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Curves, surfaces, rational points and all that jazz

We let Fq denote a finite field with q elements, and Fq an algebraic closure of it.
The projective space Pn is the set of equivalence classes of points in An+1 \ {0} under the
relation (a0, . . . , an) ∼ (λa0, . . . , λan) for every λ ∈ Fq \ {0}.

The set of Fq–rational points of Pn is Pn(Fq)
def
= {P = (a0 : · · · : an) ∈ Pn | ∀ i, ai ∈ Fq}.

An algebraic projective variety X defined over Fq is the set of zeros of homogenous polynomials
f1, . . . , fr ∈ Fq[x0, . . . , xn] irreducible over Fq:

X
def
= {P ∈ Pn | f1(P ) = · · · = fr(P ) = 0}.

The set of rational points of X is X(Fq)
def
= X ∩ Pn(Fq) = {P ∈ X |

Frobenius morphism

Φ(P ) = P}.

Today: algebraic varieties of dimension one (curves C) and two (surfaces S) in P3.

Degree of a variety ⊂ P3 (examples):

S : (f = 0)⇒ degS = deg f

C : f = g = 0⇒ deg C = deg f × deg g.

(Surfaces)
(Complete intersection)
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Existing bounds

Theorem [Hasse–Weil, 1948]

If C is an absolutely irreducible smooth curve of genus g defined over the finite field Fq, then
#C(Fq) ≤ q + 1 + 2g

√
q.

Theorem [Homma, 2012]

If C is a non–degenerate curve defined over Fq of degree δ in Pn, with n ≥ 3, then
#C(Fq) ≤ (δ − 1)q + 1.

Theorem [Stöhr–Voloch, 1986]

Let C/Fq be an irreducible smooth curve of genus g and degree δ in Pn. Let ν1, . . . , νn−1 be its
Frobenius orders (generically νi = i). Then

#C(Fq) ≤
1

n
((ν1 + · · ·+ νn−1)(2g − 2) + (q + n)δ) .
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Stöhr and Voloch’s strategy for plane curves

Take C a plane curve of deg. δ defined by f = 0 over Fq. Write Φ for the q–Frobenius morphism.

C(Fq) = {P ∈ C | Φ(P ) = P}⊆

{P ∈ C | Φ(P ) ∈ TPC}
def
= Z.

Set g(x, y) = XqfX + Y qfY + ZqfZ .
Then Z = C ∩ (g = 0).

Bézout’s theorem: if dimZ = 0, the number
of points in Z counted with multiplicity is equal
to (deg f) · (deg g) = δ(δ + q − 1).

Multiplicity: If P ∈ C(Fq), then mP (Z) ≥ 2.

P = Φ(P )

Q

Φ(Q)

R

Φ(R) 6= R′

Theorem [Stöhr–Voloch, 1986]

If C has at least a non–flex point (⇒ dimZ = 0), then #C(Fq) ≤ 1
2δ(δ + q − 1).
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Ideas & Motivations

Let C ⊂ S ↪−→ Pn (via a very ample divisor).

Goal: bounding #C(Fq) in terms of the embedding.
(features of the surface S and the ambient Pn)

Main motivations:
• New bound for the number of rational points on projective curves.

(hopefully improving the previous ones)
• Application to geometric coding theory.

Code from a surface S:

C(S,P,
divisor
D) = {(f(P1), . . . , f(Pn)) | f ∈

Riemann–Roch space

L(D)}
where P = (P1, . . . , Pn) ⊆ S(Fq).

Minimum distance: min
f∈L(D)\{0}

#{i | f(Pi) 6= 0} ≥ n−
∑

#C(Fq).

Bounding the minimum distance
of a code from a surface S

 
Bounding #C(Fq)

for the irreducible curves C on S

Better lower bound for the minimum distance ⇐⇒ Better upper bound for #C(Fq)
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Strategy (n = 3)

Let S : (f = 0) ⊂ P3 be a smooth irreducible algebraic surface of degree d defined Fq.

Set CSΦ
def
= {P ∈ S | Φ(P ) ∈ TPS}. Then S(Fq) ⊂ CSΦ.

CSΦ : f = h = 0 for h := Xq
0f0 +Xq

1f1 +Xq
2f2 +Xq

3f3⇒ deg h = d+ q − 1.

