On the number of Rational points of curves OVER A SURFACE IN \mathbb{P}^{3}

Elena Berardini \& Jade Nardi

Eindhoven University of Technology

IRMAR, CNRS, Univ Rennes 1

30 May 2022
Combinatorics 2022
Mantova, Italy
https://arxiv.org/abs/2111.09578

Curves, surfaces, rational points and all that jazz

We let \mathbb{F}_{q} denote a finite field with q elements and $\mathbb{P}_{\mathbb{F}_{q}}^{n}$ the projective space.
An algebraic projective variety X defined over \mathbb{F}_{q} is the set of zeros of homogenous polynomials $f_{1}, \ldots, f_{r} \in \mathbb{F}_{q}\left[x_{0}, \ldots, x_{n}\right]$ irreducible over \mathbb{F}_{q} :

$$
X \stackrel{\text { def }}{=}\left\{P \in \mathbb{P}^{n} \mid f_{1}(P)=\cdots=f_{r}(P)=0\right\}
$$

Curves, surfaces, rational points and all that jazz

We let \mathbb{F}_{q} denote a finite field with q elements and $\mathbb{P}_{\mathbb{F}_{q}}^{n}$ the projective space.
An algebraic projective variety X defined over \mathbb{F}_{q} is the set of zeros of homogenous polynomials $f_{1}, \ldots, f_{r} \in \mathbb{F}_{q}\left[x_{0}, \ldots, x_{n}\right]$ irreducible over \mathbb{F}_{q} :

$$
X \stackrel{\text { def }}{=}\left\{P \in \mathbb{P}^{n} \mid f_{1}(P)=\cdots=f_{r}(P)=0\right\}
$$

The set of rational points of X is

$$
X\left(\mathbb{F}_{q}\right) \stackrel{\text { def }}{=}\left\{P=\left(a_{0}: \cdots: a_{n}\right) \in X \mid \forall i, a_{i} \in \mathbb{F}_{q}\right\}
$$

Curves, surfaces, rational points and all that jazz

We let \mathbb{F}_{q} denote a finite field with q elements and $\mathbb{P}_{\mathbb{F}_{q}}^{n}$ the projective space.
An algebraic projective variety X defined over \mathbb{F}_{q} is the set of zeros of homogenous polynomials $f_{1}, \ldots, f_{r} \in \mathbb{F}_{q}\left[x_{0}, \ldots, x_{n}\right]$ irreducible over \mathbb{F}_{q} :

$$
X \stackrel{\text { def }}{=}\left\{P \in \mathbb{P}^{n} \mid f_{1}(P)=\cdots=f_{r}(P)=0\right\}
$$

The set of rational points of X is

$$
X\left(\mathbb{F}_{q}\right) \stackrel{\text { def }}{=}\left\{P=\left(a_{0}: \cdots: a_{n}\right) \in X \mid \forall i, a_{i} \in \mathbb{F}_{q}\right\}=\{P \stackrel{\text { Frobenius morphism }}{=} \mid \Phi(P)=P\}
$$

Curves, surfaces, rational points and all that jazz

We let \mathbb{F}_{q} denote a finite field with q elements and $\mathbb{P}_{\mathbb{F}_{q}}^{n}$ the projective space.
An algebraic projective variety X defined over \mathbb{F}_{q} is the set of zeros of homogenous polynomials $f_{1}, \ldots, f_{r} \in \mathbb{F}_{q}\left[x_{0}, \ldots, x_{n}\right]$ irreducible over \mathbb{F}_{q} :

$$
X \stackrel{\text { def }}{=}\left\{P \in \mathbb{P}^{n} \mid f_{1}(P)=\cdots=f_{r}(P)=0\right\}
$$

The set of rational points of X is

$$
X\left(\mathbb{F}_{q}\right) \stackrel{\text { def }}{=}\left\{P=\left(a_{0}: \cdots: a_{n}\right) \in X \mid \forall i, a_{i} \in \mathbb{F}_{q}\right\}=\{P \stackrel{\text { Frobenius morphism }}{=} \mid \Phi(P)=P\}
$$

Today: algebraic varieties of dimension one (curves C) and two (surfaces S) in \mathbb{P}^{3}.

Existing bounds

Theorem [Hasse-Weil, 1948]

If C is an absolutely irreducible smooth curve of genus g defined over the finite field \mathbb{F}_{q}, then $\# C\left(\mathbb{F}_{q}\right) \leq q+1+2 g \sqrt{q}$.

Existing bounds

Theorem [Hasse-Weil, 1948]

If C is an absolutely irreducible smooth curve of genus g defined over the finite field \mathbb{F}_{q}, then $\# C\left(\mathbb{F}_{q}\right) \leq q+1+2 g \sqrt{q}$.

Theorem [Homma, 2012]

If C is a non-degenerate curve defined over \mathbb{F}_{q} of degree δ in \mathbb{P}^{n}, with $n \geq 3$, then $\# C\left(\mathbb{F}_{q}\right) \leq(\delta-1) q+1$.

Existing bounds

Theorem [Hasse-Weil, 1948]

If C is an absolutely irreducible smooth curve of genus g defined over the finite field \mathbb{F}_{q}, then $\# C\left(\mathbb{F}_{q}\right) \leq q+1+2 g \sqrt{q}$.

Theorem [Homma, 2012]

If C is a non-degenerate curve defined over \mathbb{F}_{q} of degree δ in \mathbb{P}^{n}, with $n \geq 3$, then $\# C\left(\mathbb{F}_{q}\right) \leq(\delta-1) q+1$.

