Computing Riemann-Roch spaces for Algebraic Geometry codes

Elena Berardini

Eindhoven University of Technology
joint with S. Abelard (Thales), A. Couvreur (Inria), G. Lecerf (LIX)

Project funded by the French "Agence de I'Innovation de Défense"
${ }_{*}^{*}$ Eurotech Postidoce Progranme

ACCESS Seminar - 7 June 2022
(1) Introduction to Algebraic Geometry codes (motivation)
(2) Introduction to Riemann-Roch spaces
(3) Computation of Riemann-Roch spaces: geometric algorithm
(4) Conclusion and future questions

Linear codes: from Reed-Solomon codes...
Linear code: \mathbb{F}_{q}-vector sub space of \mathbb{F}_{q}^{n}
$[n, k, d]_{q}$-code: code of length \mathbf{n}, dimension \mathbf{k} and minimum distance \mathbf{d}

$$
\left.\begin{array}{c}
\text { dimension } \leftrightarrow \text { information } \\
\text { m distance } \leftrightarrow \text { correction capacity }
\end{array}\right\} \quad k+d \leqslant n+1 \text { el Singleton, } 1964
$$

Linear codes: from Reed-Solomon codes...

Linear code: \mathbb{F}_{q}-vector sub space of \mathbb{F}_{q}^{n}
$[n, k, d]_{q}$-code: code of length \mathbf{n}, dimension \mathbf{k} and minimum distance \mathbf{d}

$$
\left.\begin{array}{c}
\text { dimension } \leftrightarrow \text { information } \\
\text { m distance } \leftrightarrow \text { correction capacity }
\end{array}\right\} \quad k+d \leqslant n+1 \text { 日 Singleton, } 1964
$$

Reed-Solomon (RS) Codes Reed and Solomon, 1960

Linear codes: from Reed-Solomon codes...

Linear code: \mathbb{F}_{q}-vector sub space of \mathbb{F}_{q}^{n}
$[n, k, d]_{q}$-code: code of length \mathbf{n}, dimension \mathbf{k} and minimum distance \mathbf{d}

$$
\left.\begin{array}{c}
\text { dimension } \leftrightarrow \text { information } \\
\text { minimum distance } \leftrightarrow \text { correction capacity }
\end{array}\right\} \quad k+d \leqslant n+1 \text { singleton, } 1964
$$

Reed-Solomon (RS) Codes ${ }^{6}$ Reed and Solomon, 1960

$\mathrm{RS}_{k}(\mathbf{x}) \stackrel{\text { def }}{=}\left\{\left(f\left(x_{1}\right), f\left(x_{2}\right), f\left(x_{3}\right), \ldots, f\left(x_{n}\right)\right) \mid f \in \mathbb{F}_{q}[x]_{<k}\right\}$
\checkmark Optimal parameters
$k+d=n+1$.
\checkmark Effective decoding algorithms
E Berlekamp,1968.
© Drawback: $n \leqslant q$.
The more q is big,
the less the arithmetic is efficient.

...to Algebraic Geometry (AG) codes छ Goppa, 1981

$$
\mathcal{P}=\left(P_{1}, P_{2}, \ldots, P_{n}\right) \quad \begin{aligned}
& \text { Vector space of functions on the curve } \\
& \text { (Riemann-Roch space) }
\end{aligned}
$$

...to Algebraic Geometry (AG) codes E/ Goppa, 1981

$$
\mathcal{P}=\left(P_{1}, P_{2}, \ldots, P_{n}\right)
$$

Vector space of functions on the curve
(Riemann-Roch space)

Codes on a curve \mathcal{C}
\checkmark Good parameters
curve $\mathcal{C} \vee$ Efficient decoding algorithms
\checkmark Length $>q$

$$
\# \mathcal{C}\left(\mathbb{F}_{q}\right) \leq q+1+g\lfloor 2 \sqrt{q}\rfloor
$$

$$
C_{\mathcal{C}}(\mathcal{L}, \mathcal{P}) \stackrel{\text { def }}{=}\left\{\left(f\left(P_{1}\right), f\left(P_{2}\right), \ldots, f\left(P_{n}\right)\right) \mid f \in L\right\}
$$

Proposition

The parameters $[n, k, d]$ of $A G$ codes satisfy $n+1-g \leq k+d \leq n+1$.
...to Algebraic Geometry (AG) codes E Goppa, 1981

Proposition

The parameters $[n, k, d]$ of $A G$ codes satisfy $n+1-g \leq k+d \leq n+1$.
Construction of good AG codes relies on $\left\{\begin{array}{l}\text { identify algebraic curves suitable to the context, } \\ \text { design efficient algorithms for implementation. }\end{array}\right.$

AG codes: long story short

1981: Goppa introduces AG codes from algebraic curves

AG codes: long story short

1981: Goppa introduces AG codes from algebraic curves
1982: Tsfasman, Vlăduț and Zink use AG codes for beating the Gilbert-Varshamov bound

AG codes: long story short

1981: Goppa introduces AG codes from algebraic curves
1982: Tsfasman, Vlăduț and Zink use AG codes for beating the Gilbert-Varshamov bound

XXc: different familles of curves are studied to obtain good AG codes
\hookrightarrow the most used curves are the ones for which Riemann-Roch spaces are already known (e.g. Hermitian curves)

AG codes: long story short

1981: Goppa introduces AG codes from algebraic curves
1982: Tsfasman, Vlăduț and Zink use AG codes for beating the Gilbert-Varshamov bound

XXc: different familles of curves are studied to obtain good AG codes
\hookrightarrow the most used curves are the ones for which Riemann-Roch spaces are already known (e.g. Hermitian curves)

XXIc: AG codes are used in new applications in information theory...