Take a curve C ⊂ S of degree δ. Then C(Fq) ⊆ C ∩ CSΦ.

If C ∩ CSΦ is a finite set of points, then

#C(Fq) ≤
deg(C ∩ CSΦ)

min
P∈C(Fq)

mP (C,CSΦ)
≤ δ(d+ q − 1)

2
.
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Comparisons with pre–existing bounds
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(a) q = 9 and d = 5
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(b) q = 13 and d = 4
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.

Figure: Bounds on the number of Fq–points on a non–plane curve C on a degree d surface S ⊂ P3.

→ It is worth working on this bound!
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Strategy (2/2)

Let S : (f = 0) ⊂ P3 be a smooth irreducible algebraic surface of degree d defined Fq.

Set CSΦ
def
= {P ∈ S | Φ(P ) ∈ TPS}. Then S(Fq) ⊂ CSΦ.

CSΦ : f = h = 0 for h := Xq
0f0 +Xq

1f1 +Xq
2f2 +Xq

3f3⇒ deg h = d+ q − 1.

Take a curve C ⊂ S of degree δ. Then C(Fq) ⊆ C ∩ CSΦ.

If C ∩ CSΦ is a finite set of points, then

#C(Fq) ≤
deg(C ∩ CSΦ)

min
P∈C(Fq)

mP (C,CSΦ)
≤ δ(d+ q − 1)

2
.

Two necessary conditions for dim(C ∩ CSΦ) = 0:

1 dimCSΦ = 1: in this case, the surface is said to be Frobenius classical ;
Counterexample: the Hermitian surface X

√
q+1 + Y

√
q+1 + Z

√
q+1 + T

√
q+1 = 0 over Fq.

Ë p - d(d− 1)⇒ S is Frobenius classical.

2 C does not share any components with CSΦ.
Counterexample: if S contains a Fq–line L, then L ⊂ CS

Φ . The bound does not hold.

Aim: understanding the components of the curve CSΦ for a Frobenius classical surface.
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Introduction Strategy Geometry of curves Curves over Frobenius classical surfaces Result and conclusion

Osculating spaces and P -orders (Stöhr–Voloch theory 1)

Let C ⊂ P3 be an absolutely irreducible projective curve defined over Fq. Fix P ∈ C.
An integer j is a P–order if there exists a plane intersecting the curve C with multiplicity j at P .
If C is non–plane and P is non–singular, there are exactly four distinct P–orders:

j0 = 0 < j1 < j2 < j3.

Remark: j1 = 1 ⇔ C is non–singular at the point P .

For almost every point P ∈ C, the sequence of P–orders is the same, say (ε0, ε1, ε2, ε3).
There are only finitely many points such that (j0, j1, j2, j3) 6= (ε0, ε1, ε2, ε3), which are called the
Weierstrass points of the curve.
Remark: ε1 = 1 since almost every point is non–singular.

A curve is said to be classical if (ε0, ε1, ε2, ε3) = (0, 1, 2, 3) and non–classical otherwise.
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Osculating spaces (Stöhr–Voloch theory 2)

Fix P ∈ C ⊂ P3 with P–orders (0, j1, j2, j3).

Osculating spaces: T
(i)
P C =

⋂
{planes H s.t. mP (C,H) ≥ ji+1}.

T
(0)
P C = P,⊂

T
(1)
P C = tangent line for a non–singular point P,⊂

T
(2)
P C = osculating plane of C at P.⊂

P3

Equation of the osculating plane T
(2)
P C :

∣∣∣∣∣∣∣∣
X0 X1 X2 X3

x0 x1 x2 x3

D
(j1)
t x0 D

(j1)
t x1 D

(j1)
t x2 D

(j1)
t x3

D
(j2)
t x0 D

(j2)
t x1 D

(j2)
t x2 D

(j2)
t x3

∣∣∣∣∣∣∣∣ = 0

where D
(j)
t are the Hasse derivatives with respect to a a local parameter t at P defined by

D
(i)
t tk =

(
k

i

)
tk−i.
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Frobenius orders (Stöhr–Voloch theory 3)

Fix P ∈ C ⊂ P3 with P–orders (0, j1, j2, j3). Then Φ(P ) ∈ T (2)
P C if and only if∣∣∣∣∣∣∣∣

xq0 xq1 xq2 xq3
x0 x1 x2 x3

D
(j1)
t x0 D

(j1)
t x1 D

(j1)
t x2 D

(j1)
t x3

D
(j2)
t x0 D

(j2)
t x1 D

(j2)
t x2 D

(j2)
t x3

∣∣∣∣∣∣∣∣ = 0

Theorem [Stöhr–Voloch, 1986]

There exist integers ν1 < ν2 s.t.