Theorem [Stöhr-Voloch, 1986]

Let C / \mathbb{F}_{q} be an irreducible smooth curve of genus g and degree δ in \mathbb{P}^{n}. Let $\nu_{1}, \ldots, \nu_{n-1}$ be its Frobenius orders (generically $\nu_{i}=i$). Then

$$
\# C\left(\mathbb{F}_{q}\right) \leq \frac{1}{n}\left(\left(\nu_{1}+\cdots+\nu_{n-1}\right)(2 g-2)+(q+n) \delta\right) .
$$

Stöhr and Voloch's strategy for plane curves

Take C a plane curve of deg. δ defined by $f=0$ over \mathbb{F}_{q}. Write Φ for the q-Frobenius morphism.

$$
\begin{aligned}
C\left(\mathbb{F}_{q}\right)= & \{P \in C \mid \Phi(P)=P\} \\
& \mid \cap \\
& \left\{P \in C \mid \Phi(P) \in T_{P} C\right\} \stackrel{\text { def }}{=} \mathcal{Z} .
\end{aligned}
$$

Stöhr and Voloch's strategy for plane curves

Take C a plane curve of deg. δ defined by $f=0$ over \mathbb{F}_{q}. Write Φ for the q-Frobenius morphism.

$$
\begin{aligned}
C\left(\mathbb{F}_{q}\right)= & \{P \in C \mid \Phi(P)=P\} \\
& \mid \cap \\
& \left\{P \in C \mid \Phi(P) \in T_{P} C\right\} \stackrel{\text { def }}{=} \mathcal{Z} .
\end{aligned}
$$

Set $g(X, Y)=X^{q} f_{X}+Y^{q} f_{Y}+Z^{q} f_{Z}$.
Then $\mathcal{Z}=C \cap(g=0)$.

Stöhr and Voloch's strategy for plane curves

Take C a plane curve of deg. δ defined by $f=0$ over \mathbb{F}_{q}. Write Φ for the q-Frobenius morphism.

$$
\begin{aligned}
C\left(\mathbb{F}_{q}\right)= & \{P \in C \mid \Phi(P)=P\} \\
& \mid \cap \\
& \left\{P \in C \mid \Phi(P) \in T_{P} C\right\} \stackrel{\text { def }}{=} \mathcal{Z} .
\end{aligned}
$$

Set $g(X, Y)=X^{q} f_{X}+Y^{q} f_{Y}+Z^{q} f_{Z}$.
Then $\mathcal{Z}=C \cap(g=0)$.
Bézout's theorem: if $\operatorname{dim} \mathcal{Z}=0$, the number of points in \mathcal{Z} counted with multiplicity is equal to $(\operatorname{deg} f) \cdot(\operatorname{deg} g)=\delta(\delta+q-1)$.

Stöhr and Voloch's strategy for plane curves

Take C a plane curve of deg. δ defined by $f=0$ over \mathbb{F}_{q}. Write Φ for the q-Frobenius morphism.

$$
\begin{aligned}
C\left(\mathbb{F}_{q}\right)= & \{P \in C \mid \Phi(P)=P\} \\
& \mid \cap \\
& \left\{P \in C \mid \Phi(P) \in T_{P} C\right\} \stackrel{\text { def }}{=} \mathcal{Z} .
\end{aligned}
$$

Set $g(X, Y)=X^{q} f_{X}+Y^{q} f_{Y}+Z^{q} f_{Z}$.
Then $\mathcal{Z}=C \cap(g=0)$.
Bézout's theorem: if $\operatorname{dim} \mathcal{Z}=0$, the number of points in \mathcal{Z} counted with multiplicity is equal to $(\operatorname{deg} f) \cdot(\operatorname{deg} g)=\delta(\delta+q-1)$.
Multiplicity: If $P \in C\left(\mathbb{F}_{q}\right)$, then $m_{P}(\mathcal{Z}) \geq 2$.

Stöhr and Voloch's strategy for plane curves

Take C a plane curve of deg. δ defined by $f=0$ over \mathbb{F}_{q}. Write Φ for the q-Frobenius morphism.

$$
\begin{aligned}
C\left(\mathbb{F}_{q}\right)= & \{P \in C \mid \Phi(P)=P\} \\
& \mid \cap \\
& \left\{P \in C \mid \Phi(P) \in T_{P} C\right\} \stackrel{\text { def }}{=} \mathcal{Z} .
\end{aligned}
$$

Set $g(X, Y)=X^{q} f_{X}+Y^{q} f_{Y}+Z^{q} f_{Z}$.
Then $\mathcal{Z}=C \cap(g=0)$.
Bézout's theorem: if $\operatorname{dim} \mathcal{Z}=0$, the number of points in \mathcal{Z} counted with multiplicity is equal to $(\operatorname{deg} f) \cdot(\operatorname{deg} g)=\delta(\delta+q-1)$.
Multiplicity: If $P \in C\left(\mathbb{F}_{q}\right)$, then $m_{P}(\mathcal{Z}) \geq 2$.

Theorem [Stöhr-Voloch, 1986]

If C has at least a non-flex point $(\Rightarrow \operatorname{dim} \mathcal{Z}=0)$, then $\# C\left(\mathbb{F}_{q}\right) \leq \frac{1}{2} \delta(\delta+q-1)$.

Ideas \& Motivations

Let $C \subset S \hookrightarrow \mathbb{P}^{n}$ (via a very ample divisor).
Goal: bounding $\# C\left(\mathbb{F}_{q}\right)$ in terms of the embedding.
(features of the surface S and the ambient \mathbb{P}^{n})

Main motivations:

- New bound for the number of rational points on projective curves.
(hopefully improving the previous ones)
- Application to geometric coding theory.

