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Introduction ® 000

Curves, surfaces, rational points and all that jazz

We let F, denote a finite field with ¢ elements, and F,, an algebraic closure of it.
The projective space P is the set of equivalence classes of points in A"t \ {0} under the
relation (ag, ..., an) ~ (Aao,. .., Aay) for every A € F, \ {0}.
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Introduction ® 000

Curves, surfaces, rational points and all that jazz

We let F, denote a finite field with ¢ elements, and F,, an algebraic closure of it.
The projective space P™ is the set of equivalence classes of points in A”*1\ {0} under the

relation (ao, . .., a,) ~ (Aao, ..., Aa,) for every A € F, \ {0}.
def

The set of Fy—rational points of P" is P*"(F,) = {P = (ag:---:a,) € P" |V, a; € F,}.
An algebraic projective variety X defined over IF; is the set of zeros of homogenous polynomials
fi,..., fr € Fglzo, ..., x,] irreducible over F:

XE{PeP| fi(P) == f(P)=0}.
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Introduction ® 000

Curves, surfaces, rational points and all that jazz

We let F, denote a finite field with ¢ elements, and F,, an algebraic closure of it.
The projective space P™ is the set of equivalence classes of points in A”*1\ {0} under the

relation (ao, . .., a,) ~ (Aao, ..., Aa,) for every A € F, \ {0}.
def

The set of Fy—rational points of P" is P*"(F,) = {P = (ag:---:a,) € P" |V, a; € F,}.
An algebraic projective variety X defined over IF; is the set of zeros of homogenous polynomials
fi,..., fr € Fglzo, ..., x,] irreducible over F:
XEpeP | f(P)=-- = f(P)=0}.
def

The set of rational points of X is X(Fy) = X NP"(F,)
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Curves, surfaces, rational points and all that jazz

We let F, denote a finite field with ¢ elements, and F,, an algebraic closure of it.
The projective space P is the set of equivalence classes of points in A"t \ {0} under the
relation (ag, ..., an) ~ (Aag, ..., Aa,) for every A € F, \{O}

The set of Fy—rational points of P" is P"(F,) &f {P=(ap: - :an) €P"|Vi, a; € Fy}.
An algebraic projective variety X defined over IF; is the set of zeros of homogenous polynomials
fi,..., fr € Fglzo, ..., x,] irreducible over F:

y def

XE{PeP"| fi(P)=--= f(P)=0}.

Frobenius morphism

The set of rational points of X is X(F,) & X nP"(F,) = {P € X | o(P) = P}.
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Curves, surfaces, rational points and all that jazz

We let F, denote a finite field with ¢ elements, and F,, an algebraic closure of it.
The projective space P is the set of equivalence classes of points in A"t \ {0} under the
relation (ag, ..., an) ~ (Aag, ..., Aa,) for every A € F, \{O}

The set of Fy—rational points of P" is P"(F,) &f {P=(ap: - :an) €P"|Vi, a; € Fy}.
An algebraic projective variety X defined over IF; is the set of zeros of homogenous polynomials
fi,..., fr € Fglzo, ..., x,] irreducible over F:

y def

XE{PeP"| fi(P)=--= f(P)=0}.

Frobenius morphism

The set of rational points of X is X(F,) & X nP"(F,) = {P € X | o(P) = P}.

Today: algebraic varieties of dimension one (curves C) and two (surfaces S) in P?.
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Introduction ® 000

Curves, surfaces, rational points and all that jazz

We let F, denote a finite field with ¢ elements, and F,, an algebraic closure of it.
The projective space P is the set of equivalence classes of points in A"t \ {0} under the
relation (ag, ..., an) ~ (Aag, ..., Aa,) for every A € F, \{O}

The set of Fy—rational points of P" is P"(F,) &f {P=(ap: - :an) €P"|Vi, a; € Fy}.
An algebraic projective variety X defined over IF; is the set of zeros of homogenous polynomials
fi,..., fr € Fglzo, ..., x,] irreducible over F:

y def

XE{PeP"| fi(P)=--= f(P)=0}.

Frobenius morphism
The set of rational points of X is X(F,) & X nP"(F,) = {P € X | o(P) = P}.
Today: algebraic varieties of dimension one (curves C) and two (surfaces S) in P?.