∣∣∣∣∣∣∣∣
xq0 xq1 xq2 xq3
x0 x1 x2 x3

D
(ν1)
t x0 D

(ν1)
t x1 D

(ν1)
t x2 D

(ν1)
t x3

D
(ν2)
t x0 D

(ν2)
t x1 D

(ν2)
t x2 D

(ν2)
t x3

∣∣∣∣∣∣∣∣ is a nonzero function.

Choose them minimally with respect to the lexicographic order. Then {ν1, ν2} ⊂ {ε1, ε2, ε3}.

The integers ν0 = 0, ν1, ν2 are called the Frobenius orders of C.

The curve C is Frobenius classical if (ν1, ν2) = (1, 2), Frobenius non–classical otherwise.
Remark: Frobenius non–classical ⇒ non–classical for p 6= 2, 3.
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Frobenius orders (Stöhr–Voloch theory 3)

Fix P ∈ C ⊂ P3 with P–orders (0, j1, j2, j3). Then Φ(P ) ∈ T (2)
P C if and only if∣∣∣∣∣∣∣∣

xq0 xq1 xq2 xq3
x0 x1 x2 x3

D
(j1)
t x0 D

(j1)
t x1 D

(j1)
t x2 D

(j1)
t x3

D
(j2)
t x0 D

(j2)
t x1 D

(j2)
t x2 D

(j2)
t x3

∣∣∣∣∣∣∣∣ = 0
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Notations

Let C ⊂ S. Fix a general point P on C, w.l.o.g. P is a non–singular point. We choose affine
coordinates such that P = (0, 0, 0) and S and C are locally given by

S : z = u(x, y), C :

{
y = g(x),

z = u(x, g(x)).

Denote by (x̃, ỹ, z̃)
def
= Φ(x, y, z). Note that (x̃, ỹ, z̃) = (xq, yq, zq) if and only if P ∈ C(Fq).

For integers 1 ≤ i < j, we consider the function

∆(i, j)
def
= det


1 x̃ ỹ z̃
1 x y z
0 x(i) g(i) u(x, g(x))(i)

0 0 g(j) u(x, g(x))(j)

 .

Stöhr–Voloch Theorem ⇒ ∃ ν1, ν2 s.t. ∆(ν1, ν2) is a nonzero function if C is non–plane.
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Stöhr–Voloch Theorem ⇒ ∃ ν1, ν2 s.t. ∆(ν1, ν2) is a nonzero function if C is non–plane.

On the number of rational points on curves lying on a surface in P3 E. Berardini & J. Nardi 13 / 19



Introduction Strategy Geometry of curves Curves over Frobenius classical surfaces Result and conclusion

Notations

Let C ⊂ S. Fix a general point P on C, w.l.o.g. P is a non–singular point. We choose affine
coordinates such that P = (0, 0, 0) and S and C are locally given by

S : z = u(x, y), C :

{
y = g(x),

z = u(x, g(x)).

Denote by (x̃, ỹ, z̃)
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Stöhr–Voloch Theorem ⇒ ∃ ν1, ν2 s.t. ∆(ν1, ν2) is a nonzero function if C is non–plane.

On the number of rational points on curves lying on a surface in P3 E. Berardini & J. Nardi 13 / 19



Introduction Strategy Geometry of curves Curves over Frobenius classical surfaces Result and conclusion

Useful lemma

Aim: Understand the components of CSΦ= {P ∈ S | Φ(P ) ∈ TPS} on a Frob. classical surface.

Lemma [BN21]

Assume that we have u(j) = g(j)uy for every j ≥ max{2, ν1}. Then either ν1 > 1 and C is plane
or ν1 = 1 and Φ(P ) /∈ TPS for a generic point P ∈ C if C is non-plane.

Assume ν1 > 1. Since for j ≥ ν1 we have u(j) = g(j)uy, we obtain

∆(ν1, j) = det


1 x̃ ỹ z̃
1 x y z
0 0 g(ν1) g(ν1)uy
0 0 g(j) g(j)uy

 = 0⇒ ∆(ν1, j) = 0 ∀j (plane curve).

