On the number of rational points of curves over a surface in \mathbb{P}^3

Elena Berardini & Jade Nardi

Eindhoven University of Technology

IRMAR, CNRS, Univ Rennes 1

30 May 2022 Combinatorics 2022 Mantova, Italy

https://arxiv.org/abs/2111.09578

An algebraic projective variety X defined over \mathbb{F}_q is the set of zeros of homogenous polynomials $f_1, \ldots, f_r \in \mathbb{F}_q[x_0, \ldots, x_n]$ irreducible over \mathbb{F}_q :

 $X \stackrel{\mathsf{def}}{=} \{ P \in \mathbb{P}^n \mid f_1(P) = \dots = f_r(P) = 0 \}.$

An algebraic projective variety X defined over \mathbb{F}_q is the set of zeros of homogenous polynomials $f_1, \ldots, f_r \in \mathbb{F}_q[x_0, \ldots, x_n]$ irreducible over \mathbb{F}_q :

$$X \stackrel{\mathsf{def}}{=} \{ P \in \mathbb{P}^n \mid f_1(P) = \dots = f_r(P) = 0 \}.$$

The set of rational points of X is

$$X(\mathbb{F}_q) \stackrel{\mathsf{def}}{=} \{ P = (a_0 : \dots : a_n) \in X \mid \forall i, a_i \in \mathbb{F}_q \}$$

An algebraic projective variety X defined over \mathbb{F}_q is the set of zeros of homogenous polynomials $f_1, \ldots, f_r \in \mathbb{F}_q[x_0, \ldots, x_n]$ irreducible over \mathbb{F}_q :

$$X \stackrel{\mathsf{def}}{=} \{ P \in \mathbb{P}^n \mid f_1(P) = \dots = f_r(P) = 0 \}.$$

The set of rational points of X is

$$X(\mathbb{F}_q) \stackrel{\text{def}}{=} \{P = (a_0 : \dots : a_n) \in X \mid \forall i, a_i \in \mathbb{F}_q\} = \{P \in X \mid \Phi(P) = P\}.$$

An algebraic projective variety X defined over \mathbb{F}_q is the set of zeros of homogenous polynomials $f_1, \ldots, f_r \in \mathbb{F}_q[x_0, \ldots, x_n]$ irreducible over \mathbb{F}_q :

$$X \stackrel{\mathsf{def}}{=} \{ P \in \mathbb{P}^n \mid f_1(P) = \dots = f_r(P) = 0 \}.$$

The set of rational points of X is

$$X(\mathbb{F}_q) \stackrel{\text{def}}{=} \{P = (a_0 : \dots : a_n) \in X \mid \forall i, a_i \in \mathbb{F}_q\} = \{P \in X \mid \Phi(P) = P\}.$$

Today: algebraic varieties of dimension one (curves C) and two (surfaces S) in \mathbb{P}^3 .

Geometry of curves OC

Curves over Frobenius classical surfaces OC

Existing bounds

Theorem [Hasse-Weil, 1948]

If C is an absolutely irreducible smooth curve of genus g defined over the finite field \mathbb{F}_q , then $\#C(\mathbb{F}_q) \leq q + 1 + 2g\sqrt{q}$.

Geometry of curves OO

Existing bounds

Theorem [Hasse-Weil, 1948]

If C is an absolutely irreducible smooth curve of genus g defined over the finite field \mathbb{F}_q , then $\#C(\mathbb{F}_q) \leq q + 1 + 2g\sqrt{q}$.

Theorem [Homma, 2012]

If C is a non–degenerate curve defined over \mathbb{F}_q of degree δ in \mathbb{P}^n , with $n \geq 3$, then $\#C(\mathbb{F}_q) \leq (\delta - 1)q + 1$.

Geometry of curves OO

Existing bounds

Theorem [Hasse–Weil, 1948]

If C is an absolutely irreducible smooth curve of genus g defined over the finite field \mathbb{F}_q , then $\#C(\mathbb{F}_q) \leq q + 1 + 2g\sqrt{q}$.

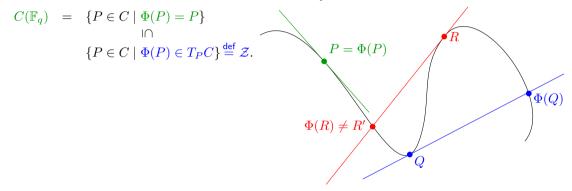
Theorem [Homma, 2012]

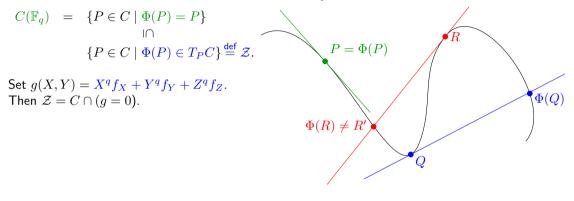
If C is a non–degenerate curve defined over \mathbb{F}_q of degree δ in \mathbb{P}^n , with $n \geq 3$, then $\#C(\mathbb{F}_q) \leq (\delta - 1)q + 1$.