AG codes provide complexity gains in (not exhaustive list)

- Secret sharing ${ }^{1}$

Example: can have up to 500 players over \mathbb{F}_{64} with AG codes from maximal curves, while need to work over a field with >500 elements with RS codes

- Verifiable computing ${ }^{2}$
\rightsquigarrow computing large Riemann-Roch spaces of curves is necessary

[^0]AG codes provide complexity gains in (not exhaustive list)

- Secret sharing ${ }^{1}$

Example: can have up to 500 players over \mathbb{F}_{64} with AG codes from maximal curves, while need to work over a field with >500 elements with RS codes

- Verifiable computing ${ }^{2}$
\rightsquigarrow computing large Riemann-Roch spaces of curves is necessary
Can be used also for...
- Arithmetic operations on Jacobians of curves ${ }^{3}$
- Symbolic integration ${ }^{4}$

[^1]
Riemann-Roch spaces of curves

A divisor on a curve $\mathcal{C}: D=\sum_{P \in \mathcal{C}} n_{P} P, n_{P} \in \mathbb{Z}$

The Riemann-Roch space $L(D)$ is the space of functions $\frac{G}{H} \in \mathbb{K}(\mathcal{C})$ such that:

- if $n_{P}<0$ then P must be a zero of G (of multiplicity $\geqslant-n_{P}$)
- if $n_{P}>0$ then P can be a zero of H (of multiplicity $\leqslant n_{P}$)
- G / H has no other poles outside the points P with $n_{P}>0$

Here: Z must be a zero of G, the P_{i} can be zeros of H

A divisor on a curve $\mathcal{C}: D=\sum_{P \in \mathcal{C}} n_{P} P, n_{P} \in \mathbb{Z}$

The Riemann-Roch space $L(D)$ is the space of functions $\frac{G}{H} \in \mathbb{K}(\mathcal{C})$ such that:

- if $n_{P}<0$ then P must be a zero of G (of multiplicity $\geqslant-n_{P}$)
- if $n_{P}>0$ then P can be a zero of H (of multiplicity $\leqslant n_{P}$)
- G / H has no other poles outside the points P with $n_{P}>0$

Here: Z must be a zero of G, the P_{i} can be zeros of H

Riemann-Roch Theorem \rightsquigarrow dimension of $L(D)=\operatorname{deg} D+1-g$
where the degree of a divisor is $\operatorname{deg} D=\sum_{P} n_{P} \operatorname{deg}(P)$.

Toy example

Let $\mathcal{C}=\mathbb{P}^{1}, P=[0: 1]$ and $Q=[1: 1]$. Let $D=P-Q$, then

$$
f \in L(D) \Longleftrightarrow\left\{\begin{array}{l}
\mathrm{f} \text { has a zero of order at least } 1 \text { at } Q, \\
\mathrm{f} \text { can have a pole of order at most } 1 \text { at } P, \\
\mathrm{f} \text { has not other poles outside } P .
\end{array}\right.
$$

Toy example

Let $\mathcal{C}=\mathbb{P}^{1}, P=[0: 1]$ and $Q=[1: 1]$. Let $D=P-Q$, then

$$
f \in L(D) \Longleftrightarrow\left\{\begin{array}{l}
\mathrm{f} \text { has a zero of order at least } 1 \text { at } Q, \\
\mathrm{f} \text { can have a pole of order at most } 1 \text { at } P, \\
\mathrm{f} \text { has not other poles outside } P .
\end{array}\right.
$$

$$
f=\frac{X-1}{X} \text { is a solution. }
$$

Toy example

Let $\mathcal{C}=\mathbb{P}^{1}, P=[0: 1]$ and $Q=[1: 1]$. Let $D=P-Q$, then

$$
f \in L(D) \Longleftrightarrow\left\{\begin{array}{l}
\mathrm{f} \text { has a zero of order at least } 1 \text { at } Q, \\
\mathrm{f} \text { can have a pole of order at most } 1 \text { at } P, \\
\mathrm{f} \text { has not other poles outside } P .
\end{array}\right.
$$

$$
f=\frac{X-1}{X} \text { is a solution. }
$$

$$
\begin{aligned}
g=0, \operatorname{deg} D & =0 \xrightarrow[\text { Theorem }]{\text { Riemann-Roch }} \operatorname{dim} L(D)=\operatorname{deg} D+1-g=1 \\
& \rightarrow f \text { generates the space of solutions. }
\end{aligned}
$$

Toy example
Let $\mathcal{C}=\mathbb{P}^{1}, P=[0: 1]$ and $Q=[1: 1]$. Let $D=P-Q$, then

$$
\begin{aligned}
& f \in L(D) \Longleftrightarrow\left\{\begin{array}{l}
\mathrm{f} \text { has a zero of order at least } 1 \text { at } Q, \\
\mathrm{f} \text { can have a pole of order at most } 1 \text { at } P, \\
\mathrm{f} \text { has not other poles outside } P .
\end{array}\right. \\
& \qquad f=\frac{X-1}{X} \text { is a solution. } \\
& g=0, \operatorname{deg} D=0 \xrightarrow[\text { Rheorem }]{\text { Riemann-Roch }} \operatorname{dim} L(D)=\operatorname{deg} D+1-g=1 \\
& \\
& \rightarrow f \text { generates the space of solutions. }
\end{aligned}
$$

\triangle no explicit method to compute a basis of $L(D)$!
How do we solve the problem in general?

