non-plane.}$

roduction 0000 Strategy 000 Geometry of curves 0000 **Curves over Frobenius classical surfaces ●000** Result and conclusion 0

Useful lemma

Aim: Understand the components of $C_{\Phi}^S = \{P \in S \mid \Phi(P) \in T_PS\}$ on a Frob. classical surface.

Useful lemma

Aim: Understand the components of $C_{\Phi}^S = \{P \in S \mid \Phi(P) \in T_PS\}$ on a Frob. classical surface.

Lemma [BN21]

Assume that we have $u^{(j)}=g^{(j)}u_y$ for every $j\geq \max\{2,\nu_1\}$. Then either $\nu_1>1$ and C is plane or $\nu_1=1$ and $\Phi(P)\notin T_PS$ for a generic point $P\in C$ if C is non-plane.

Useful lemma

Aim: Understand the components of $C_{\Phi}^S = \{P \in S \mid \Phi(P) \in T_PS\}$ on a Frob. classical surface.

Lemma [BN21]

Assume that we have $u^{(j)}=g^{(j)}u_y$ for every $j\geq \max\{2,\nu_1\}$. Then either $\nu_1>1$ and C is plane or $\nu_1=1$ and $\Phi(P)\notin T_PS$ for a generic point $P\in C$ if C is non-plane.

Assume $\nu_1>1$. Since for $j\geq \nu_1$ we have $u^{(j)}=g^{(j)}u_y$, we obtain

$$\Delta(\nu_1,j) = \det \begin{pmatrix} 1 & \tilde{x} & \tilde{y} & \tilde{z} \\ 1 & x & y & z \\ 0 & 0 & g^{(\nu_1)} & g^{(\nu_1)}u_y \\ 0 & 0 & g^{(j)} & g^{(j)}u_y \end{pmatrix} = 0 \Rightarrow \Delta(\nu_1,j) = 0 \ \forall j \ \text{(plane curve)}.$$

Aim: Understand the components of $C_{\Phi}^S = \{ P \in S \mid \Phi(P) \in T_P S \}$ on a Frob. classical surface.

Lemma [BN21]

Assume that we have $u^{(j)}=g^{(j)}u_y$ for every $j\geq \max\{2,\nu_1\}$. Then either $\nu_1>1$ and C is plane or $\nu_1=1$ and $\Phi(P)\notin T_PS$ for a generic point $P\in C$ if C is non-plane.

Assume $\nu_1>1$. Since for $j\geq \nu_1$ we have $u^{(j)}=g^{(j)}u_y$, we obtain

$$\Delta(\nu_1, j) = \det \begin{pmatrix} 1 & \tilde{x} & \tilde{y} & \tilde{z} \\ 1 & x & y & z \\ 0 & 0 & g^{(\nu_1)} & g^{(\nu_1)} u_y \\ 0 & 0 & g^{(j)} & g^{(j)} u_y \end{pmatrix} = 0 \Rightarrow \Delta(\nu_1, j) = 0 \ \forall j \ \text{(plane curve)}.$$

Assume $\nu_1=1.$ Using that $u^{(j)}=g^{(j)}u_y$ for $j\geq 2$ we get

$$\Delta(1,j) = g^{(j)} \det \begin{pmatrix} 1 & \tilde{x} & \tilde{y} & \tilde{z} \\ 1 & x & y & z \\ 0 & 1 & g' & u_x + g'u_y \\ 0 & 0 & 1 & u_y \end{pmatrix} = g^{(j)} [(\tilde{x} - x)u_x + (\tilde{y} - y)u_y - (\tilde{z} - z)].$$

 $\operatorname{\bf Aim:}\,$ Understand the components of C_Φ^S on a Frobenius classical surface.

Proposition [BN21]

Let C be a non-plane curve lying on a Frobenius classical surface S. Assume that C is Frobenius non-classical with $\nu_1=1$. Then, for a generic point $P\in C$, we have $\Phi(P)\notin T_PS$.