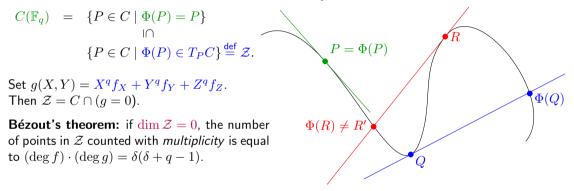
Theorem [Stöhr–Voloch, 1986]

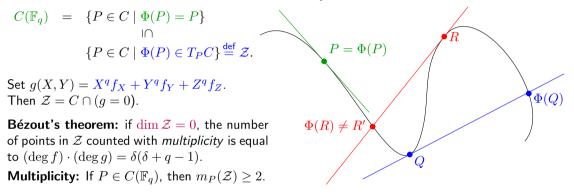
Let C/\mathbb{F}_q be an irreducible smooth curve of genus g and degree δ in \mathbb{P}^n . Let ν_1, \ldots, ν_{n-1} be its Frobenius orders (generically $\nu_i = i$). Then

$$#C(\mathbb{F}_q) \le \frac{1}{n} \left((\nu_1 + \dots + \nu_{n-1})(2g-2) + (q+n)\delta \right).$$

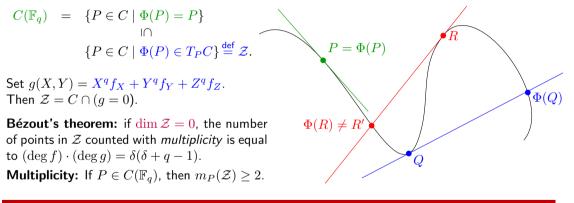








Take C a plane curve of deg. δ defined by f = 0 over \mathbb{F}_q . Write Φ for the q-Frobenius morphism.



Theorem [Stöhr–Voloch, 1986]

If C has at least a non-flex point ($\Rightarrow \dim \mathbb{Z} = 0$), then $\#C(\mathbb{F}_q) \leq \frac{1}{2}\delta(\delta + q - 1)$.

Introduction 0000		
Ideas & Motivations		

Let $C \subset S \hookrightarrow \mathbb{P}^n$ (via a very ample divisor).

Goal: bounding $\#C(\mathbb{F}_q)$ in terms of the embedding.

(features of the surface S and the ambient \mathbb{P}^n)

Main motivations:

• New bound for the number of rational points on projective curves.

(hopefully improving the previous ones)

• Application to geometric coding theory.

Let $C \subset S \hookrightarrow \mathbb{P}^n$ (via a very ample divisor).

Goal: bounding $\#C(\mathbb{F}_q)$ in terms of the embedding.

(features of the surface S and the ambient \mathbb{P}^n)

Main motivations:

• New bound for the number of rational points on projective curves.

(hopefully improving the previous ones)

• Application to geometric coding theory.

Bounding the minimum distance	$\sim \rightarrow$	Bounding $\#C(\mathbb{F}_q)$	
of a code from a surface S		for the irreducible curves C on S	
Better lower bound for the minimum distance	\iff	Better upper bound for $\#C(\mathbb{F}_q)$	

Strategy (n = 3)

Let $S: (f = 0) \subset \mathbb{P}^3$ be a smooth irreducible algebraic surface of degree d defined \mathbb{F}_q . Set $C_{\Phi}^S \stackrel{\text{def}}{=} \{P \in S \mid \Phi(P) \in T_P S\}$. Then $S(\mathbb{F}_q) \subset C_{\Phi}^S$.

Strategy (n = 3)

Let $S : (f = 0) \subset \mathbb{P}^3$ be a smooth irreducible algebraic surface of degree d defined \mathbb{F}_q . Set $C_{\Phi}^S \stackrel{\text{def}}{=} \{P \in S \mid \Phi(P) \in T_P S\}$. Then $S(\mathbb{F}_q) \subset C_{\Phi}^S$.

 $C_{\Phi}^{S}: f = h = 0$ for $h := X_{0}^{q} f_{0} + X_{1}^{q} f_{1} + X_{2}^{q} f_{2} + X_{3}^{q} f_{3} \Rightarrow \deg h = d + q - 1.$

Strategy (n = 3)

Let $S: (f = 0) \subset \mathbb{P}^3$ be a smooth irreducible algebraic surface of degree d defined \mathbb{F}_q . Set $C_{\Phi}^S \stackrel{\text{def}}{=} \{P \in S \mid \Phi(P) \in T_PS\}$. Then $S(\mathbb{F}_q) \subset C_{\Phi}^S$.