Riemann-Roch problem: state of the art

Geometric Method:

(Brill-Noether theory~1874)

- Goppa, Le Brigand-Risler (80's)
- Huang-lerardi (90's)
- Khuri-Makdisi (2007)
- Le Gluher-Spaenlehauer (2018)
- Abelard-Couvreur-Lecerf (2020)

Arithmetic Method:

(Ideals in function fields)

- Hensel-Landberg (1902)
- Coates (1970)
- Davenport (1981)
- Hess (2001)

Geometric Method:

(Brill-Noether theory~1874)

- Goppa, Le Brigand-Risler (80's)
- Huang-lerardi (90's)
- Khuri-Makdisi (2007)
- Le Gluher-Spaenlehauer (2018)
- Abelard-Couvreur-Lecerf (2020)

Arithmetic Method:

(Ideals in function fields)

- Hensel-Landberg (1902)
- Coates (1970)
- Davenport (1981)
- Hess (2001)

Ordinary/nodal curves: Las Vegas algorithm computing $L(D)$ in sub-quadratic time
Non-ordinary curves: \uparrow no explicit complexity exponent

Brill-Noether method

Notations:

- $(H)=\sum_{P \in \mathcal{C}} \operatorname{ord}_{P}(H) P$ - divisor of the zeros of H with multiplicity
- $D \geqslant D^{\prime} \rightsquigarrow D-D^{\prime}=\sum n_{P} P$ with $n_{P} \geqslant 0 \forall P\left(D-D^{\prime}\right.$ is effective $)$

We can always write $D=D_{+}-D_{-}$with D_{+}and D_{-}two effective divisors.

Brill-Noether method

Notations:

- $(H)=\sum_{P \in \mathcal{C}} \operatorname{ord}_{P}(H) P$ - divisor of the zeros of H with multiplicity
- $D \geqslant D^{\prime} \rightsquigarrow D-D^{\prime}=\sum n_{P} P$ with $n_{P} \geqslant 0 \forall P\left(D-D^{\prime}\right.$ is effective $)$ We can always write $D=D_{+}-D_{-}$with D_{+}and D_{-}two effective divisors.

Description of $L(D)$ for $\mathcal{C}: F(X, Y, Z)=0$ a plane projective curve.

The non-zero elements are of the form $\frac{G_{i}}{H}$ where

- H satisfies $(H) \geqslant D_{+}$
- H vanishes at any singular point of \mathcal{C} with ad hoc multiplicity
- $\operatorname{deg} G_{i}=\operatorname{deg} H, G_{i}$ prime with F and $\left(G_{i}\right) \geqslant(H)-D$

Brill-Noether method

Notations:

- $(H)=\sum_{P \in \mathcal{C}} \operatorname{ord}_{P}(H) P$ - divisor of the zeros of H with multiplicity
- $D \geqslant D^{\prime} \rightsquigarrow D-D^{\prime}=\sum n_{P} P$ with $n_{P} \geqslant 0 \forall P\left(D-D^{\prime}\right.$ is effective $)$ We can always write $D=D_{+}-D_{-}$with D_{+}and D_{-}two effective divisors.

Description of $L(D)$ for $\mathcal{C}: F(X, Y, Z)=0$ a plane projective curve.

The non-zero elements are of the form $\frac{G_{i}}{H}$ where

- H satisfies $(H) \geqslant D_{+}$
- H vanishes at any singular point of \mathcal{C} with ad hoc multiplicity
- $\operatorname{deg} G_{i}=\operatorname{deg} H, G_{i}$ prime with F and $\left(G_{i}\right) \geqslant(H)-D$

How do we manage singular points?

Brill-Noether method

Notations:

- $(H)=\sum_{P \in \mathcal{C}} \operatorname{ord}_{P}(H) P$ - divisor of the zeros of H with multiplicity
- $D \geqslant D^{\prime} \rightsquigarrow D-D^{\prime}=\sum n_{P} P$ with $n_{P} \geqslant 0 \forall P\left(D-D^{\prime}\right.$ is effective) We can always write $D=D_{+}-D_{-}$with D_{+}and D_{-}two effective divisors.

Description of $L(D)$ for $\mathcal{C}: F(X, Y, Z)=0$ a plane projective curve.

The non-zero elements are of the form $\frac{G_{i}}{H}$ where

- H satisfies $(H) \geqslant D_{+}$
- H vanishes at any singular point of \mathcal{C} with ad hoc multiplicity
- $\operatorname{deg} G_{i}=\operatorname{deg} H, G_{i}$ prime with F and $\left(G_{i}\right) \geqslant(H)-D$

How do we manage singular points?

the adjoint divisor \mathcal{A} "encodes" the singular points of \mathcal{C} with their multiplicities

Brill-Noether method

Notations:

- $(H)=\sum_{P \in \mathcal{C}} \operatorname{ord}_{P}(H) P$ - divisor of the zeros of H with multiplicity
- $D \geqslant D^{\prime} \rightsquigarrow D-D^{\prime}=\sum n_{P} P$ with $n_{P} \geqslant 0 \forall P\left(D-D^{\prime}\right.$ is effective) We can always write $D=D_{+}-D_{-}$with D_{+}and D_{-}two effective divisors.

Description of $L(D)$ for $\mathcal{C}: F(X, Y, Z)=0$ a plane projective curve.

The non-zero elements are of the form $\frac{G_{i}}{H}$ where

- H satisfies $(H) \geqslant D_{+}$
- H satisfies $(H) \geqslant \mathcal{A}$ (we say that " H is adjoint to the curve")
- $\operatorname{deg} G_{i}=\operatorname{deg} H, G_{i}$ prime with F and $\left(G_{i}\right) \geqslant(H)-D$

How do we manage singular points?

the adjoint divisor \mathcal{A} "encodes" the singular points of \mathcal{C} with their multiplicities

Brill-Noether method

Notations:

- $(H)=\sum_{P \in \mathcal{C}} \operatorname{ord}_{P}(H) P$ - divisor of the zeros of H with multiplicity
- $D \geqslant D^{\prime} \rightsquigarrow D-D^{\prime}=\sum n_{P} P$ with $n_{P} \geqslant 0 \forall P\left(D-D^{\prime}\right.$ is effective) We can always write $D=D_{+}-D_{-}$with D_{+}and D_{-}two effective divisors.

Description of $L(D)$ for $\mathcal{C}: F(X, Y, Z)=0$ a plane projective curve.

The non-zero elements are of the form $\frac{G_{i}}{H}$ where

- H satisfies $(H) \geqslant D_{+}$
- H satisfies $(H) \geqslant \mathcal{A}$
- $\operatorname{deg} G_{i}=\operatorname{deg} H, G_{i}$ prime with F and $\left(G_{i}\right) \geqslant(H)-D$

How do we manage singular points?
the adjoint divisor \mathcal{A} "encodes" the singular points of \mathcal{C} with their multiplicities
How do we represent divisors?

