On the number of rational points of curves over a surface in \mathbb{P}^3

Elena Berardini¹ & Jade Nardi²

- 1. Eindhoven University of Technology
 - 2. IRMAR, CNRS, Univ Rennes 1

29 August 2022 Irsee 2022

https://arxiv.org/abs/2111.09578

We let \mathbb{F}_q denote a finite field with q elements and $\mathbb{P}_{\mathbb{F}_q}^n$ the projective space.

An algebraic projective variety X defined over \mathbb{F}_q is the set of zeros of homogenous polynomials $f_1, \ldots, f_r \in \mathbb{F}_q[x_0, \ldots, x_n]$ irreducible over \mathbb{F}_q :

$$X \stackrel{\mathsf{def}}{=} \{ P \in \mathbb{P}^n \mid f_1(P) = \dots = f_r(P) = 0 \}.$$

Curves, surfaces, rational points and all that jazz

We let \mathbb{F}_q denote a finite field with q elements and $\mathbb{P}^n_{\mathbb{F}_q}$ the projective space.

An algebraic projective variety X defined over \mathbb{F}_q is the set of zeros of homogenous polynomials $f_1, \ldots, f_r \in \mathbb{F}_q[x_0, \ldots, x_n]$ irreducible over \mathbb{F}_q :

$$X \stackrel{\mathsf{def}}{=} \{ P \in \mathbb{P}^n \mid f_1(P) = \dots = f_r(P) = 0 \}.$$

The set of rational points of X is

$$X(\mathbb{F}_q) \stackrel{\mathsf{def}}{=} \{ P = (a_0 : \dots : a_n) \in X \mid \forall i, \ a_i \in \mathbb{F}_q \}$$

We let \mathbb{F}_q denote a finite field with q elements and $\mathbb{P}_{\mathbb{F}_q}^n$ the projective space.

An algebraic projective variety X defined over \mathbb{F}_q is the set of zeros of homogenous polynomials $f_1, \ldots, f_r \in \mathbb{F}_q[x_0, \ldots, x_n]$ irreducible over \mathbb{F}_q :

$$X \stackrel{\mathsf{def}}{=} \{ P \in \mathbb{P}^n \mid f_1(P) = \dots = f_r(P) = 0 \}.$$

The set of rational points of X is

$$X(\mathbb{F}_q) \stackrel{\mathsf{def}}{=} \{P = (a_0 : \dots : a_n) \in X \mid \forall i, \ a_i \in \mathbb{F}_q\} = \{P \in X \mid \Phi(P) = P\}.$$

We let \mathbb{F}_q denote a finite field with q elements and $\mathbb{P}^n_{\mathbb{F}_q}$ the projective space.

An algebraic projective variety X defined over \mathbb{F}_q is the set of zeros of homogenous polynomials $f_1, \ldots, f_r \in \mathbb{F}_q[x_0, \ldots, x_n]$ irreducible over \mathbb{F}_q :

$$X \stackrel{\mathsf{def}}{=} \{ P \in \mathbb{P}^n \mid f_1(P) = \dots = f_r(P) = 0 \}.$$

The set of rational points of X is

$$X(\mathbb{F}_q) \stackrel{\mathsf{def}}{=} \{P = (a_0 : \dots : a_n) \in X \mid \forall \, i, \, a_i \in \mathbb{F}_q\} = \{P \in X \mid \Phi(P) = P\}.$$

Today: algebraic varieties of dimension one (curves C) and two (surfaces S) in \mathbb{P}^3 .

Existing bounds

Theorem [Hasse–Weil, 1948]

If C is an absolutely irreducible smooth curve of genus g defined over the finite field \mathbb{F}_q , then $\#C(\mathbb{F}_q) \leq q+1+2g\sqrt{q}$.

Existing bounds

Theorem [Hasse-Weil, 1948]

If C is an absolutely irreducible smooth curve of genus g defined over the finite field \mathbb{F}_q , then $\#C(\mathbb{F}_q) \leq q+1+2g\sqrt{q}$.

Theorem [Homma, 2012]

If C is a non-degenerate curve defined over \mathbb{F}_q of degree δ in \mathbb{P}^n , with $n \geq 3$, then $\#C(\mathbb{F}_q) \leq (\delta-1)q+1$.

Existing bounds

Theorem [Hasse-Weil, 1948]

If C is an absolutely irreducible smooth curve of genus g defined over the finite field \mathbb{F}_q , then $\#C(\mathbb{F}_q) \leq q+1+2g\sqrt{q}$.

Theorem [Homma, 2012]

If C is a non–degenerate curve defined over \mathbb{F}_q of degree δ in \mathbb{P}^n , with $n\geq 3$, then $\#C(\mathbb{F}_q)\leq (\delta-1)q+1$.