Ideas \& Motivations

Let $C \subset S \longleftrightarrow \mathbb{P}^{n}$ (via a very ample divisor).

Goal: bounding $\# C\left(\mathbb{F}_{q}\right)$ in terms of the embedding.
(features of the surface S and the ambient \mathbb{P}^{n})

Main motivations:

- New bound for the number of rational points on projective curves.
(hopefully improving the previous ones)
- Application to geometric coding theory.

$$
\begin{array}{ccc}
\begin{array}{c}
\text { Bounding the minimum distance } \\
\text { of a code from a surface } S
\end{array} & \rightsquigarrow & \begin{array}{c}
\text { Bounding } \# C\left(\mathbb{F}_{q}\right) \\
\text { for the irreducible curves } C \text { on } S
\end{array} \\
\text { Better lower bound for the minimum distance }
\end{array} \Longleftrightarrow \quad \begin{aligned}
& \text { Better upper bound for } \# C\left(\mathbb{F}_{q}\right)
\end{aligned}
$$

Strategy $(n=3)$

Let $S:(f=0) \subset \mathbb{P}^{3}$ be a smooth irreducible algebraic surface of degree d defined \mathbb{F}_{q}. Set C S $\stackrel{\text { def }}{=}\left\{P \in S \mid \Phi(P) \in T_{P} S\right\}$. Then $S\left(\mathbb{F}_{q}\right) \subset C_{\Phi}^{S}$.

Strategy $(n=3)$

Let $S:(f=0) \subset \mathbb{P}^{3}$ be a smooth irreducible algebraic surface of degree d defined \mathbb{F}_{q}. Set $C_{\Phi}^{S} \stackrel{\text { def }}{=}\left\{P \in S \mid \Phi(P) \in T_{P} S\right\}$. Then $S\left(\mathbb{F}_{q}\right) \subset C_{\Phi}^{S}$.

$$
C_{\Phi}^{S}: f=h=0 \text { for } h:=X_{0}^{q} f_{0}+X_{1}^{q} f_{1}+X_{2}^{q} f_{2}+X_{3}^{q} f_{3} \Rightarrow \operatorname{deg} h=d+q-1 .
$$

Let $S:(f=0) \subset \mathbb{P}^{3}$ be a smooth irreducible algebraic surface of degree d defined \mathbb{F}_{q}. Set $C_{\Phi}^{S} \stackrel{\text { def }}{=}\left\{P \in S \mid \Phi(P) \in T_{P} S\right\}$. Then $S\left(\mathbb{F}_{q}\right) \subset C_{\Phi}^{S}$.

$$
C_{\Phi}^{S}: f=h=0 \text { for } h:=X_{0}^{q} f_{0}+X_{1}^{q} f_{1}+X_{2}^{q} f_{2}+X_{3}^{q} f_{3} \Rightarrow \operatorname{deg} h=d+q-1 .
$$

Take a curve $C \subset S$ of degree δ. Then $C\left(\mathbb{F}_{q}\right) \subseteq C \cap C_{\Phi}^{S}$. If $C \cap C_{\tilde{\Phi}}^{S}$ is a finite set of points, then

$$
\# C\left(\mathbb{F}_{q}\right) \leq \frac{\operatorname{deg}\left(C \cap C_{\Phi}^{S}\right)}{\min _{P \in C\left(\mathbb{F}_{q}\right)} m_{P}\left(C, C_{\Phi}^{S}\right)} \leq \frac{\delta(d+q-1)}{2}
$$

Comparisons with pre-existing bounds

(a) $q=9$ and $d=5$

(b) $q=13$ and $d=4$

Figure: Bounds on the number of \mathbb{F}_{q}-points on a non-plane curve C on a degree d surface $S \subset \mathbb{P}^{3}$.
\rightarrow It is worth working on this bound!

Let $S:(f=0) \subset \mathbb{P}^{3}$ be a smooth irreducible algebraic surface of degree d defined \mathbb{F}_{q}. Set $C_{\Phi}^{S} \stackrel{\text { def }}{=}\left\{P \in S \mid \Phi(P) \in T_{P} S\right\}$. Then $S\left(\mathbb{F}_{q}\right) \subset C_{\Phi}^{S}$.

$$
C_{\Phi}^{S}: f=h=0 \text { for } h:=X_{0}^{q} f_{0}+X_{1}^{q} f_{1}+X_{2}^{q} f_{2}+X_{3}^{q} f_{3} \Rightarrow \operatorname{deg} h=d+q-1 .
$$

Take a curve $C \subset S$ of degree δ. Then $C\left(\mathbb{F}_{q}\right) \subseteq C \cap C_{\Phi}^{S}$. If $C \cap C_{\Phi}^{S}$ is a finite set of points, then

$$
\# C\left(\mathbb{F}_{q}\right) \leq \frac{\operatorname{deg}\left(C \cap C_{\Phi}^{S}\right)}{\min _{P \in C\left(\mathbb{F}_{q}\right)} m_{P}\left(C, C_{\Phi}^{S}\right)} \leq \frac{\delta(d+q-1)}{2}
$$

Two necessary conditions for $\operatorname{dim}\left(C \cap C_{\Phi}^{S}\right)=0$:

Let $S:(f=0) \subset \mathbb{P}^{3}$ be a smooth irreducible algebraic surface of degree d defined \mathbb{F}_{q}. Set $C_{\Phi}^{S} \stackrel{\text { def }}{=}\left\{P \in S \mid \Phi(P) \in T_{P} S\right\}$. Then $S\left(\mathbb{F}_{q}\right) \subset C_{\Phi}^{S}$.