Brill-Noether method

Notations:

- $(H)=\sum_{P \in \mathcal{C}} \operatorname{ord}_{P}(H) P$ - divisor of the zeros of H with multiplicity
- $D \geqslant D^{\prime} \rightsquigarrow D-D^{\prime}=\sum n_{P} P$ with $n_{P} \geqslant 0 \forall P\left(D-D^{\prime}\right.$ is effective) We can always write $D=D_{+}-D_{-}$with D_{+}and D_{-}two effective divisors.

Description of $L(D)$ for $\mathcal{C}: F(X, Y, Z)=0$ a plane projective curve.

The non-zero elements are of the form $\frac{G_{i}}{H}$ where

- H satisfies $(H) \geqslant D_{+}$
- H satisfies $(H) \geqslant \mathcal{A}$
- $\operatorname{deg} G_{i}=\operatorname{deg} H, G_{i}$ prime with F and $\left(G_{i}\right) \geqslant(H)-D$

How do we manage singular points?

the adjoint divisor \mathcal{A} "encodes" the singular points of \mathcal{C} with their multiplicities
How do we represent divisors?
series expansions of multi-set $\left(\left(P_{i}\right)_{i}, n_{i}\right) \quad \rightarrow \quad$ operations on divisors with negligible cost

Input

$\mathcal{C}: F(X, Y, Z)=0$ a plane curve of degree δ, D a smooth divisor.

Step 1: Compute the adjoint divisor \mathcal{A}
Step 2 : Compute the common denominator H
Step 3 : Compute $(H)-D$
Step 4 : Compute the numerators G_{i} (similar to Step 2)

Output

A basis of the Riemann-Roch space $L(D)$ in terms of H and the G_{i}.

Input

$\mathcal{C}: F(X, Y, Z)=0$ a plane curve of degree δ, D a smooth divisor.
Step 1: Compute the adjoint divisor \mathcal{A}
Step 2 : Compute the common denominator H
Step 3 : Compute $(H)-D \vee \leftarrow \tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D_{+}\right)^{2}\right)$
Step 4: Compute the numerators G_{i} (similar to Step 2)

Output

A basis of the Riemann-Roch space $L(D)$ in terms of H and the G_{i}.

Input

$\mathcal{C}: F(X, Y, Z)=0$ a plane curve of degree δ, D a smooth divisor.
Step 1: Compute the adjoint divisor \mathcal{A}
Step 2 : Compute the common denominator H
Step 3 : Compute $(H)-D \vee \leftarrow \tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D_{+}\right)^{2}\right)$
Step 4 : Compute the numerators G_{i} (similar to Step 2)

Output

A basis of the Riemann-Roch space $L(D)$ in terms of H and the G_{i}.

Warm up: adjoint divisor in the ordinary case

Definition

Let \mathcal{C} be defined over a field \mathbb{K}, and let $P \in \operatorname{Sing}(\mathcal{C})$. The local adjoint divisor is

$$
\mathcal{A}_{P}=-\sum_{\mathcal{P} \mid P} \operatorname{val}_{\mathcal{P}}\left(\frac{d x}{F_{y}(x, y, 1)}\right) \mathcal{P} .
$$

Warm up: adjoint divisor in the ordinary case

Definition

Let \mathcal{C} be defined over a field \mathbb{K}, and let $P \in \operatorname{Sing}(\mathcal{C})$. The local adjoint divisor is

$$
\mathcal{A}_{P}=-\sum_{\mathcal{P} \mid P} \operatorname{val}_{\mathcal{P}}\left(\frac{d x}{F_{y}(x, y, 1)}\right) \mathcal{P} .
$$

Let $P \in \operatorname{Sing}(\mathcal{C})$ ordinary of multiplicity m, wlog $P=(0: 0: 1)$. Then F locally factorises as

$$
F(x, y, 1)=u(x, y) \prod_{i=1}^{m}\left(y-\varphi_{i}(x)\right)
$$

with $u \in \overline{\mathbb{K}}[[x, y]]$ invertible, $\varphi_{i}(x) \in x \overline{\mathbb{K}}[[x]]$ and $\varphi_{i}^{\prime}(0) \neq \varphi_{j}^{\prime}(0)$.

Warm up: adjoint divisor in the ordinary case

Definition

Let \mathcal{C} be defined over a field \mathbb{K}, and let $P \in \operatorname{Sing}(\mathcal{C})$. The local adjoint divisor is

$$
\mathcal{A}_{P}=-\sum_{\mathcal{P} \mid P} \operatorname{val}_{\mathcal{P}}\left(\frac{d x}{F_{y}(x, y, 1)}\right) \mathcal{P} .
$$

Let $P \in \operatorname{Sing}(\mathcal{C})$ ordinary of multiplicity m, wlog $P=(0: 0: 1)$. Then F locally factorises as

$$
F(x, y, 1)=u(x, y) \prod_{i=1}^{m}\left(y-\varphi_{i}(x)\right)
$$

with $u \in \overline{\mathbb{K}}[[x, y]]$ invertible, $\varphi_{i}(x) \in x \overline{\mathbb{K}}[[x]]$ and $\varphi_{i}^{\prime}(0) \neq \varphi_{j}^{\prime}(0)$.