 $C_{\Phi}^{S}: f = h = 0$ for $h := X_{0}^{q} f_{0} + X_{1}^{q} f_{1} + X_{2}^{q} f_{2} + X_{3}^{q} f_{3} \Rightarrow \deg h = d + q - 1.$

Take a curve $C \subset S$ of degree δ . Then $C(\mathbb{F}_q) \subseteq C \cap C_{\Phi}^S$. If $C \cap C_{\Phi}^S$ is a finite set of points, then

 $\#C(\mathbb{F}_q) \le \frac{\deg(C \cap C_{\Phi}^S)}{\min_{P \in C(\mathbb{F}_q)} m_P(C, C_{\Phi}^S)} \le \frac{\delta(d+q-1)}{2}.$

Comparisons with pre-existing bounds

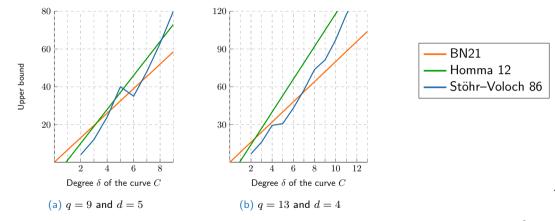


Figure: Bounds on the number of \mathbb{F}_q -points on a non-plane curve C on a degree d surface $S \subset \mathbb{P}^3$.

\rightarrow It is worth working on this bound!

Let $S: (f = 0) \subset \mathbb{P}^3$ be a smooth irreducible algebraic surface of degree d defined \mathbb{F}_q . Set $C_{\Phi}^S \stackrel{\text{def}}{=} \{P \in S \mid \Phi(P) \in T_PS\}$. Then $S(\mathbb{F}_q) \subset C_{\Phi}^S$.

 $C_{\Phi}^{S}: f = h = 0$ for $h := X_{0}^{q} f_{0} + X_{1}^{q} f_{1} + X_{2}^{q} f_{2} + X_{3}^{q} f_{3} \Rightarrow \deg h = d + q - 1.$

Take a curve $C \subset S$ of degree δ . Then $C(\mathbb{F}_q) \subseteq C \cap C_{\Phi}^S$. If $C \cap C_{\Phi}^S$ is a finite set of points, then

$$\#C(\mathbb{F}_q) \le \frac{\deg(C \cap C_{\Phi}^S)}{\min_{P \in C(\mathbb{F}_q)} m_P(C, C_{\Phi}^S)} \le \frac{\delta(d+q-1)}{2}.$$

Two necessary conditions for $\dim(C \cap C_{\Phi}^S) = 0$:

Let $S: (f = 0) \subset \mathbb{P}^3$ be a smooth irreducible algebraic surface of degree d defined \mathbb{F}_q . Set $C_{\Phi}^S \stackrel{\text{def}}{=} \{P \in S \mid \Phi(P) \in T_PS\}$. Then $S(\mathbb{F}_q) \subset C_{\Phi}^S$.

 $C_{\Phi}^{S}: f = h = 0$ for $h := X_{0}^{q}f_{0} + X_{1}^{q}f_{1} + X_{2}^{q}f_{2} + X_{3}^{q}f_{3} \Rightarrow \deg h = d + q - 1.$

Take a curve $C \subset S$ of degree δ . Then $C(\mathbb{F}_q) \subseteq C \cap C_{\Phi}^S$. If $C \cap C_{\Phi}^S$ is a finite set of points, then

 $#C(\mathbb{F}_q) \le \frac{\deg(C \cap C_{\Phi}^S)}{\min_{P \in C(\mathbb{F}_q)} m_P(C, C_{\Phi}^S)} \le \frac{\delta(d+q-1)}{2}.$

Two necessary conditions for $\dim(C \cap C_{\Phi}^S) = 0$:

• dim $C_{\Phi}^{S} = 1$: in this case, the surface is said to be *Frobenius classical*;

Counterexample: the Hermitian surface $X^{\sqrt{q}+1} + Y^{\sqrt{q}+1} + Z^{\sqrt{q}+1} + T^{\sqrt{q}+1} = 0$ over \mathbb{F}_q .

Let $S: (f = 0) \subset \mathbb{P}^3$ be a smooth irreducible algebraic surface of degree d defined \mathbb{F}_q . Set $C_{\Phi}^S \stackrel{\text{def}}{=} \{P \in S \mid \Phi(P) \in T_PS\}$. Then $S(\mathbb{F}_q) \subset C_{\Phi}^S$.