 $\mathbf{Aim:}\,$ Understand the components of C_Φ^S on a Frobenius classical surface.

Proposition [BN21]

Let C be a non-plane curve lying on a Frobenius classical surface S. Assume that C is Frobenius non-classical with $\nu_1=1$. Then, for a generic point $P\in C$, we have $\Phi(P)\notin T_PS$.

By contradiction, take P such that $\Phi(P) \in T_P S$.

Aim: Understand the components of C_Φ^S on a Frobenius classical surface.

Proposition [BN21]

Let C be a non-plane curve lying on a Frobenius classical surface S. Assume that C is Frobenius non-classical with $\nu_1=1$. Then, for a generic point $P\in C$, we have $\Phi(P)\notin T_PS$.

$$\Delta(1,2) = (x - \tilde{x})[g'u'' - g''(u_x + g'u_y)] - (y - \tilde{y})u'' + (z - \tilde{z})g'' = 0$$

Aim: Understand the components of C_{Φ}^S on a Frobenius classical surface.

Proposition [BN21]

Let C be a non-plane curve lying on a Frobenius classical surface S. Assume that C is Frobenius non-classical with $\nu_1=1$. Then, for a generic point $P\in C$, we have $\Phi(P)\notin T_PS$.

$$\Delta(1,2) = (x - \tilde{x})[g'u'' - g''(u_x + g'u_y)] - (y - \tilde{y})u'' + (z - \tilde{z})g'' = 0$$

$$\Phi(P) \in T_P S \Leftrightarrow z - \tilde{z} = u_x(x - \tilde{x}) + u_y(y - \tilde{y}).$$

$$\Rightarrow (x - \tilde{x})(g'u'' - g''g'u_y) - (y - \tilde{y})(u'' - g''u_y) = [(x - \tilde{x})g' - (y - \tilde{y})](u'' - g''u_y) = 0.$$

Aim: Understand the components of C_{Φ}^S on a Frobenius classical surface.

Proposition [BN21]

Let C be a non-plane curve lying on a Frobenius classical surface S. Assume that C is Frobenius non-classical with $\nu_1=1$. Then, for a generic point $P\in C$, we have $\Phi(P)\notin T_PS$.

$$\Delta(1,2) = (x - \tilde{x})[g'u'' - g''(u_x + g'u_y)] - (y - \tilde{y})u'' + (z - \tilde{z})g'' = 0$$

$$\Phi(P) \in T_P S \Leftrightarrow z - \tilde{z} = u_x(x - \tilde{x}) + u_y(y - \tilde{y}).$$

$$\Rightarrow (x - \tilde{x})(g'u'' - g''g'u_y) - (y - \tilde{y})(u'' - g''u_y) = [(x - \tilde{x})g' - (y - \tilde{y})](u'' - g''u_y) = 0.$$

Case 1:
$$q' = (y - \tilde{y})/(x - \tilde{x})$$

Aim: Understand the components of C_{Φ}^S on a Frobenius classical surface.

Proposition [BN21]

Let C be a non-plane curve lying on a Frobenius classical surface S. Assume that C is Frobenius non-classical with $\nu_1=1$. Then, for a generic point $P\in C$, we have $\Phi(P)\notin T_PS$.

$$\Delta(1,2) = (x - \tilde{x})[g'u'' - g''(u_x + g'u_y)] - (y - \tilde{y})u'' + (z - \tilde{z})g'' = 0$$

$$\Phi(P) \in T_P S \Leftrightarrow z - \tilde{z} = u_x(x - \tilde{x}) + u_y(y - \tilde{y}).$$

$$\Rightarrow (x - \tilde{x})(g'u'' - g''g'u_y) - (y - \tilde{y})(u'' - g''u_y) = [(x - \tilde{x})g' - (y - \tilde{y})](u'' - g''u_y) = 0.$$

Case 1:
$$g' = (y - \tilde{y})/(x - \tilde{x}) \Rightarrow \nu_1 > 1 \rightarrow \text{contradiction}$$
. (C has $\nu_1 = 1$.)