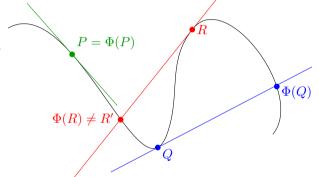
Theorem [Stöhr-Voloch, 1986]

Let C/\mathbb{F}_q be an irreducible smooth curve of genus g and degree δ in \mathbb{P}^n . Let ν_1, \ldots, ν_{n-1} be its Frobenius orders (generically $\nu_i = i$). Then

$$\#C(\mathbb{F}_q) \le \frac{1}{n} \left((\nu_1 + \dots + \nu_{n-1})(2g-2) + (q+n)\delta \right).$$

Take C a plane curve of deg. δ defined by f=0 over \mathbb{F}_q . Write Φ for the q-Frobenius morphism.

$$\begin{array}{lcl} C(\mathbb{F}_q) & = & \{P \in C \mid \Phi(P) = P\} \\ & & & \cap \\ & \{P \in C \mid \Phi(P) \in T_PC\} \stackrel{\mathsf{def}}{=} \mathcal{Z}. \end{array}$$



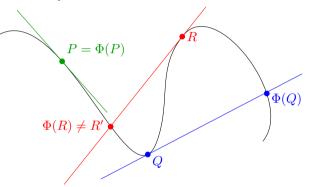
Take C a plane curve of deg. δ defined by f=0 over \mathbb{F}_q . Write Φ for the q-Frobenius morphism.

$$C(\mathbb{F}_q) = \{ P \in C \mid \Phi(P) = P \}$$

$$\mid \cap$$

$$\{ P \in C \mid \Phi(P) \in T_P C \} \stackrel{\mathsf{def}}{=} \mathcal{Z}.$$

Set
$$g(X,Y) = X^q f_X + Y^q f_Y + Z^q f_Z$$
.
Then $\mathcal{Z} = C \cap (g = 0)$.

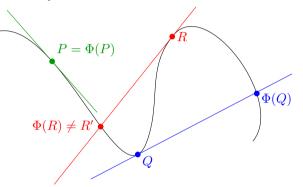


Take C a plane curve of deg. δ defined by f=0 over \mathbb{F}_q . Write Φ for the q-Frobenius morphism.

$$\begin{array}{lcl} C(\mathbb{F}_q) & = & \{P \in C \mid \Phi(P) = P\} \\ & & \cap \\ & \{P \in C \mid \Phi(P) \in T_P C\} \stackrel{\mathsf{def}}{=} \mathcal{Z}. \end{array}$$

Set
$$g(X,Y) = X^q f_X + Y^q f_Y + Z^q f_Z$$
.
Then $\mathcal{Z} = C \cap (g = 0)$.

Bézout's theorem: if $\dim \mathcal{Z} = 0$, the number of points in \mathcal{Z} counted with *multiplicity* is equal to $(\deg f) \cdot (\deg g) = \delta(\delta + q - 1)$.



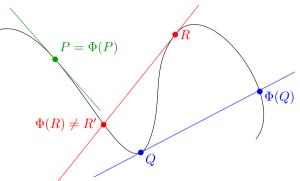
Take C a plane curve of deg. δ defined by f=0 over \mathbb{F}_q . Write Φ for the q-Frobenius morphism.

$$\begin{array}{lcl} C(\mathbb{F}_q) & = & \{P \in C \mid \Phi(P) = P\} \\ & & \cap \\ & \{P \in C \mid \Phi(P) \in T_PC\} \stackrel{\mathsf{def}}{=} \mathcal{Z}. \end{array}$$

Set
$$g(X,Y) = X^q f_X + Y^q f_Y + Z^q f_Z$$
.
Then $\mathcal{Z} = C \cap (g = 0)$.

Bézout's theorem: if $\dim \mathbb{Z} = 0$, the number of points in \mathbb{Z} counted with *multiplicity* is equal to $(\deg f) \cdot (\deg g) = \delta(\delta + q - 1)$.

Multiplicity: If $P \in C(\mathbb{F}_q)$, then $m_P(\mathcal{Z}) \geq 2$.



Take C a plane curve of deg. δ defined by f=0 over \mathbb{F}_q . Write Φ for the q-Frobenius morphism.

$$C(\mathbb{F}_q) = \{ P \in C \mid \Phi(P) = P \}$$

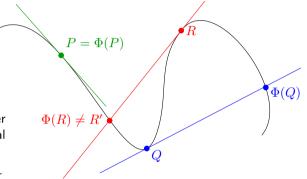
$$\mid \cap$$

$$\{ P \in C \mid \Phi(P) \in T_P C \} \stackrel{\mathsf{def}}{=} \mathcal{Z}.$$

Set
$$g(X,Y) = X^q f_X + Y^q f_Y + Z^q f_Z$$
.
Then $\mathcal{Z} = C \cap (g = 0)$.

Bézout's theorem: if dim $\mathcal{Z} = 0$, the number of points in Z counted with *multiplicity* is equal to $(\deg f) \cdot (\deg g) = \delta(\delta + q - 1)$.

Multiplicity: If $P \in C(\mathbb{F}_q)$, then $m_P(\mathcal{Z}) \geq 2$.



Theorem [Stöhr-Voloch, 1986]

If C has at least a non-flex point ($\Rightarrow \dim \mathcal{Z} = 0$), then $\#C(\mathbb{F}_q) \leq \frac{1}{2}\delta(\delta + q - 1)$.