$$
C_{\Phi}^{S}: f=h=0 \text { for } h:=X_{0}^{q} f_{0}+X_{1}^{q} f_{1}+X_{2}^{q} f_{2}+X_{3}^{q} f_{3} \Rightarrow \operatorname{deg} h=d+q-1 .
$$

Take a curve $C \subset S$ of degree δ. Then $C\left(\mathbb{F}_{q}\right) \subseteq C \cap C_{\Phi}^{S}$. If $C \cap C_{\text {W }}^{S}$ is a finite set of points, then

$$
\# C\left(\mathbb{F}_{q}\right) \leq \frac{\operatorname{deg}\left(C \cap C_{\Phi}^{S}\right)}{\min _{P \in C\left(\mathbb{F}_{q}\right)} m_{P}\left(C, C_{\Phi}^{S}\right)} \leq \frac{\delta(d+q-1)}{2}
$$

Two necessary conditions for $\operatorname{dim}\left(C \cap C_{\Phi}^{S}\right)=0$:
(1) $\operatorname{dim} C_{\Phi}^{S}=1$: in this case, the surface is said to be Frobenius classical; Counterexample: the Hermitian surface $X^{\sqrt{q}+1}+Y^{\sqrt{q}+1}+Z^{\sqrt{q}+1}+T^{\sqrt{q}+1}=0$ over \mathbb{F}_{q}.

Strategy (2/2)

Let $S:(f=0) \subset \mathbb{P}^{3}$ be a smooth irreducible algebraic surface of degree d defined \mathbb{F}_{q}. Set $C_{\Phi}^{S} \stackrel{\text { def }}{=}\left\{P \in S \mid \Phi(P) \in T_{P} S\right\}$. Then $S\left(\mathbb{F}_{q}\right) \subset C_{\Phi}^{S}$.

$$
C_{\Phi}^{S}: f=h=0 \text { for } h:=X_{0}^{q} f_{0}+X_{1}^{q} f_{1}+X_{2}^{q} f_{2}+X_{3}^{q} f_{3} \Rightarrow \operatorname{deg} h=d+q-1 .
$$

Take a curve $C \subset S$ of degree δ. Then $C\left(\mathbb{F}_{q}\right) \subseteq C \cap C_{\Phi}^{S}$. If $C \cap C_{\Phi}^{S}$ is a finite set of points, then

$$
\# C\left(\mathbb{F}_{q}\right) \leq \frac{\operatorname{deg}\left(C \cap C_{\Phi}^{S}\right)}{\min _{P \in C\left(\mathbb{F}_{q}\right)} m_{P}\left(C, C_{\Phi}^{S}\right)} \leq \frac{\delta(d+q-1)}{2}
$$

Two necessary conditions for $\operatorname{dim}\left(C \cap C_{\Phi}^{S}\right)=0$:
(1) $\operatorname{dim} C_{\Phi}^{S}=1$: in this case, the surface is said to be Frobenius classical; Counterexample: the Hermitian surface $X^{\sqrt{q}+1}+Y^{\sqrt{q}+1}+Z^{\sqrt{q}+1}+T^{\sqrt{q}+1}=0$ over \mathbb{F}_{q}. $\checkmark p \nmid d(d-1) \Rightarrow S$ is Frobenius classical.

Strategy (2/2)

Let $S:(f=0) \subset \mathbb{P}^{3}$ be a smooth irreducible algebraic surface of degree d defined \mathbb{F}_{q}. Set $C_{\Phi}^{S} \stackrel{\text { def }}{=}\left\{P \in S \mid \Phi(P) \in T_{P} S\right\}$. Then $S\left(\mathbb{F}_{q}\right) \subset C_{\Phi}^{S}$.

$$
C_{\Phi}^{S}: f=h=0 \text { for } h:=X_{0}^{q} f_{0}+X_{1}^{q} f_{1}+X_{2}^{q} f_{2}+X_{3}^{q} f_{3} \Rightarrow \operatorname{deg} h=d+q-1 .
$$

Take a curve $C \subset S$ of degree δ. Then $C\left(\mathbb{F}_{q}\right) \subseteq C \cap C_{\Phi}^{S}$. If $C \cap C_{\Phi}^{S}$ is a finite set of points, then

$$
\# C\left(\mathbb{F}_{q}\right) \leq \frac{\operatorname{deg}\left(C \cap C_{\Phi}^{S}\right)}{\min _{P \in C\left(\mathbb{F}_{q}\right)} m_{P}\left(C, C_{\Phi}^{S}\right)} \leq \frac{\delta(d+q-1)}{2}
$$

Two necessary conditions for $\operatorname{dim}\left(C \cap C_{\Phi}^{S}\right)=0$:
(1) $\operatorname{dim} C_{\Phi}^{S}=1$: in this case, the surface is said to be Frobenius classical; Counterexample: the Hermitian surface $X^{\sqrt{q}+1}+Y^{\sqrt{q}+1}+Z^{\sqrt{q}+1}+T^{\sqrt{q}+1}=0$ over \mathbb{F}_{q}. $\checkmark p \nmid d(d-1) \Rightarrow S$ is Frobenius classical.
(2) C does not share any components with C_{Φ}^{S}.

Counterexample: if S contains a \mathbb{F}_{q}-line L, then $L \subset C_{\Phi}^{S}$. The bound does not hold.