Case 2: $u'' - g''u_y = u_{yy}(g')^2 + 2g'u_{xy} + u_{xx} = 0$.

Case 2:
$$u'' - g''u_y = u_{yy}(g')^2 + 2g'u_{xy} + u_{xx} = 0$$
. Solving in the variable g' gives
$$g' = (y - \tilde{y})/(x - \tilde{x}) \quad \text{or} \quad g' = -u_{xy}/u_{yy}.$$
 \checkmark (Case 1)

Case 2:
$$u'' - g''u_y = u_{yy}(g')^2 + 2g'u_{xy} + u_{xx} = 0$$
. Solving in the variable g' gives

$$g' = (y - \tilde{y})/(x - \tilde{x}) \quad \text{ or } \quad g' = -u_{xy}/u_{yy}.$$
 \checkmark (Case 1)

Compute $u^{(j)}$:

$$u'' = g'' u_y.$$

$$u^{(3)} = g^{(3)}u_y + g''(u_{xy} + g'u_{yy}) = g^{(3)}u_y$$

By recursion, we have that $u(x,g(x))^{(j)}=g^{(j)}u_y$ for every $j\geq 2$

Case 2: $u'' - g''u_y = u_{yy}(g')^2 + 2g'u_{xy} + u_{xx} = 0$. Solving in the variable g' gives

$$g' = (y - \tilde{y})/(x - \tilde{x})$$
 or $g' = -u_{xy}/u_{yy}$. \checkmark (Case 1)

Compute $u^{(j)}$:

$$u'' = g'' u_y.$$

$$u^{(3)} = g^{(3)}u_y + g''(\frac{u_{xy} + g'u_{yy}}{u_{yy}}) = g^{(3)}u_y$$

By recursion, we have that $u(x, g(x))^{(j)} = g^{(j)}u_y$ for every $j \ge 2 \Rightarrow \Phi(P) \notin T_P S$. (Lemma)

Case 2:
$$u'' - g''u_y = u_{yy}(g')^2 + 2g'u_{xy} + u_{xx} = 0$$
. Solving in the variable g' gives

$$g' = (y - \tilde{y})/(x - \tilde{x}) \quad \text{ or } \quad g' = -u_{xy}/u_{yy}.$$
 \checkmark (Case 1)

Compute $u^{(j)}$:

$$u'' = g'' u_y.$$

$$u^{(3)} = g^{(3)}u_y + g''(\frac{u_{xy} + g'u_{yy}}{u_{yy}}) = g^{(3)}u_y$$

By recursion, we have that $u(x,g(x))^{(j)}=g^{(j)}u_y$ for every $j\geq 2\Rightarrow \Phi(P)\notin T_PS.$ (Lemma)

Conclusion: Non-plane Frobenius non-classical curves with $\nu_1=1$ are not components of C_Φ^S .

Case 2:
$$u'' - g''u_y = u_{yy}(g')^2 + 2g'u_{xy} + u_{xx} = 0$$
. Solving in the variable g' gives

 $g' = (y - \tilde{y})/(x - \tilde{x})$ or $g' = -u_{xy}/u_{yy}$. \checkmark (Case 1)

Compute $u^{(j)}$:

$$u'' = g'' u_y.$$

$$u^{(3)} = g^{(3)}u_y + g''(u_{xy} + g'u_{yy}) = g^{(3)}u_y$$

By recursion, we have that $u(x,g(x))^{(j)}=g^{(j)}u_y$ for every $j\geq 2\Rightarrow \Phi(P)\notin T_PS.$ (Lemma)

Conclusion: Non-plane Frobenius non-classical curves with $\nu_1=1$ are not components of C_Φ^S .