 $C_{\Phi}^{S}: f = h = 0$ for $h := X_{0}^{q} f_{0} + X_{1}^{q} f_{1} + X_{2}^{q} f_{2} + X_{3}^{q} f_{3} \Rightarrow \deg h = d + q - 1.$

Take a curve $C \subset S$ of degree δ . Then $C(\mathbb{F}_q) \subseteq C \cap C_{\Phi}^S$.

If $C \cap C^S_\Phi$ is a finite set of points, then

$$\#C(\mathbb{F}_q) \le \frac{\deg(C \cap C_{\Phi}^S)}{\min_{P \in C(\mathbb{F}_q)} m_P(C, C_{\Phi}^S)} \le \frac{\delta(d+q-1)}{2}$$

Two necessary conditions for $\dim(C \cap C_{\Phi}^S) = 0$:

Let $S: (f = 0) \subset \mathbb{P}^3$ be a smooth irreducible algebraic surface of degree d defined \mathbb{F}_q . Set $C_{\Phi}^S \stackrel{\text{def}}{=} \{P \in S \mid \Phi(P) \in T_PS\}$. Then $S(\mathbb{F}_q) \subset C_{\Phi}^S$.

 $C_{\Phi}^{S}: f = h = 0$ for $h := X_{0}^{q}f_{0} + X_{1}^{q}f_{1} + X_{2}^{q}f_{2} + X_{3}^{q}f_{3} \Rightarrow \deg h = d + q - 1.$

Take a curve $C \subset S$ of degree δ . Then $C(\mathbb{F}_q) \subseteq C \cap C_{\Phi}^S$.

If $C \cap C^S_\Phi$ is a finite set of points, then

$$\#C(\mathbb{F}_q) \le \frac{\deg(C \cap C_{\Phi}^S)}{\min_{P \in C(\mathbb{F}_q)} m_P(C, C_{\Phi}^S)} \le \frac{\delta(d+q-1)}{2}$$

Two necessary conditions for $\dim(C \cap C_{\Phi}^S) = 0$:

 dim C^S_Φ = 1: in this case, the surface is said to be *Frobenius classical*; *Counterexample*: the Hermitian surface X^{√q+1} + Y^{√q+1} + Z^{√q+1} + T^{√q+1} = 0 over 𝔽_q.

 p ∤ d(d − 1) ⇒ S is Frobenius classical.

Q C does not share any components with C^S_Φ. Counterexample: if S contains a F_q-line L, then L ⊂ C^S_Φ. The bound does not hold.

Geometry of curves OO

Result and conclusion O

Strategy (2/2)

Let $S: (f = 0) \subset \mathbb{P}^3$ be a smooth irreducible algebraic surface of degree d defined \mathbb{F}_q . Set $C_{\Phi}^S \stackrel{\text{def}}{=} \{P \in S \mid \Phi(P) \in T_PS\}$. Then $S(\mathbb{F}_q) \subset C_{\Phi}^S$.

 $C_{\Phi}^{S}: f = h = 0$ for $h := X_{0}^{q} f_{0} + X_{1}^{q} f_{1} + X_{2}^{q} f_{2} + X_{3}^{q} f_{3} \Rightarrow \deg h = d + q - 1.$

Take a curve $C \subset S$ of degree δ . Then $C(\mathbb{F}_q) \subseteq C \cap C_{\Phi}^S$.

If $C \cap C^S_{\Phi}$ is a finite set of points, then

$$\#C(\mathbb{F}_q) \leq \frac{\deg(C \cap C_{\Phi}^S)}{\min_{P \in C(\mathbb{F}_q)} m_P(C, C_{\Phi}^S)} \leq \frac{\delta(d+q-1)}{2}$$

Two necessary conditions for $\dim(C \cap C_{\Phi}^S) = 0$:

 dim C^S_Φ = 1: in this case, the surface is said to be *Frobenius classical*; *Counterexample*: the Hermitian surface X^{√q+1} + Y^{√q+1} + Z^{√q+1} + T^{√q+1} = 0 over 𝔽_q.
 ✓ p ∤ d(d-1) ⇒ S is Frobenius classical.

2 C does not share any components with C_{Φ}^{S} .

Counterexample: if S contains a \mathbb{F}_q -line L, then $L \subset C_{\Phi}^S$. The bound does not hold.

Aim: understanding the components of the curve C_{Φ}^{S} for a Frobenius classical surface.