Ideas & Motivations

Let $C \subset S \hookrightarrow \mathbb{P}^n$ (via a very ample divisor).

Goal: bounding $\#C(\mathbb{F}_q)$ in terms of the embedding.

(features of the surface S and the ambient \mathbb{P}^n)

Main motivations:

• New bound for the number of rational points on projective curves.

(hopefully improving the previous ones)

Application to geometric coding theory.

Ideas & Motivations

Let $C \subset S \longrightarrow \mathbb{P}^n$ (via a very ample divisor).

Goal: bounding $\#C(\mathbb{F}_q)$ in terms of the embedding.

(features of the surface S and the ambient \mathbb{P}^n)

Main motivations:

• New bound for the number of rational points on projective curves.

(hopefully improving the previous ones)

Application to geometric coding theory.

Bounding the minimum distance of a code from a surface SBetter lower bound for the minimum distance

Bounding $\#C(\mathbb{F}_a)$ for the irreducible curves C on SBetter upper bound for $\#C(\mathbb{F}_a)$

Strategy (n = 3)

Let $S:(f=0)\subset\mathbb{P}^3$ be a smooth irreducible algebraic surface of degree d defined \mathbb{F}_q .

Set
$$C_{\Phi}^S \stackrel{\text{def}}{=} \{P \in S \mid \Phi(P) \in T_P S\}$$
. Then $S(\mathbb{F}_q) \subset C_{\Phi}^S$.

Strategy (n=3)

Let $S:(f=0)\subset\mathbb{P}^3$ be a smooth irreducible algebraic surface of degree d defined \mathbb{F}_q .

Set
$$C_{\Phi}^S \stackrel{\text{def}}{=} \{P \in S \mid \Phi(P) \in T_P S\}$$
. Then $S(\mathbb{F}_q) \subset C_{\Phi}^S$.

Strategy •00

$$C_{\Phi}^{S}: f = h = 0 \text{ for } h := X_{0}^{q} f_{0} + X_{1}^{q} f_{1} + X_{2}^{q} f_{2} + X_{3}^{q} f_{3} \Rightarrow \deg h = d + q - 1.$$

Strategy (n=3)

Let $S:(f=0)\subset\mathbb{P}^3$ be a smooth irreducible algebraic surface of degree d defined \mathbb{F}_a .

Set
$$C_{\Phi}^S \stackrel{\text{def}}{=} \{P \in S \mid \Phi(P) \in T_P S\}$$
. Then $S(\mathbb{F}_q) \subset C_{\Phi}^S$.

$$C_{\Phi}^{S}: f = h = 0 \text{ for } h := X_{0}^{q} f_{0} + X_{1}^{q} f_{1} + X_{2}^{q} f_{2} + X_{3}^{q} f_{3} \Rightarrow \deg h = d + q - 1.$$

Take a curve $C \subset S$ of degree δ . Then $C(\mathbb{F}_a) \subseteq C \cap C^S_{\Phi}$.

If $C \cap C_x^S$ is a finite set of points, then

$$\#C(\mathbb{F}_q) \le \frac{\deg(C \cap C_{\Phi}^S)}{\min\limits_{P \in C(\mathbb{F}_q)} m_P(C, C_{\Phi}^S)} \le \frac{\delta(d+q-1)}{2}.$$

ntroduction 0000 Strategy 0●0 Geometry of curves 00 Curves over Frobenius classical surfaces 00 Result and conclusion C

Comparisons with pre-existing bounds

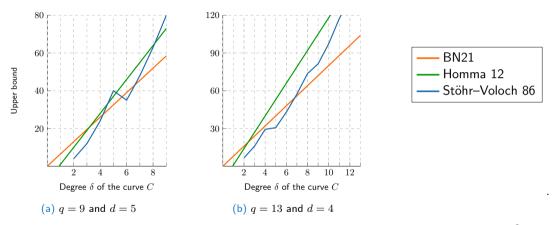


Figure: Bounds on the number of \mathbb{F}_q -points on a non-plane curve C on a degree d surface $S\subset \mathbb{P}^3$.

 \rightarrow It is worth working on this bound!

Let $S:(f=0)\subset\mathbb{P}^3$ be a smooth irreducible algebraic surface of degree d defined \mathbb{F}_a .

Set $C_{\Phi}^S \stackrel{\text{def}}{=} \{P \in S \mid \Phi(P) \in T_P S\}$. Then $S(\mathbb{F}_q) \subset C_{\Phi}^S$.

$$C_{\Phi}^{S}: f = h = 0 \text{ for } h := X_{0}^{q} f_{0} + X_{1}^{q} f_{1} + X_{2}^{q} f_{2} + X_{3}^{q} f_{3} \Rightarrow \deg h = d + q - 1.$$

Take a curve $C \subset S$ of degree δ . Then $C(\mathbb{F}_a) \subseteq C \cap C^S_{\Phi}$.