What about $\nu_1 > 1$?

Case 2: $u'' - g''u_y = u_{yy}(g')^2 + 2g'u_{xy} + u_{xx} = 0$. Solving in the variable g' gives

$$g' = (y - \tilde{y})/(x - \tilde{x}) \quad \text{ or } \quad g' = -u_{xy}/u_{yy}.$$
 \checkmark (Case 1)

Compute $u^{(j)}$:

$$u'' = g'' u_y.$$

$$u^{(3)} = g^{(3)}u_y + g''(u_{xy} + g'u_{yy}) = g^{(3)}u_y$$

By recursion, we have that $u(x,g(x))^{(j)}=g^{(j)}u_y$ for every $j\geq 2\Rightarrow \Phi(P)\notin T_PS.$ (Lemma)

Conclusion: Non-plane Frobenius non-classical curves with $\nu_1=1$ are not components of C_Φ^S .

What about
$$\nu_1 > 1$$
? $\nu_1 > 1 \Rightarrow \Phi(P) \in T_P^{(1)}C \subset T_PS$

(Sad) Fact: Frobenius non–classical curves with $u_1>1$ are components of C_Φ^S

Case 2: $u'' - g''u_y = u_{yy}(g')^2 + 2g'u_{xy} + u_{xx} = 0$. Solving in the variable g' gives

$$g' = (y - \tilde{y})/(x - \tilde{x}) \quad \text{ or } \quad g' = -u_{xy}/u_{yy}.$$
 \checkmark (Case 1)

Compute $u^{(j)}$:

$$u'' = g'' u_y.$$

$$u^{(3)} = g^{(3)}u_y + g''(u_{xy} + g'u_{yy}) = g^{(3)}u_y$$

By recursion, we have that $u(x,g(x))^{(j)}=g^{(j)}u_y$ for every $j\geq 2\Rightarrow \Phi(P)\notin T_PS$. (Lemma)

Conclusion: Non-plane Frobenius non-classical curves with $\nu_1=1$ are not components of C_Φ^S .

What about $\nu_1 > 1$? $\nu_1 > 1 \Rightarrow \Phi(P) \in T_P^{(1)}C \subset T_PS$

(Sad) Fact: Frobenius non–classical curves with $\nu_1>1$ are components of C_Φ^S . However...

Proposition [BN21]

Assume that C is Frobenius non-classical with $\nu_1 > 1$ and $\delta \leq q$. Then C is plane.

Frobenius classical components of C_Φ^S

Recap: A component of C_Φ^S falls in one of the following cases:

- $\nu_1>1$: in this case, if it has $\delta\leq q$, it is plane;
- it is Frobenius classical, i.e. $\{\nu_1, \nu_2\} = \{1, 2\}$.

Conjecture: Frobenius classical non-plane irreducible components of the C_{Φ}^{S} have degree $\delta > q$.

Frobenius classical components of C_Φ^S

Recap: A component of C_{Φ}^{S} falls in one of the following cases:

- $\nu_1 > 1$: in this case, if it has $\delta \leq q$, it is plane;
- it is Frobenius classical, i.e. $\{\nu_1, \nu_2\} = \{1, 2\}$.

Conjecture: Frobenius classical non–plane irreducible components of the C_{Φ}^{S} have degree $\delta > q$.

Rephrased: Non-plane Frobenius classical curves with $\delta \leq q$ are not components of C_{Φ}^{S} .

Frobenius classical components of C_{Φ}^{S}

Recap: A component of C_{Φ}^{S} falls in one of the following cases:

- $\nu_1 > 1$: in this case, if it has $\delta \leq q$, it is plane;
- it is Frobenius classical, i.e. $\{\nu_1, \nu_2\} = \{1, 2\}$.

Conjecture: Frobenius classical non–plane irreducible components of the C_{Φ}^{S} have degree $\delta>q$.