Germ of the curve parametrized by $\varphi_{i}(x) \quad \longleftrightarrow \quad$ functions field $\overline{\mathbb{K}}(\mathcal{C})$

Warm up: adjoint divisor in the ordinary case

Definition

Let \mathcal{C} be defined over a field \mathbb{K}, and let $P \in \operatorname{Sing}(\mathcal{C})$. The local adjoint divisor is

$$
\mathcal{A}_{P}=-\sum_{\mathcal{P} \mid P} \operatorname{val}_{\mathcal{P}}\left(\frac{d x}{F_{y}(x, y, 1)}\right) \mathcal{P} .
$$

Let $P \in \operatorname{Sing}(\mathcal{C})$ ordinary of multiplicity m, wlog $P=(0: 0: 1)$. Then F locally factorises as

$$
F(x, y, 1)=u(x, y) \prod_{i=1}^{m}\left(y-\varphi_{i}(x)\right)
$$

with $u \in \overline{\mathbb{K}}[[x, y]]$ invertible, $\varphi_{i}(x) \in x \overline{\mathbb{K}}[[x]]$ and $\varphi_{i}^{\prime}(0) \neq \varphi_{j}^{\prime}(0)$.
Germ of the curve \longleftrightarrow place \mathcal{P}_{i} in the parametrized by $\varphi_{i}(x) \quad \longleftrightarrow$ functions field $\overline{\mathbb{K}}(\mathcal{C})$

The local adjoint divisor becomes $\quad \mathcal{A}_{P}=(m-1) \sum_{i=1}^{m} \mathcal{P}_{i}$.

Example

$$
\mathcal{C}: y^{2}-x^{3}=0 \text { in the chart } z=1
$$

Example

$$
\mathcal{C}: y^{2}-x^{3}=0 \text { in the chart } z=1
$$

$(0,0)$ non-ordinary singular point of multiplicity 2

Example

$\mathcal{C}: y^{2}-x^{3}=0$ in the chart $z=1$
$(0,0)$ non-ordinary singular point of multiplicity 2
"Factorisation": $\left(y-x^{3 / 2}\right)\left(y+x^{3 / 2}\right)=0$

Example

$\mathcal{C}: y^{2}-x^{3}=0$ in the chart $z=1$
$(0,0)$ non-ordinary singular point of multiplicity 2
"Factorisation": $\left(y-x^{3 / 2}\right)\left(y+x^{3 / 2}\right)=0$
We use Puiseux series!

Adjoint condition via Puiseux series

Informally: Puiseux series are Laurent series that admit fractional exponents.
$F \in \mathbb{K}((x))[y]$ has $\operatorname{deg} F=d$ distinct roots in its field of Puiseux series and writes as

$$
F=\prod_{i=1}^{d}\left(y-\varphi_{i}\right)=\prod_{i=1}^{d}\left(y-\sum_{j=n}^{\infty} \beta_{i, j} x^{j / e_{i}}\right)
$$

Adjoint condition via Puiseux series

Informally: Puiseux series are Laurent series that admit fractional exponents.
$F \in \mathbb{K}((x))[y]$ has $\operatorname{deg} F=d$ distinct roots in its field of Puiseux series and writes as

$$
F=\prod_{i=1}^{d}\left(y-\varphi_{i}\right)=\prod_{i=1}^{d}\left(y-\sum_{j=n}^{\infty} \beta_{i, j} x^{j / e_{i}}\right) .
$$

We fix φ of degree e, ζ a primitive e-th root of unity. For $0 \leqslant k<e$ we can construct other e Puiseux series by replacing $x^{1 / e}$ with $\zeta^{k} x^{1 / e}$.

Adjoint condition via Puiseux series

Informally: Puiseux series are Laurent series that admit fractional exponents.
$F \in \mathbb{K}((x))[y]$ has $\operatorname{deg} F=d$ distinct roots in its field of Puiseux series and writes as

$$
F=\prod_{i=1}^{d}\left(y-\varphi_{i}\right)=\prod_{i=1}^{d}\left(y-\sum_{j=n}^{\infty} \beta_{i, j} x^{j / e_{i}}\right)
$$

We fix φ of degree e, ζ a primitive e-th root of unity. For $0 \leqslant k<e$ we can construct other e Puiseux series by replacing $x^{1 / e}$ with $\zeta^{k} x^{1 / e}$. They are all equivalent and represented by...

Definition

A Rational Puiseux Expansion (RPE) is a pair $(X(t), Y(t))=\left(\gamma t^{e}, \sum_{j=n}^{\infty} \beta_{j} t^{j}\right)$ such that $F(X(t), Y(t))=0$.

Adjoint condition via Puiseux series

Informally: Puiseux series are Laurent series that admit fractional exponents.
$F \in \mathbb{K}((x))[y]$ has $\operatorname{deg} F=d$ distinct roots in its field of Puiseux series and writes as

$$
F=\prod_{i=1}^{d}\left(y-\varphi_{i}\right)=\prod_{i=1}^{d}\left(y-\sum_{j=n}^{\infty} \beta_{i, j} x^{j / e_{i}}\right)
$$

We fix φ of degree e, ζ a primitive e-th root of unity. For $0 \leqslant k<e$ we can construct other e Puiseux series by replacing $x^{1 / e}$ with $\zeta^{k} x^{1 / e}$. They are all equivalent and represented by...

Definition

A Rational Puiseux Expansion (RPE) is a pair $(X(t), Y(t))=\left(\gamma t^{e}, \sum_{j=n}^{\infty} \beta_{j} t^{j}\right)$ such that $F(X(t), Y(t))=0$.

$$
\begin{aligned}
& \text { Rational Puiseux } \\
& \text { Expansion of } F(x, y, 1)
\end{aligned} \longleftrightarrow \begin{gathered}
\text { places of } \overline{\mathbb{K}}(\mathcal{C}) \text { in the chart } \\
z=1
\end{gathered}
$$

The adjoint divisor

Let $P \in \operatorname{Sing}(\mathcal{C})$ w.l.o.g. $P=(0: 0: 1)$. Then F locally factorises as

$$
F(x, y, 1)=u(x, y) \prod_{i=1}^{m}\left(y-\varphi_{i}(x)\right),
$$

with $u \in \mathbb{K}[[x, y]]$ invertible and φ_{i} Puiseux series of $F \in \overline{\mathbb{K}}[[x]][y]$.