Degree of a variety C P? (examples):
S:(f=0)=degS=degf (Surfaces)
C:f=g=0=degC =deg f x degg. (Complete intersection)
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Introduction O®0O

Existing bounds

Theorem [Hasse—Weil, 1948]

If C'is an absolutely irreducible smooth curve of genus g defined over the finite field F,, then
#C(F,) <q+1+29,/.
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Introduction O®0O

Existing bounds

Theorem [Hasse-Weil, 1948, Aubry—Perret, 1993]

If C'is an absolutely irreducible smeeth curve of arithmetic genus 7 defined over the finite field
Fq, then #C(F,) < q+ 1+ 27,/q.
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Theorem [Hasse—Weil, 1948, Aubry—Perret, 1993]

If C is an absolutely irreducible curve of arithmetic genus 7 defined over the finite field IF;, then
#C(F,) < q+1+2m/q.

Theorem [Homma, 2012]

If C'is a non—degenerate curve defined over F, of degree ¢ in P", with n > 3, then
#C(F,) < (0 —1)g+ 1.
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Introduction O®0O Strategy OO0 Geometry of curves OOO0 Curves over Frobenius classical surfaces OO0O

Existing bounds

Theorem [Hasse—Weil, 1948, Aubry—Perret, 1993]

If C is an absolutely irreducible curve of arithmetic genus 7 defined over the finite field IF;, then
#C(F,) < q+1+2m/q.

Theorem [Homma, 2012]

If C'is a non—degenerate curve defined over F, of degree ¢ in P", with n > 3, then
#C(F,) < (0 —1)g+ 1.

Theorem [Stohr—Voloch, 1986]

Let C/F, be an irreducible smooth curve of genus g and degree ¢ in P". Let v4,...,v,—1 beits
Frobenius orders (generically v; = ¢). Then

#CO(F,) <

L (1 4+ vne1) (20— 2) + (g + 1))

n
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Introduction OO®O

Stohr and Voloch'’s strategy for plane curves

Let C' be a plane curve of degree § defined over F,. Denote by ® the g—Frobenius morphism.
N
(PeC|®P) eTpC}E 2.
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Introduction OO®O

Stohr and Voloch'’s strategy for plane curves

Let C' be a plane curve of degree § defined over F,. Denote by ® the g—Frobenius morphism.
IN
(PeC|®P) eTpC}E 2.
Assume C'is defined by f = 0. Set
9(z,y) = X fx + Yy + Zfz.
Then Z=CnN (g =0).
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Introduction OO®O
Stohr and Voloch'’s strategy for plane curves

Let C' be a plane curve of degree § defined over F,. Denote by ® the g—Frobenius morphism.
CF,) = {PeC|®P)=Pr}
N
(PeC|®P) eTpC}E 2.
Assume C'is defined by f = 0. Set

9(z,y) = X fx + Yy + Zfz.
Then Z=CnN (g =0).

/
Bézout’s theorem: if dim Z = 0, the number of ©(R)# R
points in Z counted with multiplicity is equal to

(deg f) - (degg) = 0(6 + ¢ —1).

" " " —=
On the number of rational points on curves lying on a surface in P
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Stohr and Voloch'’s strategy for plane curves

Let C' be a plane curve of degree § defined over F,. Denote by ® the g—Frobenius morphism.
IN
(PeC|®P) eTpC}E 2.
Assume C'is defined by f = 0. Set
9(z,y) = X fx + Yy + Zfz.
Then Z=CnN (g =0).

/
Bézout’s theorem: if dim Z = 0, the number of ©(R)# R
points in Z counted with multiplicity is equal to

(deg f) - (degg) = (6 +¢ —1).
Multiplicity: If P € C(FF,), then mp(Z) > 2.
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Introduction OO®O
Stohr and Voloch'’s strategy for plane curves

Let C' be a plane curve of degree § defined over F,. Denote by ® the g—Frobenius morphism.
IN
(PeC|®P) eTpC}E 2.
Assume C'is defined by f = 0. Set
9(z,y) = X fx + Yy + Zfz.
Then Z=CnN (g =0).

/
Bézout’s theorem: if dim Z = 0, the number of ©(R)# R
points in Z counted with multiplicity is equal to

(deg f) - (degg) = (6 +¢ —1).
Multiplicity: If P € C(FF,), then mp(Z) > 2.

Theorem [Stohr—Voloch, 1986]
If C has at least a non—flex point (= dim Z = 0), then #C(F,) < 26(5 + ¢ — 1).