If $C \cap C_x^S$ is a finite set of points, then

$$\#C(\mathbb{F}_q) \le \frac{\deg(C \cap C_{\Phi}^S)}{\min\limits_{P \in C(\mathbb{F}_q)} m_P(C, C_{\Phi}^S)} \le \frac{\delta(d+q-1)}{2}.$$

Two necessary conditions for $\dim(C \cap C_{\Phi}^S) = 0$:

Let $S:(f=0)\subset\mathbb{P}^3$ be a smooth irreducible algebraic surface of degree d defined \mathbb{F}_a .

Set $C_{\Phi}^S \stackrel{\text{def}}{=} \{P \in S \mid \Phi(P) \in T_P S\}$. Then $S(\mathbb{F}_q) \subset C_{\Phi}^S$.

$$C_{\Phi}^{S}: f = h = 0 \text{ for } h := X_{0}^{q} f_{0} + X_{1}^{q} f_{1} + X_{2}^{q} f_{2} + X_{3}^{q} f_{3} \Rightarrow \deg h = d + q - 1.$$

Take a curve $C \subset S$ of degree δ . Then $C(\mathbb{F}_a) \subseteq C \cap C^S_{\Phi}$.

If $C \cap C_x^S$ is a finite set of points, then

$$\#C(\mathbb{F}_q) \le \frac{\deg(C \cap C_{\Phi}^S)}{\min\limits_{P \in C(\mathbb{F}_q)} m_P(C, C_{\Phi}^S)} \le \frac{\delta(d+q-1)}{2}.$$

Two necessary conditions for $\dim(C \cap C_{\Phi}^S) = 0$:

 $\mathbf{0}$ dim $C_{\Phi}^{S} = 1$: in this case, the surface is said to be *Frobenius classical*; Counterexample: the Hermitian surface $X^{\sqrt{q}+1} + Y^{\sqrt{q}+1} + Z^{\sqrt{q}+1} + T^{\sqrt{q}+1} = 0$ over \mathbb{F}_q .

Let $S:(f=0)\subset\mathbb{P}^3$ be a smooth irreducible algebraic surface of degree d defined \mathbb{F}_a .

Set $C_{\Phi}^S \stackrel{\text{def}}{=} \{P \in S \mid \Phi(P) \in T_P S\}$. Then $S(\mathbb{F}_q) \subset C_{\Phi}^S$.

$$C_{\Phi}^{S}: f = h = 0 \text{ for } h := X_{0}^{q} f_{0} + X_{1}^{q} f_{1} + X_{2}^{q} f_{2} + X_{3}^{q} f_{3} \Rightarrow \deg h = d + q - 1.$$

Take a curve $C \subset S$ of degree δ . Then $C(\mathbb{F}_a) \subseteq C \cap C^S_{\Phi}$.

If $C \cap C_{\Phi}^S$ is a finite set of points, then

$$\#C(\mathbb{F}_q) \le \frac{\deg(C \cap C_{\Phi}^S)}{\min\limits_{P \in C(\mathbb{F}_q)} m_P(C, C_{\Phi}^S)} \le \frac{\delta(d+q-1)}{2}.$$

Two necessary conditions for $\dim(C \cap C_{\Phi}^S) = 0$:

 $\mathbf{0}$ dim $C_{\Phi}^{S} = 1$: in this case, the surface is said to be *Frobenius classical*; Counterexample: the Hermitian surface $X^{\sqrt{q}+1} + Y^{\sqrt{q}+1} + Z^{\sqrt{q}+1} + T^{\sqrt{q}+1} = 0$ over \mathbb{F}_q . $\checkmark p \nmid d(d-1) \Rightarrow S$ is Frobenius classical.

Let $S:(f=0)\subset\mathbb{P}^3$ be a smooth irreducible algebraic surface of degree d defined \mathbb{F}_a .

Set
$$C_{\Phi}^S \stackrel{\text{def}}{=} \{P \in S \mid \Phi(P) \in T_P S\}$$
. Then $S(\mathbb{F}_q) \subset C_{\Phi}^S$.

$$C_{\Phi}^{S}: f = h = 0 \text{ for } h := X_{0}^{q} f_{0} + X_{1}^{q} f_{1} + X_{2}^{q} f_{2} + X_{3}^{q} f_{3} \Rightarrow \deg h = d + q - 1.$$

Take a curve $C \subset S$ of degree δ . Then $C(\mathbb{F}_q) \subseteq C \cap C^S_{\Phi}$.

If $C \cap C_x^S$ is a finite set of points, then

$$\#C(\mathbb{F}_q) \le \frac{\deg(C \cap C_{\Phi}^S)}{\min\limits_{P \in C(\mathbb{F}_q)} m_P(C, C_{\Phi}^S)} \le \frac{\delta(d+q-1)}{2}.$$

Two necessary conditions for $\dim(C \cap C_{\Phi}^S) = 0$:

- $\mathbf{0}$ dim $C_{\Phi}^{S} = 1$: in this case, the surface is said to be *Frobenius classical*; Counterexample: the Hermitian surface $X^{\sqrt{q}+1} + Y^{\sqrt{q}+1} + Z^{\sqrt{q}+1} + T^{\sqrt{q}+1} = 0$ over \mathbb{F}_q . \checkmark $p \nmid d(d-1) \Rightarrow S$ is Frobenius classical.
- \bigcirc C does not share any components with C_{Φ}^{S} . Counterexample: if S contains a \mathbb{F}_a -line L, then $L \subset C_{\Phi}^S$. The bound does not hold.