Introduction 0000

Strategy 00

Geometry of curves OO

Curves over Frobenius classical surfaces O

Result and conclusion O

Osculating spaces and *P*-orders (Stöhr–Voloch theory 1)

Let $C \subset \mathbb{P}^3$ be an absolutely irreducible projective curve defined over \mathbb{F}_q . Fix $P \in C$. An integer j is a P-order if there exists a plane intersecting the curve C with multiplicity j at P. If C is non-plane and P is non-singular, there are exactly four distinct P-orders:

$$j_0 = 0 < j_1 < j_2 < j_3.$$

Remark: $j_1 = 1 \Leftrightarrow C$ is non-singular at the point P.

Introduction 0000

Strategy 00

Geometry of curves ●O

Curves over Frobenius classical surfaces O

Result and conclusion O

Osculating spaces and *P*-orders (Stöhr–Voloch theory 1)

Let $C \subset \mathbb{P}^3$ be an absolutely irreducible projective curve defined over \mathbb{F}_q . Fix $P \in C$. An integer j is a P-order if there exists a plane intersecting the curve C with multiplicity j at P. If C is non-plane and P is non-singular, there are exactly four distinct P-orders:

 $j_0 = 0 < j_1 < j_2 < j_3.$

Remark: $j_1 = 1 \Leftrightarrow C$ is non-singular at the point P.

Osculating spaces: $T_P^{(i)}C = \bigcap \{ \text{planes } H \text{ s.t. } m_P(C,H) \ge j_{i+1} \}.$

Equation of the osculating plane
$$T_P^{(2)}C$$
:
$$\begin{vmatrix} X_0 & X_1 & X_2 & X_3 \\ x_0 & x_1 & x_2 & x_3 \\ D_t^{(j_1)}x_0 & D_t^{(j_1)}x_1 & D_t^{(j_1)}x_2 & D_t^{(j_1)}x_3 \\ D_t^{(j_2)}x_0 & D_t^{(j_2)}x_1 & D_t^{(j_2)}x_2 & D_t^{(j_2)}x_3 \end{vmatrix} = 0$$

where $D_t^{(j)}$ are the Hasse derivatives with respect to a a local parameter t at P defined by $D_t^{(i)}t^k = \binom{k}{i}t^{k-i}.$

Frobenius orders (Stöhr–Voloch theory 2)

Fix $P \in C \subset \mathbb{P}^3$ with *P*-orders $(0, j_1, j_2, j_3)$. Then $\Phi(P) \in T_P^{(2)}C$ if and only if

$$\Delta(j_1, j_2) \stackrel{\text{def}}{=} \begin{vmatrix} x_0^q & x_1^q & x_2^q & x_3^q \\ x_0 & x_1 & x_2 & x_3 \\ D_t^{(j_1)} x_0 & D_t^{(j_1)} x_1 & D_t^{(j_1)} x_2 & D_t^{(j_1)} x_3 \\ D_t^{(j_2)} x_0 & D_t^{(j_2)} x_1 & D_t^{(j_2)} x_2 & D_t^{(j_2)} x_3 \end{vmatrix} = 0$$

Frobenius orders (Stöhr–Voloch theory 2)

Fix $P \in C \subset \mathbb{P}^3$ with *P*-orders $(0, j_1, j_2, j_3)$. Then $\Phi(P) \in T_P^{(2)}C$ if and only if

$$\Delta(j_1, j_2) \stackrel{\text{def}}{=} \begin{vmatrix} x_0^q & x_1^q & x_2^q & x_3^q \\ x_0 & x_1 & x_2 & x_3 \\ D_t^{(j_1)} x_0 & D_t^{(j_1)} x_1 & D_t^{(j_1)} x_2 & D_t^{(j_1)} x_3 \\ D_t^{(j_2)} x_0 & D_t^{(j_2)} x_1 & D_t^{(j_2)} x_2 & D_t^{(j_2)} x_3 \end{vmatrix} = 0$$

Theorem [Stöhr–Voloch, 1986]

There exist integers $\nu_1 < \nu_2$ s.t. $\Delta(\nu_1, \nu_2)$ is a nonzero function.

Definition

The integers $\nu_0 = 0, \nu_1, \nu_2$ chosen minimally with respect to the lexicographic order are called the Frobenius orders of C.

The curve C is Frobenius classical if $(\nu_1, \nu_2) = (1, 2)$, Frobenius non-classical otherwise.

Introduction 0000

Frobenius non-classical curves on surfaces

Aim: Understand the components of $C_{\Phi}^{S} = \{P \in S \mid \Phi(P) \in T_{P}S\}$ on a Frob. classical surface.

Aim: Understand the components of $C_{\Phi}^{S} = \{P \in S \mid \Phi(P) \in T_{P}S\}$ on a Frob. classical surface.

