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Linear codes: from Reed–Solomon codes...

Linear code: Fq–vector sub space of Fnq
[n, k, d]q–code: code of length n, dimension k and minimum distance d

dimension↔ information

minimum distance↔ correction capacity

}
k + d 6 n+ 1 � Singleton, 1964

Reed–Solomon (RS) Codes � Reed and Solomon, 1960

f ∈ Fq[x]<k

RSk(x)
def
= {(f(x1), f(x2), f(x3), . . . , f(xn)) | f ∈ Fq[x]<k}

•
x3

•
x2

•
x1

•
xn

Ë Optimal parameters
k + d = n+ 1.

Ë Effective decoding algorithms
� Berlekamp,1968.

" Drawback: n 6 q.

The more q is big,
the less the arithmetic is efficient.
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...to Algebraic Geometry (AG) codes � Goppa, 1981

P = (P1, P2, . . . , Pn)

f ∈ L

curve C

CC(L,P)
def
= {(f(P1), f(P2), . . . , f(Pn)) | f ∈ L}

Vector space of functions on the curve
(Riemann–Roch space)

•
P1

•
P2

•
Pn

Codes on a curve C
Ë Good parameters

Ë Efficient decoding algorithms

Ë Length > q
#C(Fq) ≤ q + 1 + gb2√qc

Proposition

The parameters [n, k, d] of AG codes satisfy n+ 1− g ≤ k + d ≤ n+ 1.

Construction of good AG codes relies on

{
identify algebraic curves suitable to the context,

design efficient algorithms for implementation.
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AG codes: long story short

1981: Goppa introduces AG codes from algebraic curves

1982: Tsfasman, Vlăduţ and Zink use AG codes for beating the Gilbert–Varshamov bound

XXc: different familles of curves are studied to obtain good AG codes

↪→ the most used curves are the ones for which Riemann–Roch spaces are already known
(e.g. Hermitian curves)

XXIc: AG codes are used in new applications in information theory...
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Riemann–Roch spaces: AG codes and beyond

AG codes provide complexity gains in (not exhaustive list)

• Secret sharing1

Example: can have up to 500 players over F64 with AG codes from maximal curves, while need to

work over a field with > 500 elements with RS codes

• Verifiable computing2

 computing large Riemann–Roch spaces of curves is necessary

Can be used also for...

• Arithmetic operations on Jacobians of curves

• Symbolic integration

1R. Cramer, M. Rambaud and C. Xing, Crypto 2021
2S. Bordage, M. Lhotel, J. Nardi and H. Randriam, preprint 2022
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• Symbolic integration4

1R. Cramer, M. Rambaud and C. Xing, Crypto 2021
2S. Bordage, M. Lhotel, J. Nardi and H. Randriam, preprint 2022
3K. Khuri-Makdisi, Mathematics of Computations, 2007
4J.H. Davenport, Intern. Symp. on Symbolic et Algebraic Manipulation, 1979
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Riemann–Roch spaces of curves

A divisor on a curve C: D =
∑
P∈C nPP, nP ∈ Z

D=P1 + P2 + P3−Z

P2

P1 Z

P3

The Riemann–Roch space L(D) is the space
of functions G

H ∈ K(C) such that:

• if nP < 0 then P must be a zero of G (of
multiplicity > −nP )

• if nP > 0 then P can be a zero of H (of
multiplicity 6 nP )

• G/H has no other poles outside the points
P with nP > 0

Here: Z must be a zero of G, the Pi can be zeros of H

Riemann–Roch Theorem  dimension of L(D) = degD + 1− g
where the degree of a divisor is degD =

∑
P nP deg(P ).
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Toy example

Let C = P1, P = [0 : 1] and Q = [1 : 1]. Let D = P −Q, then

f ∈ L(D) ⇐⇒


f has a zero of order at least 1 at Q,

f can have a pole of order at most 1 at P ,

f has not other poles outside P .

f = X−1
X is a solution.

g = 0,degD = 0
Riemann–Roch−−−−−−−−→

Theorem
dimL(D) = degD + 1− g = 1

→ f generates the space of solutions.

" no explicit method to compute a basis of L(D)!
How do we solve the problem in general?
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Riemann–Roch problem: state of the art

Geometric Method: Arithmetic Method:
(Brill–Noether theory∼1874) (Ideals in function fields)
• Goppa, Le Brigand–Risler (80’s)
• Huang–Ierardi (90’s)
• Khuri–Makdisi (2007)
• Le Gluher–Spaenlehauer (2018)
• Abelard–Couvreur–Lecerf (2020)

• Hensel–Landberg (1902)
• Coates (1970)
• Davenport (1981)
• Hess (2001)

Ordinary/nodal curves: Las Vegas algorithm computing L(D) in sub–quadratic time
.
Non–ordinary curves:

.
" no explicit complexity exponent
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Brill–Noether method

Notations:
• (H) =

∑
P∈C ordP (H)P – divisor of the zeros of H with multiplicity

• D > D′  D −D′ =
∑
nPP with nP > 0 ∀P (D −D′ is effective)

We can always write D = D+ −D− with D+ and D− two effective divisors.