Let $S:(f=0)\subset\mathbb{P}^3$ be a smooth irreducible algebraic surface of degree d defined \mathbb{F}_a .

Set
$$C_{\Phi}^S \stackrel{\text{def}}{=} \{P \in S \mid \Phi(P) \in T_P S\}$$
. Then $S(\mathbb{F}_q) \subset C_{\Phi}^S$.

$$C_{\Phi}^{S}: f = h = 0 \text{ for } h := X_{0}^{q} f_{0} + X_{1}^{q} f_{1} + X_{2}^{q} f_{2} + X_{3}^{q} f_{3} \Rightarrow \deg h = d + q - 1.$$

Take a curve $C \subset S$ of degree δ . Then $C(\mathbb{F}_q) \subseteq C \cap C^S_{\Phi}$.

If $C \cap C_{\Phi}^S$ is a finite set of points, then

$$\#C(\mathbb{F}_q) \le \frac{\deg(C \cap C_{\Phi}^S)}{\min\limits_{P \in C(\mathbb{F}_q)} m_P(C, C_{\Phi}^S)} \le \frac{\delta(d+q-1)}{2}.$$

Two necessary conditions for $\dim(C \cap C_{\Phi}^S) = 0$:

- $\mathbf{0}$ dim $C_{\Phi}^{S} = 1$: in this case, the surface is said to be *Frobenius classical*; Counterexample: the Hermitian surface $X^{\sqrt{q}+1} + Y^{\sqrt{q}+1} + Z^{\sqrt{q}+1} + T^{\sqrt{q}+1} = 0$ over \mathbb{F}_q . \checkmark $p \nmid d(d-1) \Rightarrow S$ is Frobenius classical.
- \bigcirc C does not share any components with C_{Φ}^{S} . Counterexample: if S contains a \mathbb{F}_q -line L, then $L \subset C_{\Phi}^S$. The bound does not hold.

Aim: understanding the components of the curve C_{Φ}^{S} for a Frobenius classical surface.

Osculating spaces and P-orders (Stöhr-Voloch theory 1)

Let $C\subset\mathbb{P}^3$ be an absolutely irreducible projective curve defined over \mathbb{F}_q . Fix $P\in C$. An integer j is a P-order if there exists a plane intersecting the curve C with multiplicity j at P. If C is non-plane and P is non-singular, there are exactly four distinct P-orders:

$$j_0 = 0 < j_1 < j_2 < j_3.$$

Remark: $j_1 = 1 \Leftrightarrow C$ is non-singular at the point P.

Osculating spaces and P-orders (Stöhr-Voloch theory 1)

Let $C \subset \mathbb{P}^3$ be an absolutely irreducible projective curve defined over \mathbb{F}_q . Fix $P \in C$. An integer i is a P-order if there exists a plane intersecting the curve C with multiplicity i at P. If C is non-plane and P is non-singular, there are exactly four distinct P-orders:

$$j_0 = 0 < j_1 < j_2 < j_3.$$

Remark: $i_1 = 1 \Leftrightarrow C$ is non-singular at the point P.

Osculating spaces: $T_P^{(i)}C = \bigcap \{ \text{planes } H \text{ s.t. } m_P(C,H) \geq j_{i+1} \}.$

 $\text{Equation of the osculating plane } T_P^{(2)}C: \begin{vmatrix} X_0 & X_1 & X_2 & X_3 \\ x_0 & x_1 & x_2 & x_3 \\ D_t^{(j_1)}x_0 & D_t^{(j_1)}x_1 & D_t^{(j_1)}x_2 & D_t^{(j_1)}x_3 \\ D_t^{(j_2)}x_0 & D_t^{(j_2)}x_1 & D_t^{(j_2)}x_2 & D_t^{(j_2)}x_2 \end{vmatrix} = 0$

where $D_t^{(j)}$ are the Hasse derivatives with respect to a a local parameter t at P defined by

$$D_t^{(i)}t^k = \binom{k}{i}t^{k-i}.$$

Frobenius orders (Stöhr-Voloch theory 2)

Fix $P \in C \subset \mathbb{P}^3$ with P-orders $(0, j_1, j_2, j_3)$. Then $\Phi(P) \in T_P^{(2)}C$ if and only if

$$\Delta(j_1,j_2) \stackrel{\mathsf{def}}{=} \begin{vmatrix} x_0^q & x_1^q & x_2^q & x_3^q \\ x_0 & x_1 & x_2 & x_3 \\ D_t^{(j_1)}x_0 & D_t^{(j_1)}x_1 & D_t^{(j_1)}x_2 & D_t^{(j_1)}x_3 \\ D_t^{(j_2)}x_0 & D_t^{(j_2)}x_1 & D_t^{(j_2)}x_2 & D_t^{(j_2)}x_3 \end{vmatrix} = 0$$