Proposition [BN21]

Let C be a non-plane curve lying on a surface S. Assume that C is Frobenius non-classical with $\nu_1 = 1$. Then C is not a component of C_{Φ}^S .

Aim: Understand the components of $C_{\Phi}^{S} = \{P \in S \mid \Phi(P) \in T_{P}S\}$ on a Frob. classical surface.

Proposition [BN21]

Let C be a non-plane curve lying on a surface S. Assume that C is Frobenius non-classical with $\nu_1 = 1$. Then C is not a component of C_{Φ}^S .

What about $\nu_1 > 1$?

Aim: Understand the components of $C_{\Phi}^{S} = \{P \in S \mid \Phi(P) \in T_{P}S\}$ on a Frob. classical surface.

Proposition [BN21]

Let C be a non-plane curve lying on a surface S. Assume that C is Frobenius non-classical with $\nu_1 = 1$. Then C is not a component of C_{Φ}^S .

What about $\nu_1 > 1$? $\nu_1 > 1 \Rightarrow \Phi(P) \in T_P C \subset T_P S$

(Sad) Fact: Frobenius non-classical curves with $\nu_1 > 1$ are components of C_{Φ}^S .

Aim: Understand the components of $C_{\Phi}^{S} = \{P \in S \mid \Phi(P) \in T_{P}S\}$ on a Frob. classical surface.

Proposition [BN21]

Let C be a non-plane curve lying on a surface S. Assume that C is Frobenius non-classical with $\nu_1 = 1$. Then C is not a component of C_{Φ}^S .

What about $\nu_1 > 1$? $\nu_1 > 1 \Rightarrow \Phi(P) \in T_P C \subset T_P S$

(Sad) Fact: Frobenius non-classical curves with $\nu_1 > 1$ are components of C_{Φ}^S . However...

Proposition [BN21]

Assume that C is Frobenius non-classical with $\nu_1 > 1$ and $\delta \leq q$. Then C is plane.

Remark: Hefez and Voloch (1990) gave the exact number of rational points on **smooth** curves with $\nu_1 > 1$, while Borges and Homma (2018) studied singular **plane** curves with $\nu_1 > 1$.

Aim: Understand the components of $C_{\Phi}^{S} = \{P \in S \mid \Phi(P) \in T_{P}S\}$ on a Frob. classical surface.

Proposition [BN21]

Let C be a non-plane curve lying on a surface S. Assume that C is Frobenius non-classical with $\nu_1 = 1$. Then C is not a component of C_{Φ}^S .

What about $\nu_1 > 1$? $\nu_1 > 1 \Rightarrow \Phi(P) \in T_P C \subset T_P S$

(Sad) Fact: Frobenius non-classical curves with $\nu_1 > 1$ are components of C_{Φ}^S . However...

Proposition [BN21]

Assume that C is Frobenius non-classical with $\nu_1 > 1$ and $\delta \leq q$. Then C is plane.

Remark: Hefez and Voloch (1990) gave the exact number of rational points on **smooth** curves with $\nu_1 > 1$, while Borges and Homma (2018) studied singular **plane** curves with $\nu_1 > 1$.

Tool: Use the existence and the minimality of the Frobenius orders ν_1, ν_2 s.t. $\Delta(\nu_1, \nu_2) \neq 0$.

Aim: Understand the components of $C_{\Phi}^{S} = \{P \in S \mid \Phi(P) \in T_{P}S\}$ on a Frob. classical surface.

Proposition [BN21]

Let C be a non-plane curve lying on a surface S. Assume that C is Frobenius non-classical with $\nu_1 = 1$. Then C is not a component of C_{Φ}^S .

What about $\nu_1 > 1$? $\nu_1 > 1 \Rightarrow \Phi(P) \in T_P C \subset T_P S$

(Sad) Fact: Frobenius non-classical curves with $\nu_1 > 1$ are components of C_{Φ}^S . However...

Proposition [BN21]

Assume that C is Frobenius non-classical with $\nu_1 > 1$ and $\delta \leq q$. Then C is plane.

Remark: Hefez and Voloch (1990) gave the exact number of rational points on **smooth** curves with $\nu_1 > 1$, while Borges and Homma (2018) studied singular **plane** curves with $\nu_1 > 1$.

Tool: Use the existence and the minimality of the Frobenius orders ν_1, ν_2 s.t. $\Delta(\nu_1, \nu_2) \neq 0$. Example: *C* is **Frobenius non–classical** $\Rightarrow \{\nu_1, \nu_2\} \neq \{1, 2\} \Rightarrow \Delta(1, 2) = 0$. If $\Phi(P) \in T_PS$

 $\Rightarrow \Delta(1,2) = (u'' - g''u_y) \quad [(x - \tilde{x})g' - (y - \tilde{y})] = 0$

Aim: Understand the components of $C_{\Phi}^{S} = \{P \in S \mid \Phi(P) \in T_{P}S\}$ on a Frob. classical surface.