Assume ν1 = 1. Using that u(j) = g(j)uy for j ≥ 2 we get

∆(1, j) = g(j) det


1 x̃ ỹ z̃
1 x y z
0 1 g′ ux + g′uy
0 0 1 uy

 = g(j)[(x̃− x)ux + (ỹ − y)uy − (z̃ − z)]
=0 if Φ(P )∈TPS.

.
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=0 if Φ(P )∈TPS.

.

On the number of rational points on curves lying on a surface in P3 E. Berardini & J. Nardi 14 / 19



Introduction Strategy Geometry of curves Curves over Frobenius classical surfaces Result and conclusion

Useful lemma

Aim: Understand the components of CSΦ= {P ∈ S | Φ(P ) ∈ TPS} on a Frob. classical surface.

Lemma [BN21]

Assume that we have u(j) = g(j)uy for every j ≥ max{2, ν1}. Then either ν1 > 1 and C is plane
or ν1 = 1 and Φ(P ) /∈ TPS for a generic point P ∈ C if C is non-plane.

Assume ν1 > 1. Since for j ≥ ν1 we have u(j) = g(j)uy, we obtain

∆(ν1, j) = det


1 x̃ ỹ z̃
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Frobenius non–classical curves with ν1 = 1 are not components of CS
Φ (1/2)

Aim: Understand the components of CSΦ on a Frobenius classical surface.

Proposition [BN21]

Let C be a non–plane curve lying on a Frobenius classical surface S. Assume that C is Frobenius
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Case 1: g′ = (y − ỹ)/(x− x̃) ⇒ ν1 > 1 → contradiction. (C has ν1 = 1.)

On the number of rational points on curves lying on a surface in P3 E. Berardini & J. Nardi 15 / 19



Introduction Strategy Geometry of curves Curves over Frobenius classical surfaces Result and conclusion

Frobenius non–classical curves with ν1 = 1 are not components of CS
Φ (1/2)

Aim: Understand the components of CSΦ on a Frobenius classical surface.

Proposition [BN21]

Let C be a non–plane curve lying on a Frobenius classical surface S. Assume that C is Frobenius
non–classical with ν1 = 1. Then, for a generic point P ∈ C, we have Φ(P ) /∈ TPS.

By contradiction, take P such that Φ(P ) ∈ TPS. Since C is Frobenius non–classical we have

∆(1, 2) = (x− x̃)[g′u′′ − g′′(ux + g′uy)]− (y − ỹ)u′′ + (z − z̃)g′′ = 0
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Frobenius non–classical curves with ν1 = 1 are not components of CS
Φ (2/2)

Case 2: u′′ − g′′uy = uyy(g′)2 + 2g′uxy + uxx = 0.

Solving in the variable g′ gives

g′ = (y − ỹ)/(x− x̃) or g′ = −uxy/uyy.
Ë (Case 1)

Compute u(j): u′′ = g′′uy.

u(3) = g(3)uy + g′′(uxy + g′uyy) = g(3)uy

By recursion, we have that u(x, g(x))(j) = g(j)uy for every j ≥ 2 ⇒ Φ(P ) /∈ TPS. (Lemma)

Conclusion: Non–plane Frobenius non–classical curves with ν1 = 1 are not components of CSΦ.

What about ν1 > 1? ν1 > 1⇒ Φ(P ) ∈ T (1)
P C ⊂ TPS

(Sad) Fact: Frobenius non–classical curves with ν1 > 1 are components of CSΦ. However...

Proposition [BN21]

Assume that C is Frobenius non–classical with ν1 > 1 and δ ≤ q. Then C is plane.
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g′ = (y − ỹ)/(x− x̃) or g′ = −uxy/uyy.
Ë (Case 1)

Compute u(j): u′′ = g′′uy.

u(3) = g(3)uy + g′′(uxy + g′uyy) = g(3)uy

By recursion, we have that u(x, g(x))(j) = g(j)uy for every j ≥ 2

⇒ Φ(P ) /∈ TPS. (Lemma)

Conclusion: Non–plane Frobenius non–classical curves with ν1 = 1 are not components of CSΦ.