Fix $P \in C \subset \mathbb{P}^3$ with P-orders $(0, j_1, j_2, j_3)$. Then $\Phi(P) \in T_P^{(2)}C$ if and only if

$$\Delta(j_1, j_2) \stackrel{\mathsf{def}}{=} \begin{vmatrix} x_0^q & x_1^q & x_2^q & x_3^q \\ x_0 & x_1 & x_2 & x_3 \\ D_t^{(j_1)} x_0 & D_t^{(j_1)} x_1 & D_t^{(j_1)} x_2 & D_t^{(j_1)} x_3 \\ D_t^{(j_2)} x_0 & D_t^{(j_2)} x_1 & D_t^{(j_2)} x_2 & D_t^{(j_2)} x_3 \end{vmatrix} = 0$$

Theorem [Stöhr-Voloch, 1986]

There exist integers $\nu_1 < \nu_2$ s.t. $\Delta(\nu_1, \nu_2)$ is a nonzero function.

Definition

The integers $\nu_0=0, \nu_1, \nu_2$ chosen minimally with respect to the lexicographic order are called the Frobenius orders of C.

The curve C is Frobenius classical if $(\nu_1, \nu_2) = (1, 2)$, Frobenius non-classical otherwise.

Aim: Understand the components of $C_{\Phi}^S = \{P \in S \mid \Phi(P) \in T_PS\}$ on a Frob. classical surface.

Aim: Understand the components of $C_{\Phi}^S = \{P \in S \mid \Phi(P) \in T_PS\}$ on a Frob. classical surface.

Proposition [BN21]

Let C be a non-plane curve lying on a surface S. Assume that C is Frobenius non-classical with $\nu_1=1$. Then C is not a component of C_Φ^S .

Aim: Understand the components of $C_{\Phi}^S = \{P \in S \mid \Phi(P) \in T_PS\}$ on a Frob. classical surface.

Proposition [BN21]

Let C be a non-plane curve lying on a surface S. Assume that C is Frobenius non-classical with $\nu_1=1$. Then C is not a component of C_Φ^S .

What about $\nu_1 > 1$?

Aim: Understand the components of $C_{\Phi}^S = \{P \in S \mid \Phi(P) \in T_PS\}$ on a Frob. classical surface.

Proposition [BN21]

Let C be a non-plane curve lying on a surface S. Assume that C is Frobenius non-classical with $\nu_1=1$. Then C is not a component of C_Φ^S .

What about
$$\nu_1 > 1$$
? $\nu_1 > 1 \Rightarrow \Phi(P) \in T_PC \subset T_PS$

(Sad) Fact: Frobenius non–classical curves with $\nu_1>1$ are components of C_Φ^S .

Aim: Understand the components of $C_{\Phi}^S = \{P \in S \mid \Phi(P) \in T_P S\}$ on a Frob. classical surface.

Proposition [BN21]

Let C be a non-plane curve lying on a surface S. Assume that C is Frobenius non-classical with $\nu_1=1$. Then C is not a component of C_Φ^S .

What about
$$\nu_1 > 1$$
? $\nu_1 > 1 \Rightarrow \Phi(P) \in T_PC \subset T_PS$

(Sad) Fact: Frobenius non–classical curves with $\nu_1>1$ are components of C_Φ^S . However...

Proposition [BN21]

Assume that C is Frobenius non–classical with $\nu_1 > 1$ and $\delta \leq q$. Then C is plane.

Remark: Hefez and Voloch (1990) gave the exact number of rational points on **smooth** curves with $\nu_1 > 1$, while Borges and Homma (2018) studied singular **plane** curves with $\nu_1 > 1$.

Aim: Understand the components of $C_{\Phi}^S = \{P \in S \mid \Phi(P) \in T_PS\}$ on a Frob. classical surface.

Proposition [BN21]

Let C be a non-plane curve lying on a surface S. Assume that C is Frobenius non-classical with $\nu_1=1$. Then C is not a component of C_Φ^S .

What about $\nu_1 > 1$? $\nu_1 > 1 \Rightarrow \Phi(P) \in T_PC \subset T_PS$

(Sad) Fact: Frobenius non–classical curves with $\nu_1>1$ are components of C_Φ^S . However...

Proposition [BN21]

Assume that C is Frobenius non–classical with $\nu_1>1$ and $\delta\leq q.$ Then C is plane.

Remark: Hefez and Voloch (1990) gave the exact number of rational points on **smooth** curves with $\nu_1 > 1$, while Borges and Homma (2018) studied singular **plane** curves with $\nu_1 > 1$.

Tool: Use the existence and the minimality of the Frobenius orders ν_1, ν_2 s.t. $\Delta(\nu_1, \nu_2) \neq 0$.

Aim: Understand the components of $C_{\Phi}^S = \{P \in S \mid \Phi(P) \in T_PS\}$ on a Frob. classical surface.

Proposition [BN21]

Let C be a non-plane curve lying on a surface S. Assume that C is Frobenius non-classical with $\nu_1=1$. Then C is not a component of C_Φ^S .

What about $\nu_1 > 1$? $\nu_1 > 1 \Rightarrow \Phi(P) \in T_PC \subset T_PS$

(Sad) Fact: Frobenius non–classical curves with $\nu_1>1$ are components of C_Φ^S . However...