Strategy (2/2)

Let $S:(f=0) \subset \mathbb{P}^{3}$ be a smooth irreducible algebraic surface of degree d defined \mathbb{F}_{q}. Set $C_{\Phi}^{S} \stackrel{\text { def }}{=}\left\{P \in S \mid \Phi(P) \in T_{P} S\right\}$. Then $S\left(\mathbb{F}_{q}\right) \subset C_{\Phi}^{S}$.

$$
C_{\Phi}^{S}: f=h=0 \text { for } h:=X_{0}^{q} f_{0}+X_{1}^{q} f_{1}+X_{2}^{q} f_{2}+X_{3}^{q} f_{3} \Rightarrow \operatorname{deg} h=d+q-1 .
$$

Take a curve $C \subset S$ of degree δ. Then $C\left(\mathbb{F}_{q}\right) \subseteq C \cap C_{\Phi}^{S}$. If $C \cap C C_{\Phi}^{S}$ is a finite set of points, then

$$
\# C\left(\mathbb{F}_{q}\right) \leq \frac{\operatorname{deg}\left(C \cap C_{\Phi}^{S}\right)}{\min _{P \in C\left(\mathbb{F}_{q}\right)} m_{P}\left(C, C_{\Phi}^{S}\right)} \leq \frac{\delta(d+q-1)}{2}
$$

Two necessary conditions for $\operatorname{dim}\left(C \cap C_{\tilde{\Phi}}^{S}\right)=0$:
(1) $\operatorname{dim} C_{\Phi}^{S}=1$: in this case, the surface is said to be Frobenius classical; Counterexample: the Hermitian surface $X^{\sqrt{q}+1}+Y^{\sqrt{q}+1}+Z^{\sqrt{q}+1}+T^{\sqrt{q}+1}=0$ over \mathbb{F}_{q}. $\checkmark p \nmid d(d-1) \Rightarrow S$ is Frobenius classical.
(2) C does not share any components with C_{Φ}^{S}.

Counterexample: if S contains a \mathbb{F}_{q}-line L, then $L \subset C_{\Phi}^{S}$. The bound does not hold.
Aim: understanding the components of the curve C_{Φ}^{S} for a Frobenius classical surface.

Osculating spaces and P-orders (Stöhr-Voloch theory 1)

Let $C \subset \mathbb{P}^{3}$ be an absolutely irreducible projective curve defined over \mathbb{F}_{q}. Fix $P \in C$. An integer j is a P-order if there exists a plane intersecting the curve C with multiplicity j at P. If C is non-plane and P is non-singular, there are exactly four distinct P-orders:

$$
j_{0}=0<j_{1}<j_{2}<j_{3} .
$$

Remark: $j_{1}=1 \Leftrightarrow C$ is non-singular at the point P.

Osculating spaces and P-orders (Stöhr-Voloch theory 1)

Let $C \subset \mathbb{P}^{3}$ be an absolutely irreducible projective curve defined over \mathbb{F}_{q}. Fix $P \in C$. An integer j is a P-order if there exists a plane intersecting the curve C with multiplicity j at P. If C is non-plane and P is non-singular, there are exactly four distinct P-orders:

$$
j_{0}=0<j_{1}<j_{2}<j_{3} .
$$

Remark: $j_{1}=1 \Leftrightarrow C$ is non-singular at the point P.
Osculating spaces: $T_{P}^{(i)} C=\bigcap\left\{\right.$ planes H s.t. $\left.m_{P}(C, H) \geq j_{i+1}\right\}$.

Equation of the osculating plane $T_{P}^{(2)} C:\left|\begin{array}{cccc}X_{0} & X_{1} & X_{2} & X_{3} \\ x_{0} & x_{1} & x_{2} & x_{3} \\ D_{t}^{\left(j_{1}\right)} x_{0} & D_{t}^{\left(j_{1}\right)} x_{1} & D_{t}^{\left(j_{1}\right)} x_{2} & D_{t}^{\left(j_{1}\right)} x_{3} \\ D_{t}^{\left(j_{2}\right)} x_{0} & D_{t}^{\left(j_{2}\right)} x_{1} & D_{t}^{\left(j_{2}\right)} x_{2} & D_{t}^{\left(j_{2}\right)} x_{3}\end{array}\right|=0$
where $D_{t}^{(j)}$ are the Hasse derivatives with respect to a a local parameter t at P defined by

$$
D_{t}^{(i)} t^{k}=\binom{k}{i} t^{k-i}
$$

Frobenius orders (Stöhr-Voloch theory 2)

Fix $P \in C \subset \mathbb{P}^{3}$ with P-orders $\left(0, j_{1}, j_{2}, j_{3}\right)$. Then $\Phi(P) \in T_{P}^{(2)} C$ if and only if

$$
\Delta\left(j_{1}, j_{2}\right) \stackrel{\text { def }}{=}\left|\begin{array}{cccc}
x_{0}^{q} & x_{1}^{q} & x_{2}^{q} & x_{3}^{q} \\
x_{0} & x_{1} & x_{2} & x_{3} \\
D_{t}^{\left(j_{1}\right)} x_{0} & D_{t}^{\left(j_{1}\right)} x_{1} & D_{t}^{\left(j_{1}\right)} x_{2} & D_{t}^{\left(j_{1}\right)} x_{3} \\
D_{t}^{\left(j_{2}\right)} x_{0} & D_{t}^{\left(j_{2}\right)} x_{1} & D_{t}^{\left(j_{2}\right)} x_{2} & D_{t}^{\left(j_{2}\right)} x_{3}
\end{array}\right|=0
$$

Fix $P \in C \subset \mathbb{P}^{3}$ with P-orders $\left(0, j_{1}, j_{2}, j_{3}\right)$. Then $\Phi(P) \in T_{P}^{(2)} C$ if and only if

$$
\Delta\left(j_{1}, j_{2}\right) \stackrel{\text { def }}{=}\left|\begin{array}{cccc}
x_{0}^{q} & x_{1}^{q} & x_{2}^{q} & x_{3}^{q} \\
x_{0} & x_{1} & x_{2} & x_{3} \\
D_{t}^{\left(j_{1}\right)} x_{0} & D_{t}^{\left(j_{1}\right)} x_{1} & D_{t}^{\left(j_{1}\right)} x_{2} & D_{t}^{\left(j_{1}\right)} x_{3} \\
D_{t}^{\left(j_{2}\right)} x_{0} & D_{t}^{\left(j_{2}\right)} x_{1} & D_{t}^{\left(j_{2}\right)} x_{2} & D_{t}^{\left(j_{2}\right)} x_{3}
\end{array}\right|=0
$$

Theorem [Stöhr-Voloch, 1986]

There exist integers $\nu_{1}<\nu_{2}$ s.t. $\Delta\left(\nu_{1}, \nu_{2}\right)$ is a nonzero function.