Proposition [BN21]

Let C be a non-plane curve lying on a surface S. Assume that C is Frobenius non-classical with $\nu_1 = 1$. Then C is not a component of C_{Φ}^S .

What about $\nu_1 > 1$? $\nu_1 > 1 \Rightarrow \Phi(P) \in T_P C \subset T_P S$

(Sad) Fact: Frobenius non-classical curves with $\nu_1 > 1$ are components of C_{Φ}^S . However...

Proposition [BN21]

Assume that C is Frobenius non-classical with $\nu_1 > 1$ and $\delta \leq q$. Then C is plane.

Remark: Hefez and Voloch (1990) gave the exact number of rational points on **smooth** curves with $\nu_1 > 1$, while Borges and Homma (2018) studied singular **plane** curves with $\nu_1 > 1$.

Tool: Use the existence and the minimality of the Frobenius orders ν_1, ν_2 s.t. $\Delta(\nu_1, \nu_2) \neq 0$. Example: *C* is **Frobenius non–classical** $\Rightarrow \{\nu_1, \nu_2\} \neq \{1, 2\} \Rightarrow \Delta(1, 2) = 0$. If $\Phi(P) \in T_PS$

$$\Rightarrow \Delta(1,2) = \begin{array}{cc} (u'' - g''u_y) & [(x - \tilde{x})g' - (y - \tilde{y})] &= 0\\ \Phi(P) \notin T_PS & \nu_1 > 1 \end{array}$$

Frobenius classical components of C_{Φ}^{S}

Recap: A component of C_{Φ}^{S} falls in one of the following cases:

- $\nu_1 > 1$: in this case, if it has $\delta \leq q$, it is plane;
- it is Frobenius classical, i.e. $\{\nu_1, \nu_2\} = \{1, 2\}.$

Conjecture: Non-plane Frobenius classical curves with $\delta \leq q$ are not components of C_{Φ}^{S} .

Frobenius classical components of C_{Φ}^{S}

Recap: A component of C_{Φ}^{S} falls in one of the following cases:

- $\nu_1 > 1$: in this case, if it has $\delta \leq q$, it is plane;
- it is Frobenius classical, i.e. $\{\nu_1, \nu_2\} = \{1, 2\}.$

Conjecture: Non-plane Frobenius classical curves with $\delta \leq q$ are not components of C_{Φ}^{S} .

Example of surface with highly reducible C_{Φ}^{S}

Over \mathbb{F}_5 , consider the surface S defined by

$$\begin{split} f &= & 2X_0X_1^2 + 2X_1^3 + 2X_0^2X_2 + 2X_0X_1X_2 + X_1^2X_2 + 2X_0X_2^2 + 3X_1X_2^2 \\ &+ 3X_2^3 + 4X_0^2X_3 + X_0X_1X_3 + X_1^2X_3 + 2X_1X_2X_3 + 2X_2^2X_3 \\ &+ 3X_0X_3^2 + 4X_1X_3^2 + X_2X_3^2. \end{split}$$

The curve C_{Φ}^{S} has degree 21 and is formed of 15 \mathbb{F}_{5} -lines and one non-plane sextic ($\delta = q + 1$).

Theorem [BN21]

Let S be an irreducible Frobenius classical surface of degree d > 1 in \mathbb{P}^3 . Let C be a non-plane irreducible curve of degree $\delta \leq q$ lying on S. Suppose C is Frobenius non-classical. Then

$$\#C(\mathbb{F}_q) \le \frac{\delta(d+q-1)}{2}.$$

Under the conjecture, the bound also holds for Frobenius classical curves.

Theorem [BN21]

Let S be an irreducible Frobenius classical surface of degree d > 1 in \mathbb{P}^3 . Let C be a non-plane irreducible curve of degree $\delta \leq q$ lying on S. Suppose C is Frobenius non-classical. Then

$$\#C(\mathbb{F}_q) \le \frac{\delta(d+q-1)}{2}.$$

Under the conjecture, the bound also holds for Frobenius classical curves.

• A plane curve on a degree d surface has $\delta \leq d \Rightarrow$ our bound holds for plane curves which have at least one point P such that $\Phi(P) \notin T_P C$ by Stöhr–Voloch bound $(\delta(\delta + q - 1)/2)$.