Proposition [BN21]

Assume that C is Frobenius non–classical with $\nu_1>1$ and $\delta\leq q.$ Then C is plane.

Remark: Hefez and Voloch (1990) gave the exact number of rational points on **smooth** curves with $\nu_1 > 1$, while Borges and Homma (2018) studied singular **plane** curves with $\nu_1 > 1$.

Tool: Use the existence and the minimality of the Frobenius orders ν_1, ν_2 s.t. $\Delta(\nu_1, \nu_2) \neq 0$. Example: C is **Frobenius non-classical** $\Rightarrow \{\nu_1, \nu_2\} \neq \{1, 2\} \Rightarrow \Delta(1, 2) = 0$. If $\Phi(P) \in T_PS$

$$\Rightarrow \Delta(1,2) = (u'' - g''u_y) [(x - \tilde{x})g' - (y - \tilde{y})] = 0$$

Aim: Understand the components of $C_{\Phi}^S = \{P \in S \mid \Phi(P) \in T_PS\}$ on a Frob. classical surface.

Proposition [BN21]

Let C be a non-plane curve lying on a surface S. Assume that C is Frobenius non-classical with $\nu_1=1$. Then C is not a component of C_Φ^S .

What about
$$\nu_1 > 1$$
? $\nu_1 > 1 \Rightarrow \Phi(P) \in T_PC \subset T_PS$

(Sad) Fact: Frobenius non–classical curves with $\nu_1>1$ are components of C_Φ^S . However...

Proposition [BN21]

Assume that C is Frobenius non–classical with $\nu_1>1$ and $\delta\leq q.$ Then C is plane.

Remark: Hefez and Voloch (1990) gave the exact number of rational points on **smooth** curves with $\nu_1 > 1$, while Borges and Homma (2018) studied singular **plane** curves with $\nu_1 > 1$.

Tool: Use the existence and the minimality of the Frobenius orders ν_1, ν_2 s.t. $\Delta(\nu_1, \nu_2) \neq 0$. Example: C is **Frobenius non-classical** $\Rightarrow \{\nu_1, \nu_2\} \neq \{1, 2\} \Rightarrow \Delta(1, 2) = 0$. If $\Phi(P) \in T_PS$

$$\Rightarrow \Delta(1,2) = \begin{array}{cc} (u'' - g''u_y) & [(x - \tilde{x})g' - (y - \tilde{y})] & = 0 \\ \Phi(P) \not\in T_P S & \nu_1 > 1 \end{array}$$

Frobenius classical components of C_Φ^S

Recap: A component of C_{Φ}^{S} falls in one of the following cases:

- $\nu_1>1$: in this case, if it has $\delta\leq q$, it is plane;
- it is Frobenius classical, i.e. $\{\nu_1, \nu_2\} = \{1, 2\}$.

Conjecture: Non-plane Frobenius classical curves with $\delta \leq q$ are not components of C_{Φ}^S .

Frobenius classical components of C_Φ^S

Recap: A component of C_{Φ}^{S} falls in one of the following cases:

- $\nu_1 > 1$: in this case, if it has $\delta \leq q$, it is plane;
- it is Frobenius classical, i.e. $\{\nu_1, \nu_2\} = \{1, 2\}$.

Conjecture: Non-plane Frobenius classical curves with $\delta \leq q$ are not components of C_{Φ}^S .

Example of surface with highly reducible C_Φ^S

Over \mathbb{F}_5 , consider the surface S defined by

$$f = 2X_0X_1^2 + 2X_1^3 + 2X_0^2X_2 + 2X_0X_1X_2 + X_1^2X_2 + 2X_0X_2^2 + 3X_1X_2^2 + 3X_2^3 + 4X_0^2X_3 + X_0X_1X_3 + X_1^2X_3 + 2X_1X_2X_3 + 2X_2^2X_3 + 3X_0X_3^2 + 4X_1X_3^2 + X_2X_3^2.$$

The curve C_{Φ}^{S} has degree 21 and is formed of 15 \mathbb{F}_{5} -lines and one non-plane sextic $(\delta = q + 1)$.

Theorem [BN21]

Let S be an irreducible Frobenius classical surface of degree d>1 in \mathbb{P}^3 . Let C be a non-plane irreducible curve of degree $\delta \leq q$ lying on S. Suppose C is Frobenius non-classical. Then

$$\#C(\mathbb{F}_q) \le \frac{\delta(d+q-1)}{2}.$$

Under the conjecture, the bound also holds for Frobenius classical curves.

Theorem [BN21]

Let S be an irreducible Frobenius classical surface of degree d>1 in \mathbb{P}^3 . Let C be a non-plane irreducible curve of degree $\delta < q$ lying on S. Suppose C is Frobenius non-classical. Then

$$\#C(\mathbb{F}_q) \le \frac{\delta(d+q-1)}{2}.$$

Under the conjecture, the bound also holds for Frobenius classical curves.