Definition

The integers $\nu_{0}=0, \nu_{1}, \nu_{2}$ chosen minimally with respect to the lexicographic order are called the Frobenius orders of C.

The curve C is Frobenius classical if $\left(\nu_{1}, \nu_{2}\right)=(1,2)$, Frobenius non-classical otherwise.

Frobenius non-classical curves on surfaces
Aim: Understand the components of $C_{\Phi}^{S}=\left\{P \in S \mid \Phi(P) \in T_{P} S\right\}$ on a Frob. classical surface.

Frobenius non-classical curves on surfaces
Aim: Understand the components of $C_{\Phi}^{S}=\left\{P \in S \mid \Phi(P) \in T_{P} S\right\}$ on a Frob. classical surface. Proposition [BN21]

Let C be a non-plane curve lying on a surface S. Assume that C is Frobenius non-classical with $\nu_{1}=1$. Then C is not a component of C_{Φ}^{S}.

Frobenius non-classical curves on surfaces
Aim: Understand the components of $C_{\Phi}^{S}=\left\{P \in S \mid \Phi(P) \in T_{P} S\right\}$ on a Frob. classical surface. Proposition [BN21]

Let C be a non-plane curve lying on a surface S. Assume that C is Frobenius non-classical with $\nu_{1}=1$. Then C is not a component of C_{Φ}^{S}.

What about $\nu_{1}>1$?

Frobenius non-classical curves on surfaces
Aim: Understand the components of $C_{\Phi}^{S}=\left\{P \in S \mid \Phi(P) \in T_{P} S\right\}$ on a Frob. classical surface. Proposition [BN21]

Let C be a non-plane curve lying on a surface S. Assume that C is Frobenius non-classical with $\nu_{1}=1$. Then C is not a component of C_{Φ}^{S}.

What about $\nu_{1}>1$? $\nu_{1}>1 \Rightarrow \Phi(P) \in T_{P} C \subset T_{P} S$
(Sad) Fact: Frobenius non-classical curves with $\nu_{1}>1$ are components of C_{Φ}^{S}.

Frobenius non-classical curves on surfaces
Aim: Understand the components of $C_{\Phi}^{S}=\left\{P \in S \mid \Phi(P) \in T_{P} S\right\}$ on a Frob. classical surface.

Proposition [BN21]

Let C be a non-plane curve lying on a surface S. Assume that C is Frobenius non-classical with $\nu_{1}=1$. Then C is not a component of C_{Φ}^{S}.

What about $\nu_{1}>1$? $\nu_{1}>1 \Rightarrow \Phi(P) \in T_{P} C \subset T_{P} S$
(Sad) Fact: Frobenius non-classical curves with $\nu_{1}>1$ are components of C_{Φ}^{S}. However...

Proposition [BN21]

Assume that C is Frobenius non-classical with $\nu_{1}>1$ and $\delta \leq q$. Then C is plane.
Remark: Hefez and Voloch (1990) gave the exact number of rational points on smooth curves with $\nu_{1}>1$, while Borges and Homma (2018) studied singular plane curves with $\nu_{1}>1$.

Frobenius non-classical curves on surfaces
Aim: Understand the components of $C_{\Phi}^{S}=\left\{P \in S \mid \Phi(P) \in T_{P} S\right\}$ on a Frob. classical surface.

Proposition [BN21]

Let C be a non-plane curve lying on a surface S. Assume that C is Frobenius non-classical with $\nu_{1}=1$. Then C is not a component of C_{Φ}^{S}.

What about $\nu_{1}>1$? $\nu_{1}>1 \Rightarrow \Phi(P) \in T_{P} C \subset T_{P} S$
(Sad) Fact: Frobenius non-classical curves with $\nu_{1}>1$ are components of C_{Φ}^{S}. However...

Proposition [BN21]

Assume that C is Frobenius non-classical with $\nu_{1}>1$ and $\delta \leq q$. Then C is plane.
Remark: Hefez and Voloch (1990) gave the exact number of rational points on smooth curves with
$\nu_{1}>1$, while Borges and Homma (2018) studied singular plane curves with $\nu_{1}>1$.
Tool: Use the existence and the minimality of the Frobenius orders ν_{1}, ν_{2} s.t. $\Delta\left(\nu_{1}, \nu_{2}\right) \neq 0$.

Frobenius non-classical curves on surfaces
Aim: Understand the components of $C_{\Phi}^{S}=\left\{P \in S \mid \Phi(P) \in T_{P} S\right\}$ on a Frob. classical surface.

Proposition [BN21]

Let C be a non-plane curve lying on a surface S. Assume that C is Frobenius non-classical with $\nu_{1}=1$. Then C is not a component of C_{Φ}^{S}.

What about $\nu_{1}>1$? $\nu_{1}>1 \Rightarrow \Phi(P) \in T_{P} C \subset T_{P} S$
(Sad) Fact: Frobenius non-classical curves with $\nu_{1}>1$ are components of C_{Φ}^{S}. However...