The adjoint divisor

Let $P \in \operatorname{Sing}(\mathcal{C})$ w.l.o.g. $P=(0: 0: 1)$. Then F locally factorises as

$$
F(x, y, 1)=u(x, y) \prod_{i=1}^{m}\left(y-\varphi_{i}(x)\right),
$$

with $u \in \mathbb{K}[[x, y]]$ invertible and φ_{i} Puiseux series of $F \in \overline{\mathbb{K}}[[x]][y]$.

$$
\left\{\varphi_{1}, \ldots, \varphi_{m}\right\} \quad \rightsquigarrow \quad \begin{array}{r}
\text { RPEs } / \text { places }\left(X_{i}(t), Y_{i}(t)\right) \\
i \in\{1, \ldots, s\}, s \leqslant m .
\end{array}
$$

The adjoint divisor

Let $P \in \operatorname{Sing}(\mathcal{C})$ w.l.o.g. $P=(0: 0: 1)$. Then F locally factorises as

$$
F(x, y, 1)=u(x, y) \prod_{i=1}^{m}\left(y-\varphi_{i}(x)\right)
$$

with $u \in \mathbb{K}[[x, y]]$ invertible and φ_{i} Puiseux series of $F \in \overline{\mathbb{K}}[[x]][y]$.

$$
\left\{\varphi_{1}, \ldots, \varphi_{m}\right\} \quad \rightsquigarrow \quad \begin{array}{r}
\text { RPEs } / \text { places }\left(X_{i}(t), Y_{i}(t)\right) \\
i \in\{1, \ldots, s\}, s \leqslant m .
\end{array}
$$

The local adjoint divisor becomes

$$
\mathcal{A}_{P}=-\sum_{\mathcal{P} \mid P} \operatorname{val}_{t}\left(\frac{e t^{e-1}}{F_{y}(X(t), Y(t), 1)}\right) \mathcal{P} .
$$

The adjoint divisor

Let $P \in \operatorname{Sing}(\mathcal{C})$ w.l.o.g. $P=(0: 0: 1)$. Then F locally factorises as

$$
F(x, y, 1)=u(x, y) \prod_{i=1}^{m}\left(y-\varphi_{i}(x)\right)
$$

with $u \in \mathbb{K}[[x, y]]$ invertible and φ_{i} Puiseux series of $F \in \overline{\mathbb{K}}[[x]][y]$.

$$
\left\{\varphi_{1}, \ldots, \varphi_{m}\right\} \quad \rightsquigarrow \quad \begin{gathered}
\text { RPEs } / \text { places }\left(X_{i}(t), Y_{i}(t)\right) \\
i \in\{1, \ldots, s\}, s \leqslant m
\end{gathered}
$$

The local adjoint divisor becomes

$$
\mathcal{A}_{P}=-\sum_{\mathcal{P} \mid P} \operatorname{val}_{t}\left(\frac{e t^{e-1}}{F_{y}(X(t), Y(t), 1)}\right) \mathcal{P}
$$

In practice: algorithm for computing Puiseux series ${ }^{5} \rightsquigarrow \mathcal{A}$ computed with $\tilde{O}\left(\delta^{3}\right)$ operations.

[^2]
Example

$\mathcal{C}: y^{2}-x^{3}=0$ in the chart $z=1$

$(0,0)$ unique singular point, non-ordinary
Puiseux series: $\left(y-x^{3 / 2}\right)\left(y+x^{3 / 2}\right)=0$

Example

$\mathcal{C}: y^{2}-x^{3}=0$ in the chart $z=1$
$(0,0)$ unique singular point, non-ordinary
Puiseux series: $\left(y-x^{3 / 2}\right)\left(y+x^{3 / 2}\right)=0$
(Unique) RPE: $(X(t), Y(t))=\left(t^{2}, t^{3}\right)$

Example

$\mathcal{C}: y^{2}-x^{3}=0$ in the chart $z=1$
$(0,0)$ unique singular point, non-ordinary
Puiseux series: $\left(y-x^{3 / 2}\right)\left(y+x^{3 / 2}\right)=0$
(Unique) RPE: $(X(t), Y(t))=\left(t^{2}, t^{3}\right)$
Adjoint condition: $F_{y}=2 y, x=t^{2} \Rightarrow d x=2 t$

Example

$\mathcal{C}: y^{2}-x^{3}=0$ in the chart $z=1$
$(0,0)$ unique singular point, non-ordinary
Puiseux series: $\left(y-x^{3 / 2}\right)\left(y+x^{3 / 2}\right)=0$
(Unique) RPE: $(X(t), Y(t))=\left(t^{2}, t^{3}\right)$
Adjoint condition: $F_{y}=2 y, x=t^{2} \Rightarrow d x=2 t$

$$
\operatorname{val}_{t}\left(\frac{e t^{e-1}}{F_{y}(X(t), Y(t), 1)}\right)=\operatorname{val}_{t}\left(\frac{2 t}{2 t^{3}}\right)=\operatorname{val}_{t}\left(\frac{1}{t^{2}}\right)=-2
$$

Example

$\mathcal{C}: y^{2}-x^{3}=0$ in the chart $z=1$
$(0,0)$ unique singular point, non-ordinary
Puiseux series: $\left(y-x^{3 / 2}\right)\left(y+x^{3 / 2}\right)=0$
(Unique) RPE: $(X(t), Y(t))=\left(t^{2}, t^{3}\right)$
Adjoint condition: $F_{y}=2 y, x=t^{2} \Rightarrow d x=2 t$
$\operatorname{val}_{t}\left(\frac{e t^{e-1}}{F_{y}(X(t), Y(t), 1)}\right)=\operatorname{val}_{t}\left(\frac{2 t}{2 t^{3}}\right)=\operatorname{val}_{t}\left(\frac{1}{t^{2}}\right)=-2$
$(H) \geq \mathcal{A} \Longleftrightarrow \operatorname{val}_{t} H\left(t^{2}, t^{3}\right) \geq 2$

Input

$\mathcal{C}: F(X, Y, Z)=0$ a plane curve of degree δ, D a smooth divisor.
Step 1 : Compute the adjoint divisor $\mathcal{A} \checkmark \leftarrow \tilde{O}\left(\delta^{3}\right)$
Step 2 : Compute the common denominator H
Step 3 : Compute $(H)-D \leftarrow \tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D_{+}\right)^{2}\right)$
Step 4 : Compute the numerators G_{i} (similar to Step 2)

Output

A basis of the Riemann-Roch space $L(D)$ in terms of H and the G_{i}.