• A plane curve on a degree d surface has $\delta \leq d \Rightarrow$ our bound holds for plane curves which have at least one point P such that $\Phi(P) \notin T_PC$ by Stöhr–Voloch bound $(\delta(\delta+q-1)/2)$.

Theorem [BN21]

Let S be an irreducible Frobenius classical surface of degree d>1 in \mathbb{P}^3 . Let C be a non-plane irreducible curve of degree $\delta \leq q$ lying on S. Suppose C is Frobenius non-classical. Then

$$\#C(\mathbb{F}_q) \le \frac{\delta(d+q-1)}{2}.$$

Under the conjecture, the bound also holds for Frobenius classical curves.

- A plane curve on a degree d surface has $\delta \leq d \Rightarrow$ our bound holds for plane curves which have at least one point P such that $\Phi(P) \notin T_PC$ by Stöhr–Voloch bound $(\delta(\delta+q-1)/2)$.
- Embedding entails arithmetic and geometric constraints on a variety: For $\delta=11$ and d=5 over \mathbb{F}_9 , C has genus at most 17 and $\#C(\mathbb{F}_q)\leq 72$. In ManyPoints, maximal curves of genus 16 and 17 have 74 \mathbb{F}_9 -points. These record curves cannot lie on a Frobenius classical surface in \mathbb{P}^3 , unless being a component of C_Φ^S .

Theorem [BN21]

Let S be an irreducible Frobenius classical surface of degree d>1 in \mathbb{P}^3 . Let C be a non-plane irreducible curve of degree $\delta\leq q$ lying on S. Suppose C is Frobenius non-classical. Then

$$\#C(\mathbb{F}_q) \le \frac{\delta(d+q-1)}{2}.$$

Under the conjecture, the bound also holds for Frobenius classical curves.

Future question

Our theorem essentially relies on the geometry of space curves and the intersection theory in \mathbb{P}^3 .

Can we generalize our approach when $C \subset S \subset \mathbb{P}^n$, for $n \geq 4$?

Theorem [BN21]

Let S be an irreducible Frobenius classical surface of degree d>1 in \mathbb{P}^3 . Let C be a non-plane irreducible curve of degree $\delta\leq q$ lying on S. Suppose C is Frobenius non-classical. Then

$$\#C(\mathbb{F}_q) \le \frac{\delta(d+q-1)}{2}.$$

Under the conjecture, the bound also holds for Frobenius classical curves.

Future question

Our theorem essentially relies on the geometry of space curves and the intersection theory in \mathbb{P}^3 .

Can we generalize our approach when $C \subset S \subset \mathbb{P}^n$, for $n \geq 4$?

Thank you for your attention!

What about $C \subset S \subset \mathbb{P}^n$ for $n \geq 4$?

Can we generalize our approach when $C \subset S \subset \mathbb{P}^n$, for $n \geq 4$?

Can we generalize our approach when $C \subset S \subset \mathbb{P}^n$, for $n \geq 4$?

Consider the varieties in $S \times \mathbb{P}^n$

- $\Gamma_C = \{(P, \Phi(P)) \in C^2 \mid P \in C\}$ the graph of Φ restricted to the curve C,
- $\mathcal{T}_S = \{(P, Q) \in S \times \mathbb{P}^n \mid P \in S, Q \in T_P S\}.$

Then
$$C(\mathbb{F}_q) \stackrel{\Delta}{\longleftrightarrow} \Gamma_C \cap \mathcal{T}_S \simeq \{P \in C \mid \Phi(P) \in T_P S\}.$$

Remark: C_{Φ}^{S} was the image of $\Gamma_{C} \cap \mathcal{T}_{S} \in S \times \mathbb{P}^{3}$ under the 1^{st} projection.

Can we generalize our approach when $C \subset S \subset \mathbb{P}^n$, for $n \geq 4$?

Consider the varieties in $S \times \mathbb{P}^n$

•
$$\Gamma_C = \{(P, \Phi(P)) \in C^2 \mid P \in C\}$$
 the graph of Φ restricted to the curve C , (dim 1)

•
$$\mathcal{T}_S = \{ (P, Q) \in S \times \mathbb{P}^n \mid P \in S, \ Q \in T_P S \}.$$
 (dim 4)

Then
$$C(\mathbb{F}_q) \stackrel{\Delta}{\longleftrightarrow} \Gamma_C \cap \mathcal{T}_S \simeq \{P \in C \mid \Phi(P) \in T_P S\}.$$

Remark: C_{Φ}^{S} was the image of $\Gamma_{C} \cap \mathcal{T}_{S} \in S \times \mathbb{P}^{3}$ under the 1^{st} projection.

 Γ_C and \mathcal{T}_S have complementary dimensions in $S \times \mathbb{P}^n$ (of dim n+2) if and only if n=3.

ightarrow bound the number of rational points on C by a fraction of the intersection product $[\Gamma_C] \cdot [\mathcal{T}_S]$.

When $n \geq 4$, $[\Gamma_C] \cdot [\mathcal{T}_S] = 0$ while $\Gamma_C \cap \mathcal{T}_S \neq \emptyset$.

Idea: Fix this dimension incompatibility by blowing up \mathcal{T}_S or $S \times S$.