Rephrased: Non-plane Frobenius classical curves with $\delta \leq q$ are not components of C_{Φ}^{S} .

Example of surface with highly reducible C_{Φ}^{S}

Over \mathbb{F}_5 , consider the surface S defined by

$$f = 2X_0X_1^2 + 2X_1^3 + 2X_0^2X_2 + 2X_0X_1X_2 + X_1^2X_2 + 2X_0X_2^2 + 3X_1X_2^2 +3X_2^3 + 4X_0^2X_3 + X_0X_1X_3 + X_1^2X_3 + 2X_1X_2X_3 + 2X_2^2X_3 +3X_0X_3^2 + 4X_1X_3^2 + X_2X_3^2.$$

The curve C_{Φ}^{S} has degree 21 and is formed of 15 \mathbb{F}_{5} -lines and one non-plane sextic $(\delta = q + 1)$.

Theorem [BN21]

Let S be an irreducible Frobenius classical surface of degree d>1 in \mathbb{P}^3 . Let C be a non-plane irreducible curve of degree $\delta \leq q$ lying on S. Suppose C is Frobenius non-classical. Then

$$\#C(\mathbb{F}_q) \le \frac{\delta(d+q-1)}{2}.$$

Under the conjecture, the bound also holds for Frobenius classical curves.

Main result & Remarks

Theorem [BN21]

Let S be an irreducible Frobenius classical surface of degree d>1 in \mathbb{P}^3 . Let C be a non-plane irreducible curve of degree $\delta \leq q$ lying on S. Suppose C is Frobenius non-classical. Then

$$\#C(\mathbb{F}_q) \le \frac{\delta(d+q-1)}{2}.$$

Under the conjecture, the bound also holds for Frobenius classical curves.

• A plane curve on a degree d surface has $\delta < d \Rightarrow$ our bound holds for plane curves which have at least one point P such that $\Phi(P) \notin T_P C$ by Stöhr-Voloch bound $(\delta(\delta + q - 1)/2)$.

Main result & Remarks

Theorem [BN21]

Let S be an irreducible Frobenius classical surface of degree d>1 in \mathbb{P}^3 . Let C be a non-plane irreducible curve of degree $\delta \leq q$ lying on S. Suppose C is Frobenius non-classical. Then

$$\#C(\mathbb{F}_q) \le \frac{\delta(d+q-1)}{2}.$$

Under the conjecture, the bound also holds for Frobenius classical curves.

- A plane curve on a degree d surface has $\delta \leq d \Rightarrow$ our bound holds for plane curves which have at least one point P such that $\Phi(P) \notin T_PC$ by Stöhr-Voloch bound $(\delta(\delta+q-1)/2)$.
- Embedding entails arithmetic and geometric constraints on a variety: For $\delta=11$ and d=5 over \mathbb{F}_9 , C has genus at most 17 and $\#C(\mathbb{F}_q)\leq 72$. In ManyPoints, maximal curves of genus 16 and 17 have 74 \mathbb{F}_9 -points. These record curves cannot lie on a Frobenius classical surface in \mathbb{P}^3 , unless being a component of C_Φ^S .

What about $C \subset S \subset \mathbb{P}^n$ for $n \geq 4$?

Our theorem essentially relies on the geometry of space curves and the intersection theory in \mathbb{P}^3 .

Can we generalize our approach when $C \subset S \subset \mathbb{P}^n$, for $n \geq 4$?

What about $C \subset S \subset \mathbb{P}^n$ for $n \geq 4$?

Our theorem essentially relies on the geometry of space curves and the intersection theory in \mathbb{P}^3 .

Can we generalize our approach when $C \subset S \subset \mathbb{P}^n$, for $n \geq 4$?