Input

$\mathcal{C}: F(X, Y, Z)=0$ a plane curve of degree δ, D a smooth divisor.
Step 1 : Compute the adjoint divisor $\mathcal{A} \checkmark \leftarrow \tilde{O}\left(\delta^{3}\right)$
Step 2 : Compute the common denominator H
Step 3 : Compute $(H)-D \leftarrow \tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D_{+}\right)^{2}\right)$
Step 4 : Compute the numerators G_{i} (similar to Step 2)

Output

A basis of the Riemann-Roch space $L(D)$ in terms of H and the G_{i}.

Find a denominator in practice: classical linear algebra
Let $d:=\operatorname{deg} H$.

$$
\text { Condition }(H) \geqslant \mathcal{A}+D_{+}
$$

\rightsquigarrow linear system with $\operatorname{deg} \mathcal{A}+\operatorname{deg} D_{+} \sim \delta^{2}+\operatorname{deg} D_{+}$equations,
\rightsquigarrow we retrieve H by Gauss elimination that costs

$$
\tilde{O}\left(\left(d \delta+\delta^{2}+\operatorname{deg} D\right)^{\omega}\right) \text { operations }^{6} \text { in } \mathbb{K} .
$$

[^3]Find a denominator in practice: classical linear algebra
Let $d:=\operatorname{deg} H$.

$$
\text { Condition }(H) \geqslant \mathcal{A}+D_{+}
$$

\rightsquigarrow linear system with $\operatorname{deg} \mathcal{A}+\operatorname{deg} D_{+} \sim \delta^{2}+\operatorname{deg} D_{+}$equations,
\rightsquigarrow we retrieve H by Gauss elimination that costs

$$
\tilde{O}\left(\left(d \delta+\delta^{2}+\operatorname{deg} D\right)^{\omega}\right) \text { operations }^{6} \text { in } \mathbb{K}
$$

How big is d ?

We showed that $d=\left\lceil\frac{(\delta-1)(\delta-2)+\operatorname{deg} D_{+}}{\delta}\right\rceil$ is enough
\rightsquigarrow denominator computed with $\tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D_{+}\right)^{\omega}\right)$ operations in \mathbb{K}.

[^4]
Condition $(H) \geqslant \mathcal{A}$

$$
\rightsquigarrow \operatorname{val}_{t}\left(H(X(t), Y(t), 1) \geqslant-\operatorname{val}_{t}\left(\frac{e t^{e-1}}{F_{y}(X(t), Y(t), 1)}\right)\right.
$$

(similar equations for the condition $(H) \geqslant D_{+}$)
The space of polynomials $H(x, y, 1)$ that satisfy these conditions is a $\mathbb{K}[x]$-module \rightsquigarrow computing a basis ${ }^{7}$ costs $\tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D\right)^{\omega}\right)$ operations in \mathbb{K}.

[^5]
Condition $(H) \geqslant \mathcal{A}$

$$
\rightsquigarrow \operatorname{val}_{t}\left(H(X(t), Y(t), 1) \geqslant-\operatorname{val}_{t}\left(\frac{e t^{e-1}}{F_{y}(X(t), Y(t), 1)}\right)\right.
$$

(similar equations for the condition $(H) \geqslant D_{+}$)
The space of polynomials $H(x, y, 1)$ that satisfy these conditions is a $\mathbb{K}[x]$-module \rightsquigarrow computing a basis ${ }^{7}$ costs $\tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D\right)^{\omega}\right)$ operations in \mathbb{K}.

Same complexity exponent but with some

Advantages:

- better complexity exponent over algebraically closed fields: $\tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D\right)^{\frac{\omega+1}{2}}\right)$,
- potential improvement in the future.

[^6]
Input

$\mathcal{C}: F(X, Y, Z)=0$ a plane curve of degree δ, D a smooth divisor .
Step 1: Compute the adjoint divisor $\mathcal{A} \checkmark \leftarrow \tilde{O}\left(\delta^{3}\right)$
Step 2: Compute the common denominator $H \vee \leftarrow \tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D_{+}\right)^{\omega}\right)$
Step 3 : Compute $(H)-D \vee \leftarrow \tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D_{+}\right)^{2}\right)$
Step 4 : Compute the numerators G_{i} (similar to Step 2)

Output

A basis of the Riemann-Roch space $L(D)$ in terms of H and the G_{i}.

Input

$\mathcal{C}: F(X, Y, Z)=0$ a plane curve of degree δ, D a smooth divisor.
Step 1: Compute the adjoint divisor $\mathcal{A} \checkmark \leftarrow \tilde{O}\left(\delta^{3}\right)$
Step 2 : Compute the common denominator $H \checkmark \leftarrow \tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D_{+}\right)^{\omega}\right)$
Step 3 : Compute $(H)-D \vee \leftarrow \tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D_{+}\right)^{2}\right)$
Step 4 : Compute the numerators $G_{i} \checkmark \leftarrow \tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D_{+}\right)^{\omega}\right)$

Output

A basis of the Riemann-Roch space $L(D)$ in terms of H and the G_{i}.