Proposition [BN21]

Assume that C is Frobenius non-classical with $\nu_{1}>1$ and $\delta \leq q$. Then C is plane.
Remark: Hefez and Voloch (1990) gave the exact number of rational points on smooth curves with
$\nu_{1}>1$, while Borges and Homma (2018) studied singular plane curves with $\nu_{1}>1$.
Tool: Use the existence and the minimality of the Frobenius orders ν_{1}, ν_{2} s.t. $\Delta\left(\nu_{1}, \nu_{2}\right) \neq 0$. Example: C is Frobenius non-classical $\Rightarrow\left\{\nu_{1}, \nu_{2}\right\} \neq\{1,2\} \Rightarrow \Delta(1,2)=0$. If $\Phi(P) \in T_{P} S$

$$
\Rightarrow \Delta(1,2)=\left(u^{\prime \prime}-g^{\prime \prime} u_{y}\right) \quad\left[(x-\tilde{x}) g^{\prime}-(y-\tilde{y})\right] \quad=0
$$

Frobenius non-classical curves on surfaces
Aim: Understand the components of $C_{\Phi}^{S}=\left\{P \in S \mid \Phi(P) \in T_{P} S\right\}$ on a Frob. classical surface.

Proposition [BN21]

Let C be a non-plane curve lying on a surface S. Assume that C is Frobenius non-classical with $\nu_{1}=1$. Then C is not a component of C_{Φ}^{S}.

What about $\nu_{1}>1$? $\nu_{1}>1 \Rightarrow \Phi(P) \in T_{P} C \subset T_{P} S$
(Sad) Fact: Frobenius non-classical curves with $\nu_{1}>1$ are components of C_{Φ}^{S}. However...

Proposition [BN21]

Assume that C is Frobenius non-classical with $\nu_{1}>1$ and $\delta \leq q$. Then C is plane.
Remark: Hefez and Voloch (1990) gave the exact number of rational points on smooth curves with
$\nu_{1}>1$, while Borges and Homma (2018) studied singular plane curves with $\nu_{1}>1$.
Tool: Use the existence and the minimality of the Frobenius orders ν_{1}, ν_{2} s.t. $\Delta\left(\nu_{1}, \nu_{2}\right) \neq 0$.
Example: C is Frobenius non-classical $\Rightarrow\left\{\nu_{1}, \nu_{2}\right\} \neq\{1,2\} \Rightarrow \Delta(1,2)=0$. If $\Phi(P) \in T_{P} S$

$$
\begin{array}{rlc}
\Rightarrow \Delta(1,2)= & \left(u^{\prime \prime}-g^{\prime \prime} u_{y}\right) & {\left[(x-\tilde{x}) g^{\prime}-(y-\tilde{y})\right]=0} \\
& \Phi(P) \notin T_{P} S & \nu_{1}>1
\end{array}
$$

Frobenius classical components of C_{Φ}^{S}

Recap: A component of C_{Φ}^{S} falls in one of the following cases:

- $\nu_{1}>1$: in this case, if it has $\delta \leq q$, it is plane;
- it is Frobenius classical, i.e. $\left\{\nu_{1}, \nu_{2}\right\}=\{1,2\}$.

Conjecture: Non-plane Frobenius classical curves with $\delta \leq q$ are not components of C_{Φ}^{S}.

Recap: A component of C_{Φ}^{S} falls in one of the following cases:

- $\nu_{1}>1$: in this case, if it has $\delta \leq q$, it is plane;
- it is Frobenius classical, i.e. $\left\{\nu_{1}, \nu_{2}\right\}=\{1,2\}$.

Conjecture: Non-plane Frobenius classical curves with $\delta \leq q$ are not components of C_{Φ}^{S}.

Example of surface with highly reducible C_{Φ}^{S}

Over \mathbb{F}_{5}, consider the surface S defined by

$$
\begin{aligned}
f= & 2 X_{0} X_{1}^{2}+2 X_{1}^{3}+2 X_{0}^{2} X_{2}+2 X_{0} X_{1} X_{2}+X_{1}^{2} X_{2}+2 X_{0} X_{2}^{2}+3 X_{1} X_{2}^{2} \\
& +3 X_{2}^{3}+4 X_{0}^{2} X_{3}+X_{0} X_{1} X_{3}+X_{1}^{2} X_{3}+2 X_{1} X_{2} X_{3}+2 X_{2}^{2} X_{3} \\
& +3 X_{0} X_{3}^{2}+4 X_{1} X_{3}^{2}+X_{2} X_{3}^{2}
\end{aligned}
$$

The curve C_{Φ}^{S} has degree 21 and is formed of $15 \mathbb{F}_{5}$-lines and one non-plane sextic $(\delta=q+1)$.

Theorem [BN21]

Let S be an irreducible Frobenius classical surface of degree $d>1$ in \mathbb{P}^{3}. Let C be a non-plane irreducible curve of degree $\delta \leq q$ lying on S. Suppose C is Frobenius non-classical. Then

$$
\# C\left(\mathbb{F}_{q}\right) \leq \frac{\delta(d+q-1)}{2}
$$

Under the conjecture, the bound also holds for Frobenius classical curves.

Main result \& Conclusion

Theorem [BN21]

Let S be an irreducible Frobenius classical surface of degree $d>1$ in \mathbb{P}^{3}. Let C be a non-plane irreducible curve of degree $\delta \leq q$ lying on S. Suppose C is Frobenius non-classical. Then

$$
\# C\left(\mathbb{F}_{q}\right) \leq \frac{\delta(d+q-1)}{2}
$$

Under the conjecture, the bound also holds for Frobenius classical curves.