Description of L(D) for C : F (X, Y, Z) = 0 a plane projective curve.

The non–zero elements are of the form Gi

H where

•
•
•

How do we manage singular points?

the adjoint divisor A “encodes” the singular points of C with their multiplicities

How do we represent divisors?

series expansions of multi–set ((Pi)i, ni) → operations on divisors with negligible cost
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Sketch of the algorithm

Input

C : F (X,Y, Z) = 0 a plane curve of degree δ, D a smooth divisor.

Step 1 : Compute the adjoint divisor A

Step 2 : Compute the common denominator H

Step 3 : Compute (H)−D

Step 4 : Compute the numerators Gi (similar to Step 2)

Output

A basis of the Riemann–Roch space L(D) in terms of H and the Gi.
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Warm up: adjoint divisor in the ordinary case

Definition

Let C be defined over a field K, and let P ∈ Sing(C). The local adjoint divisor is

AP = −
∑
P|P

valP

(
dx

Fy(x, y, 1)

)
P.

Let P ∈ Sing(C) ordinary of multiplicity m, wlog P = (0 : 0 : 1). Then F locally factorises as

F (x, y, 1) = u(x, y)

m∏
i=1

(y − ϕi(x))

with u ∈ K[[x, y]] invertible, ϕi(x) ∈ xK[[x]] and ϕ′
i(0) 6= ϕ′

j(0).

Germ of the curve
parametrized by ϕi(x)

←→ place Pi in the
functions field K(C)

The local adjoint divisor becomes AP = (m− 1)
∑m
i=1 Pi.

Computing Riemann–Roch spaces for AG codes Elena Berardini 13 / 25
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(0, 0) non–ordinary singular point of multiplicity 2

“Factorisation”: (y − x3/2)(y + x3/2) = 0

We use Puiseux series!
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Adjoint condition via Puiseux series

Informally: Puiseux series are Laurent series that admit fractional exponents.

F ∈ K((x))[y] has degF = d distinct roots in its field of Puiseux series and writes as

F =

d∏
i=1

(y − ϕi) =
d∏
i=1

y − ∞∑
j=n

βi,jx
j/ei

 .

We fix ϕ of degree e, ζ a primitive e-th root of unity. For 0 6 k < e we can construct other e
Puiseux series by replacing x1/e with ζkx1/e. They are all equivalent and represented by...

Definition

A Rational Puiseux Expansion (RPE) is a pair (X(t), Y (t)) =
(
γte,

∑∞
j=n βjt

j
)

such that

F (X(t), Y (t)) = 0.

Rational Puiseux
Expansion of F (x, y, 1)

←→ places of K(C) in the chart
z = 1
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The adjoint divisor

Let P ∈ Sing(C) ordinary, w.l.o.g. P = (0 : 0 : 1). Then F locally factorises as

F (x, y, 1) = u(x, y)

m∏
i=1

(y − ϕi(x)),

with u ∈ K[[x, y]] invertible and ϕi Puiseux series of F ∈ K[[x]][y].

{ϕ1, . . . , ϕm}  
RPEs/places (Xi(t), Yi(t))

i ∈ {1, . . . , s}, s 6 m.

The local adjoint divisor becomes

AP = −
∑
P|P

valt

(
ete−1

Fy(X(t), Y (t), 1)

)
P.

In practice: algorithm for computing Puiseux series  A computed with Õ(δ3) operations.
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Example

C : y2 − x3 = 0 in the chart z = 1

(0, 0) unique singular point, non–ordinary

Puiseux series: (y − x3/2)(y + x3/2) = 0

(Unique) RPE: (X(t), Y (t)) = (t2, t3)

Adjoint condition: Fy = 2y, x = t2 ⇒ dx = 2t

valt

(
ete−1

Fy(X(t),Y (t),1)

)
= valt

(
2t
2t3

)
= valt

(
1
t2

)
= −2

(H) ≥ A ⇐⇒ valtH(t2, t3) ≥ 2
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Sketch of the algorithm

Input

C : F (X,Y, Z) = 0 a plane curve of degree δ, D a smooth divisor .