Input

$\mathcal{C}: F(X, Y, Z)=0$ a plane curve of degree δ, D a smooth divisor .
Step 1: Compute the adjoint divisor $\mathcal{A} \checkmark \leftarrow \tilde{O}\left(\delta^{3}\right)$
Step 2 : Compute the common denominator $H \checkmark \leftarrow \tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D_{+}\right)^{\omega}\right)$
Step 3 : Compute $(H)-D \vee \leftarrow \tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D_{+}\right)^{2}\right)$
Step 4 : Compute the numerators $G_{i} \checkmark \leftarrow \tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D_{+}\right)^{\omega}\right)$

Output

A basis of the Riemann-Roch space $L(D)$ in terms of H and the G_{i}.
Theorem (Abelard, B-, Couvreur, Lecerf - Journal of Complexity 2022)
The previous algorithm computes $L(D)$ with $\tilde{\mathcal{O}}\left(\left(\delta^{2}+\operatorname{deg} D_{+}\right)^{\omega}\right)$ operations in \mathbb{K}.
0. Implementation of AG codes

1. Brill-Noether method
2. Puiseux series
3. Linear Algebra
need to compute large Riemann-Roch spaces

$$
L(D)
$$

necessary and sufficient conditions on G and H such that $G / H \in L(D)$
management of non-ordinary singular points of the curve

Computing H and G in practice
0. Implementation of AG codes

1. Brill-Noether method
2. Puiseux series
3. Linear Algebra
need to compute large Riemann-Roch spaces

$$
L(D)
$$

necessary and sufficient conditions on G and H such that $G / H \in L(D)$
management of non-ordinary singular points of the curve

Computing H and G in practice

Main result

We can compute Riemann-Roch spaces of any plane curve with a good complexity exponent.

Future questions

- Computing Riemann-Roch spaces of non-ordinary curves in positive "small" characteristic (in progress).
Main obstacle: find an alternative tool to Puiseux series to handle the adjoint condition.

Future questions

- Computing Riemann-Roch spaces of non-ordinary curves in positive "small" characteristic (in progress).
Main obstacle: find an alternative tool to Puiseux series to handle the adjoint condition.
- Improving the complexity exponent in the non-ordinary case.
 (Sub-quadratic as in the ordinary case?)
Main obstacle: linear algebra.

AG codes: from curves to surfaces

AG codes: from curves to surfaces

$$
\mathcal{P}=\left(P_{1}, P_{2}, P_{3}, \ldots, P_{n}, \ldots, P_{N}\right)
$$

AG codes: from curves to surfaces

AG codes: from curves to surfaces

$$
\begin{aligned}
& \mathcal{P}=\left(P_{1}, P_{2}, P_{3}, \ldots, P_{n}, \ldots, P_{N}\right) \\
& C_{\mathcal{X}}(\mathcal{L}, \mathcal{P}) \stackrel{\text { Ref }}{=}\left\{\left(f\left(P_{1}\right), f\left(P_{2}\right), f\left(P_{3}\right), \ldots, f\left(P_{n}\right), \ldots, f\left(P_{N}\right)\right) \mid f \in \mathcal{L}\right\} \\
& \text { Restriction to } \mathcal{C} \left\lvert\, \begin{array}{l}
\text { Codes on a surface } \mathcal{X} \\
\quad \begin{array}{l}
\text { Length: } N \sim q^{2} \\
\text { ?? Parameters } \& \text { decoding } \\
(\checkmark \text { very particular cases) }
\end{array} \\
\left\{\left(f\left(P_{1}\right), f\left(P_{2}\right), \ldots, f\left(P_{n}\right)\right) \mid f \in \mathcal{L}\right\}
\end{array}\right.
\end{aligned}
$$

AG codes: from curves to surfaces

$$
\begin{aligned}
& \mathcal{P}=\left(P_{1}, P_{2}, P_{3}, \ldots, P_{n}, \ldots, P_{N}\right) \\
& C_{\mathcal{X}}(\mathcal{L}, \mathcal{P}) \stackrel{\text { Ref }}{=}\left\{\left(f\left(P_{1}\right), f\left(P_{2}\right), f\left(P_{3}\right), \ldots, f\left(P_{n}\right), \ldots, f\left(P_{N}\right)\right) \mid f \in \mathcal{L}\right\} \\
& C_{\mathcal{C}}\left(\mathcal{L}_{\mathcal{C}}, \mathcal{P}_{\mathcal{C}}\right)=\left\{\left(f\left(P_{1}\right), f\left(P_{2}\right), \ldots, f\left(P_{n}\right)\right) \mid f \in \mathcal{L}\right\} \quad \text { Restriction to } \mathcal{C} \text { (e.g. local decoding, local recoverability) }
\end{aligned}
$$

AG codes: from curves to surfaces

- Can we develop a "Brill-Noether" theory for computing Riemann-Roch spaces of surfaces?

Thank you for your attention!

Questions?
e.berardini@tue.nl

[^0]: ${ }^{1}$ R. Cramer, M. Rambaud and C. Xing, Crypto 2021
 ${ }^{2}$ S. Bordage, M. Lhotel, J. Nardi and H. Randriam, preprint 2022

[^1]: ${ }^{1}$ R. Cramer, M. Rambaud and C. Xing, Crypto 2021
 ${ }^{2}$ S. Bordage, M. Lhotel, J. Nardi and H. Randriam, preprint 2022
 ${ }^{3}$ K. Khuri-Makdisi, Mathematics of Computations, 2007
 ${ }^{4}$ J.H. Davenport, Intern. Symp. on Symbolic et Algebraic Manipulation, 1979

[^2]: ${ }^{5}$ A. Poteaux and M. Weimann, Annales Herni Lebesgue, 2021

[^3]: ${ }^{6} 2 \leqslant \omega \leqslant 3$ is a feasible exponent for linear algebra $(\omega=2.373)$

[^4]: ${ }^{6} 2 \leqslant \omega \leqslant 3$ is a feasible exponent for linear algebra $(\omega=2.373)$

[^5]: ${ }^{7}$ C.-P. Jeannerod, V. Neiger, É. Schost and G. Villard, J. Symbolic Comput. 2017

[^6]: ${ }^{7}$ C.-P. Jeannerod, V. Neiger, É. Schost and G. Villard, J. Symbolic Comput. 2017