Consider the varieties in $S \times \mathbb{P}^n$

- $\Gamma_C = \{(P, \Phi(P)) \in C^2 \mid P \in C\}$ the graph of Φ restricted to the curve C,
- $\mathcal{T}_S = \{(P, Q) \in S \times \mathbb{P}^n \mid P \in S, Q \in T_P S\}.$

Then $C(\mathbb{F}_q) \stackrel{\Delta}{\hookrightarrow} \Gamma_C \cap \mathcal{T}_S \simeq \{P \in C \mid \Phi(P) \in T_P S\}.$

Remark: \hat{C}_{Φ}^S was the image of $\Gamma_C \cap \mathcal{T}_S \in S \times \mathbb{P}^3$ under the 1^{st} projection.

What about $C \subset S \subset \mathbb{P}^n$ for $n \geq 4$?

Our theorem essentially relies on the geometry of space curves and the intersection theory in \mathbb{P}^3 .

Can we generalize our approach when $C \subset S \subset \mathbb{P}^n$, for $n \geq 4$?

Consider the varieties in $S \times \mathbb{P}^n$

- $\Gamma_C = \{(P, \Phi(P)) \in C^2 \mid P \in C\}$ the graph of Φ restricted to the curve C, (dim 1)
- $\mathcal{T}_S = \{ (P, Q) \in S \times \mathbb{P}^n \mid P \in S, \ Q \in T_P S \}.$ (dim 4)

Then $C(\mathbb{F}_q) \stackrel{\Delta}{\longleftrightarrow} \Gamma_C \cap \mathcal{T}_S \simeq \{P \in C \mid \Phi(P) \in T_P S\}.$

Remark: C_{Φ}^S was the image of $\Gamma_C \cap \mathcal{T}_S \in S \times \mathbb{P}^3$ under the 1^{st} projection.

 Γ_C and \mathcal{T}_S have complementary dimensions in $S \times \mathbb{P}^n$ (of dim n+2) if and only if n=3.

ightarrow bound the number of rational points on C by a fraction of the intersection product $[\Gamma_C] \cdot [\mathcal{T}_S]$.

When $n \geq 4$, $[\Gamma_C] \cdot [\mathcal{T}_S] = 0$ while $\Gamma_C \cap \mathcal{T}_S \neq \emptyset$.

Idea: Fix this dimension incompatibility by blowing up \mathcal{T}_S or $S \times S$.

What about $C \subset S \subset \mathbb{P}^n$ for n > 4?

Our theorem essentially relies on the geometry of space curves and the intersection theory in \mathbb{P}^3 .

Can we generalize our approach when $C \subset S \subset \mathbb{P}^n$, for $n \geq 4$?

Consider the varieties in $S \times \mathbb{P}^n$

- $\Gamma_C = \{(P, \Phi(P)) \in \mathbb{C}^2 \mid P \in \mathbb{C}\}$ the graph of Φ restricted to the curve \mathbb{C} , (dim 1)
- $\mathcal{T}_S = \{(P, Q) \in S \times \mathbb{P}^n \mid P \in S, Q \in T_P S\}.$ (dim 4)

Then $C(\mathbb{F}_q) \stackrel{\Delta}{\longleftrightarrow} \Gamma_C \cap \mathcal{T}_S \simeq \{P \in C \mid \Phi(P) \in T_P S\}.$

Remark: C_x^S was the image of $\Gamma_C \cap \mathcal{T}_S \in S \times \mathbb{P}^3$ under the 1^{st} projection.

 Γ_C and \mathcal{T}_S have complementary dimensions in $S \times \mathbb{P}^n$ (of dim n+2) if and only if n=3.

 \rightarrow bound the number of rational points on C by a fraction of the intersection product $[\Gamma_C] \cdot [\mathcal{T}_S]$.

When $n \geq 4$, $[\Gamma_C] \cdot [\mathcal{T}_S] = 0$ while $\Gamma_C \cap \mathcal{T}_S \neq \emptyset$.

Idea: Fix this dimension incompatibility by blowing up \mathcal{T}_S or $S \times S$.

Thank you for your attention!