- A plane curve on a degree d surface has $\delta \leq d \Rightarrow$ our bound holds for plane curves which have at least one point P such that $\Phi(P) \notin T_{P} C$ by Stöhr-Voloch bound $(\delta(\delta+q-1) / 2)$.

Theorem [BN21]

Let S be an irreducible Frobenius classical surface of degree $d>1$ in \mathbb{P}^{3}. Let C be a non-plane irreducible curve of degree $\delta \leq q$ lying on S. Suppose C is Frobenius non-classical. Then

$$
\# C\left(\mathbb{F}_{q}\right) \leq \frac{\delta(d+q-1)}{2}
$$

Under the conjecture, the bound also holds for Frobenius classical curves.

- A plane curve on a degree d surface has $\delta \leq d \Rightarrow$ our bound holds for plane curves which have at least one point P such that $\Phi(P) \notin T_{P} C$ by Stöhr-Voloch bound $(\delta(\delta+q-1) / 2)$.
- Embedding entails arithmetic and geometric constraints on a variety:

For $\delta=11$ and $d=5$ over \mathbb{F}_{9}, C has genus at most 17 and $\# C\left(\mathbb{F}_{q}\right) \leq 72$.
In ManyPoints, maximal curves of genus 16 and 17 have $74 \mathbb{F}_{9}$-points.
These record curves cannot lie on a Frobenius classical surface in \mathbb{P}^{3}, unless being a component of C_{Φ}^{S}.

Main result \& Conclusion

Theorem [BN21]

Let S be an irreducible Frobenius classical surface of degree $d>1$ in \mathbb{P}^{3}. Let C be a non-plane irreducible curve of degree $\delta \leq q$ lying on S. Suppose C is Frobenius non-classical. Then

$$
\# C\left(\mathbb{F}_{q}\right) \leq \frac{\delta(d+q-1)}{2}
$$

Under the conjecture, the bound also holds for Frobenius classical curves.

Future question

Our theorem essentially relies on the geometry of space curves and the intersection theory in \mathbb{P}^{3}. Can we generalize our approach when $C \subset S \subset \mathbb{P}^{n}$, for $n \geq 4$?

Main result \& Conclusion

Theorem [BN21]

Let S be an irreducible Frobenius classical surface of degree $d>1$ in \mathbb{P}^{3}. Let C be a non-plane irreducible curve of degree $\delta \leq q$ lying on S. Suppose C is Frobenius non-classical. Then

$$
\# C\left(\mathbb{F}_{q}\right) \leq \frac{\delta(d+q-1)}{2}
$$

Under the conjecture, the bound also holds for Frobenius classical curves.

Future question

Our theorem essentially relies on the geometry of space curves and the intersection theory in \mathbb{P}^{3}. Can we generalize our approach when $C \subset S \subset \mathbb{P}^{n}$, for $n \geq 4$?

> Thank you for your attention!

Can we generalize our approach when $C \subset S \subset \mathbb{P}^{n}$, for $n \geq 4$?

Can we generalize our approach when $C \subset S \subset \mathbb{P}^{n}$, for $n \geq 4$?
Consider the varieties in $S \times \mathbb{P}^{n}$

- $\Gamma_{C}=\left\{(P, \Phi(P)) \in C^{2} \mid P \in C\right\}$ the graph of Φ restricted to the curve C,
- $\mathcal{T}_{S}=\left\{(P, Q) \in S \times \mathbb{P}^{n} \mid P \in S, Q \in T_{P} S\right\}$.

Then $C\left(\mathbb{F}_{q}\right) \stackrel{\Delta}{\longleftrightarrow} \Gamma_{C} \cap \mathcal{T}_{S} \simeq\left\{P \in C \mid \Phi(P) \in T_{P} S\right\}$.
Remark: C_{Φ}^{S} was the image of $\Gamma_{C} \cap \mathcal{T}_{S} \in S \times \mathbb{P}^{3}$ under the $1^{\text {st }}$ projection.

Can we generalize our approach when $C \subset S \subset \mathbb{P}^{n}$, for $n \geq 4$?
Consider the varieties in $S \times \mathbb{P}^{n}$

- $\Gamma_{C}=\left\{(P, \Phi(P)) \in C^{2} \mid P \in C\right\}$ the graph of Φ restricted to the curve C,
- $\mathcal{T}_{S}=\left\{(P, Q) \in S \times \mathbb{P}^{n} \mid P \in S, Q \in T_{P} S\right\}$.

Then $C\left(\mathbb{F}_{q}\right) \stackrel{\Delta}{\longleftrightarrow} \Gamma_{C} \cap \mathcal{T}_{S} \simeq\left\{P \in C \mid \Phi(P) \in T_{P} S\right\}$.
Remark: C_{Φ}^{S} was the image of $\Gamma_{C} \cap \mathcal{T}_{S} \in S \times \mathbb{P}^{3}$ under the $1^{s t}$ projection.
Γ_{C} and \mathcal{T}_{S} have complementary dimensions in $S \times \mathbb{P}^{n}$ (of $\operatorname{dim} n+2$) if and only if $n=3$.
\rightarrow bound the number of rational points on C by a fraction of the intersection product $\left[\Gamma_{C}\right] \cdot\left[\mathcal{T}_{S}\right]$.
When $n \geq 4,\left[\Gamma_{C}\right] \cdot\left[\mathcal{T}_{S}\right]=0$ while $\Gamma_{C} \cap \mathcal{T}_{S} \neq \varnothing$.
Idea: Fix this dimension incompatibility by blowing up \mathcal{T}_{S} or $S \times S$.