What about ν1 > 1? ν1 > 1⇒ Φ(P ) ∈ T (1)
P C ⊂ TPS

(Sad) Fact: Frobenius non–classical curves with ν1 > 1 are components of CSΦ. However...

Proposition [BN21]

Assume that C is Frobenius non–classical with ν1 > 1 and δ ≤ q. Then C is plane.

On the number of rational points on curves lying on a surface in P3 E. Berardini & J. Nardi 16 / 19



Introduction Strategy Geometry of curves Curves over Frobenius classical surfaces Result and conclusion

Frobenius non–classical curves with ν1 = 1 are not components of CS
Φ (2/2)

Case 2: u′′ − g′′uy = uyy(g′)2 + 2g′uxy + uxx = 0. Solving in the variable g′ gives
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Frobenius classical components of CS
Φ

Recap: A component of CSΦ falls in one of the following cases:

• ν1 > 1: in this case, if it has δ ≤ q, it is plane;

• it is Frobenius classical, i.e. {ν1, ν2} = {1, 2}.

Conjecture: Frobenius classical non–plane irreducible components of the CSΦ have degree δ > q.

Rephrased: Non–plane Frobenius classical curves with δ ≤ q are not components of CSΦ.

Example of surface with highly reducible CS
Φ

Over F5, consider the surface S defined by

f = 2X0X
2
1 + 2X3

1 + 2X2
0X2 + 2X0X1X2 +X2

1X2 + 2X0X
2
2 + 3X1X

2
2

+3X3
2 + 4X2

0X3 +X0X1X3 +X2
1X3 + 2X1X2X3 + 2X2

2X3

+3X0X
2
3 + 4X1X

2
3 +X2X

2
3 .

The curve CSΦ has degree 21 and is formed of 15 F5–lines and one non–plane sextic (δ = q + 1).
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Main result & Remarks

Theorem [BN21]

Let S be an irreducible Frobenius classical surface of degree d > 1 in P3. Let C be a non–plane
irreducible curve of degree δ ≤ q lying on S. Suppose C is Frobenius non–classical. Then

#C(Fq) ≤
δ(d+ q − 1)

2
.

Under the conjecture, the bound also holds for Frobenius classical curves.

• A plane curve on a degree d surface has δ ≤ d⇒ our bound holds for plane curves which
have at least one point P such that Φ(P ) /∈ TPC by Stöhr–Voloch bound (δ(δ + q − 1)/2).

• Embedding entails arithmetic and geometric constraints on a variety:
For δ = 11 and d = 5 over F9, C has genus at most 17 and #C(Fq) ≤ 72.
In ManyPoints, maximal curves of genus 16 and 17 have 74 F9–points.
These record curves cannot lie on a Frobenius classical surface in P3, unless being a
component of CSΦ.

On the number of rational points on curves lying on a surface in P3 E. Berardini & J. Nardi 18 / 19
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What about C ⊂ S ⊂ Pn for n ≥ 4?

Our theorem essentially relies on the geometry of space curves and the intersection theory in P3.

Can we generalize our approach when C ⊂ S ⊂ Pn, for n ≥ 4 ?

Consider the varieties in S × Pn

• ΓC = {(P,Φ(P )) ∈ C2 | P ∈ C} the graph of Φ restricted to the curve C,

(dim 1)

• TS = {(P,Q) ∈ S × Pn | P ∈ S, Q ∈ TPS}.

(dim 4)

Then C(Fq)
∆
↪−→ ΓC ∩ TS ' {P ∈ C | Φ(P ) ∈ TPS}.

Remark: CSΦ was the image of ΓC ∩ TS ∈ S × P3 under the 1st projection.

ΓC and TS have complementary dimensions in S × Pn (of dim n+ 2) if and only if n = 3.
→ bound the number of rational points on C by a fraction of the intersection product [ΓC ] · [TS ].

When n ≥ 4, [ΓC ] · [TS ] = 0 while ΓC ∩ TS 6= ∅.
Idea: Fix this dimension incompatibility by blowing up TS or S × S.

Thank you for your attention!
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→ bound the number of rational points on C by a fraction of the intersection product [ΓC ] · [TS ].

When n ≥ 4, [ΓC ] · [TS ] = 0 while ΓC ∩ TS 6= ∅.
Idea: Fix this dimension incompatibility by blowing up TS or S × S.

Thank you for your attention!
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