Theorem [BN21]

Let S be an irreducible Frobenius classical surface of degree d > 1 in \mathbb{P}^3 . Let C be a non-plane irreducible curve of degree $\delta \leq q$ lying on S. Suppose C is Frobenius non-classical. Then

$$#C(\mathbb{F}_q) \le \frac{\delta(d+q-1)}{2}.$$

Under the conjecture, the bound also holds for Frobenius classical curves.

- A plane curve on a degree d surface has $\delta \leq d \Rightarrow$ our bound holds for plane curves which have at least one point P such that $\Phi(P) \notin T_P C$ by Stöhr–Voloch bound $(\delta(\delta + q 1)/2)$.
- Embedding entails arithmetic and geometric constraints on a variety: For $\delta = 11$ and d = 5 over \mathbb{F}_9 , C has genus at most 17 and $\#C(\mathbb{F}_q) \leq 72$. In ManyPoints, maximal curves of genus 16 and 17 have 74 \mathbb{F}_9 -points. These record curves cannot lie on a Frobenius classical surface in \mathbb{P}^3 , unless being a component of C_{Φ}^S .

Theorem [BN21]

Let S be an irreducible Frobenius classical surface of degree d > 1 in \mathbb{P}^3 . Let C be a non-plane irreducible curve of degree $\delta \leq q$ lying on S. Suppose C is Frobenius non-classical. Then

$$\#C(\mathbb{F}_q) \le \frac{\delta(d+q-1)}{2}.$$

Under the conjecture, the bound also holds for Frobenius classical curves.

Future question

Our theorem essentially relies on the geometry of space curves and the intersection theory in \mathbb{P}^3 . Can we generalize our approach when $C \subset S \subset \mathbb{P}^n$, for $n \ge 4$?

Theorem [BN21]

Let S be an irreducible Frobenius classical surface of degree d > 1 in \mathbb{P}^3 . Let C be a non-plane irreducible curve of degree $\delta \leq q$ lying on S. Suppose C is Frobenius non-classical. Then

$$\#C(\mathbb{F}_q) \le \frac{\delta(d+q-1)}{2}.$$

Under the conjecture, the bound also holds for Frobenius classical curves.

Future question

Our theorem essentially relies on the geometry of space curves and the intersection theory in \mathbb{P}^3 . Can we generalize our approach when $C \subset S \subset \mathbb{P}^n$, for $n \ge 4$?

Thank you for your attention!

Can we generalize our approach when $C \subset S \subset \mathbb{P}^n$, for $n \ge 4$?

Can we generalize our approach when $C \subset S \subset \mathbb{P}^n$, for $n \ge 4$?

Consider the varieties in $S \times \mathbb{P}^n$

• $\Gamma_C = \{(P, \Phi(P)) \in C^2 \mid P \in C\}$ the graph of Φ restricted to the curve C,

•
$$\mathcal{T}_S = \{ (P,Q) \in S \times \mathbb{P}^n \mid P \in S, Q \in T_PS \}.$$

Then $C(\mathbb{F}_q) \xrightarrow{\Delta} \Gamma_C \cap \mathcal{T}_S \simeq \{P \in C \mid \Phi(P) \in T_PS\}.$ Remark: C_{Φ}^S was the image of $\Gamma_C \cap \mathcal{T}_S \in S \times \mathbb{P}^3$ under the 1^{st} projection.

Can we generalize our approach when $C \subset S \subset \mathbb{P}^n$, for $n \ge 4$?

Consider the varieties in $S \times \mathbb{P}^n$

• $\Gamma_C = \{(P, \Phi(P)) \in C^2 \mid P \in C\}$ the graph of Φ restricted to the curve C,

•
$$\mathcal{T}_S = \{ (P,Q) \in S \times \mathbb{P}^n \mid P \in S, Q \in T_PS \}.$$

(dim 1) (dim 4)

Then $C(\mathbb{F}_q) \xrightarrow{\Delta} \Gamma_C \cap \mathcal{T}_S \simeq \{P \in C \mid \Phi(P) \in T_PS\}.$ Remark: C_{Φ}^S was the image of $\Gamma_C \cap \mathcal{T}_S \in S \times \mathbb{P}^3$ under the 1^{st} projection.

 Γ_C and \mathcal{T}_S have complementary dimensions in $S \times \mathbb{P}^n$ (of dim n+2) if and only if n=3. \rightarrow bound the number of rational points on C by a fraction of the intersection product $[\Gamma_C] \cdot [\mathcal{T}_S]$.

When $n \geq 4$, $[\Gamma_C] \cdot [\mathcal{T}_S] = 0$ while $\Gamma_C \cap \mathcal{T}_S \neq \emptyset$.

Idea: Fix this dimension incompatibility by blowing up \mathcal{T}_S or $S \times S$.