Step 1 : Compute the adjoint divisor A Ë ← Õ(δ3)

Step 2 : Compute the common denominator H

Step 3 : Compute (H)−D ← Õ((δ2 + degD+)
2)

Step 4 : Compute the numerators Gi (similar to Step 2)

Output

A basis of the Riemann–Roch space L(D) in terms of H and the Gi.

Computing Riemann–Roch spaces for AG codes Elena Berardini 18 / 25
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Find a denominator in practice: classical linear algebra

Let d := degH.

Condition (H) > A+D+

 linear system with degA+ degD+ ∼ δ2 + degD+ equations,

 we retrieve H by Gauss elimination that costs

Õ((dδ + δ2 + degD)ω) operations6 in K.

How big is d?

We showed that d =
⌈
(δ−1)(δ−2)+degD+

δ

⌉
is enough

 denominator computed with Õ((δ2 + degD+)
ω) operations in K.

62 6 ω 6 3 is a feasible exponent for linear algebra (ω = 2.373)
Computing Riemann–Roch spaces for AG codes Elena Berardini 19 / 25
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Second method: structured linear algebra

Condition (H) > A

 valt(H(X(t), Y (t), 1) > −valt
(

ete−1

Fy(X(t), Y (t), 1)

)
(similar equations for the condition (H) > D+ )

The space of polynomials H(x, y, 1) that satisfy these conditions is a K[x]–module

 computing a basis7 costs Õ((δ2 + degD)ω) operations in K.

Same complexity exponent but with some

Advantages:

• better complexity exponent over algebraically closed fields: Õ((δ2 + degD)
ω+1
2 ),

• potential improvement in the future.

7C.-P. Jeannerod, V. Neiger, É. Schost and G. Villard, J. Symbolic Comput. 2017
Computing Riemann–Roch spaces for AG codes Elena Berardini 20 / 25
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ω+1
2 ),

• potential improvement in the future.
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Sketch of the algorithm

Input

C : F (X,Y, Z) = 0 a plane curve of degree δ, D a smooth divisor .

Step 1 : Compute the adjoint divisor A Ë ← Õ(δ3)

Step 2 : Compute the common denominator H Ë ← Õ((δ2 + degD+)
ω)

Step 3 : Compute (H)−D Ë ← Õ((δ2 + degD+)
2)

Step 4 : Compute the numerators Gi (similar to Step 2)

Output

A basis of the Riemann–Roch space L(D) in terms of H and the Gi.

Theorem (Abelard, B–, Couvreur, Lecerf – Journal of Complexity 2022)

The previous algorithm computes L(D) with Õ((δ2 + degD+)
ω) operations in K.
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ω)

Step 3 : Compute (H)−D Ë ← Õ((δ2 + degD+)
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What to take away?

0. Implementation of AG codes  
need to compute large Riemann–Roch spaces

L(D)

1. Brill–Noether method  
necessary and sufficient conditions on G and H

such that G/H ∈ L(D)

2. Puiseux series  
management of non–ordinary singular points of

the curve

3. Linear Algebra  Computing H and G in practice

Main result

We can compute Riemann–Roch spaces of any
plane curve with a good complexity exponent.
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Future questions

.

• Computing Riemann–Roch spaces of non–ordinary curves
in positive “small” characteristic (in progress).

Main obstacle: find an alternative tool to Puiseux series
to handle the adjoint condition.

• Improving the complexity exponent in the non–ordinary case.
(Sub–quadratic as in the ordinary case?)

Main obstacle: linear algebra.
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AG codes: from curves to surfaces

P = (P1, P2, . . . , Pn)

f ∈ L

curve C

CC(L,P)
def
= {(f(P1), f(P2), . . . , f(Pn)) | f ∈ L}

Riemann–Roch space of the curve

•
P1

•
P2

•
Pn

surface X •
P3 •

PN

CC(LC ,PC) =

{(f(P1), f(P2), . . . , f(Pn)) | f ∈ L}

Restriction to C

Codes on a surface X
Ë Length: N ∼ q2

?? Parameters & decoding
(Ë very particular cases)

Ë Local properties from curves lying on X
(e.g. local decoding, local recoverability)

• Can we develop a “Brill–Noether” theory for computing Riemann–Roch spaces of surfaces?

Computing Riemann–Roch spaces for AG codes Elena Berardini 24 / 25
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Thank you for your attention!
Questions?

e.berardini@tue.nl

Computing Riemann–Roch spaces for AG codes Elena Berardini 25 / 25


	Introduction to Algebraic Geometry codes (motivation)
	Introduction to Riemann–Roch spaces
	Computation of Riemann–Roch spaces : geometric algorithm
	Conclusion and future questions