" " " —=
On the number of rational points on curves lying on a surface in P

E. Berardini & J. Nardi 5/19



Introduction OO0®
Ideas & Motivations

Let C' C S < P" (via a very ample divisor).

Goal: bounding #C(F,) in terms of the embedding.
(features of the surface S and the ambient P™)
Main motivations:
® New bound for the number of rational points on projective curves.
(hopefully improving the previous ones)
® Application to geometric coding theory.
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Ideas & Motivations

Let C' C S < P" (via a very ample divisor).

Goal: bounding #C(F,) in terms of the embedding.

(features of the surface S and the ambient P™)
Main motivations:

® New bound for the number of rational points on projective curves.

(hopefully improving the previous ones)
® Application to geometric coding theory.

Code from a surface S: . .
divisor Riemann—Roch space

where P = (Py,...,P,) C S(F,).

Minimum distance: min 1 0} >n— C(F
el o 1S (R) #0) 20— 32 4O,
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Introduction OO0®
Ideas & Motivations

Let C' C S < P" (via a very ample divisor).

Goal: bounding #C(F,) in terms of the embedding.

(features of the surface S and the ambient P™)
Main motivations:

® New bound for the number of rational points on projective curves.

(hopefully improving the previous ones)
® Application to geometric coding theory.

Code from a surface S: . .
divisor Riemann—Roch space

where P = (Py,...,P,) C S(F,).

Minimum distance: min  #{i| f(P,) #0} >n— Z #C(F

feL(D)\{o} Ccs
Bounding the minimum distance - Bounding #C'(F,)
of a code from a surface S for the irreducible curves C on S
Better lower bound for the minimum distance = Better upper bound for #C(F,)

" " " —=
On the number of rational points on curves lying on a surface in P
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Strategy @00
Strategy (n = 3)

Let S: (f = 0) C P? be a smooth irreducible algebraic surface of degree d defined F,.

Set Cp &' {P € S| ®(P) € TpS}. Then S(F,) C Ca.

On the number of rational points on curves lying on a surface in p3 E. Berardini & J. Nardi 7/19



Strategy @00
Strategy (n = 3)

Let S: (f = 0) C P? be a smooth irreducible algebraic surface of degree d defined F,.

Set Cp &' {P € S| ®(P) € TpS}. Then S(F,) C Ca.

Co:f=h=0forh:=X{fo+ X! fi+XJfo+Xifs=degh=d+q—1.
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Strategy @00
Strategy (n = 3)

Let S: (f = 0) C P? be a smooth irreducible algebraic surface of degree d defined F,.

Set Cp &' {P € S| ®(P) € TpS}. Then S(F,) C Ca.
Co:f=h=0forh:=X{fo+ X! fi+XJfo+Xifs=degh=d+q—1.

Take a curve C C S of degree §. Then C(F,) C C N Cs.

If CNCs is a finite set of points, then

deg(CNCy) < 0(d+q—1)

min mp(CNCs) — 2
PeC(F,)

#CO(F,) <

On the number of rational points on curves lying on a surface in p3 E. Berardini & J. Nardi 7/19



Strategy O®0O

Comparisons with pre—existing bounds

120

9 —— BN21
g —— Homma 12
% 60 — Stohr—Voloch 86
s

Degree 0 of the curve C' Degree 0 of the curve C

(a)g=9andd=5 (b)g=13and d=4

Figure: Bounds on the number of F,~points on a non—plane curve C on a degree d surface S C P?

— It is worth working on this bound!

On the number of rational points on curves lying on a surface i
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Strategy O0®
Strategy (2/2)

Let S: (f = 0) C P? be a smooth irreducible algebraic surface of degree d defined F,.
Set Cp & {P € S| ®(P) € TpS}. Then S(F,) C Cs.

Co: f=h=0forh:=X{fo+ X{fi + X fo+ X{fs=degh=d+q—1.
Take a curve C C S of degree §. Then C(F,) C CNCs.
If CNCs is a finite set of points, then

deg(C'NCy) < 0d+q—1)

min mp(CNCg) ~ 2
PeC(F,)

#CO(F,) <

Two necessary conditions for dim(C' N Cs) = 0:

On the number of rational points on curves lying on a surface in P E. Berardini & J. Nardi
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Strategy (2/2)

Let S: (f = 0) C P? be a smooth irreducible algebraic surface of degree d defined F,.
Set Cp & {P € S| ®(P) € TpS}. Then S(F,) C Cs.

Co: f=h=0forh:=X{fo+ X{fi + X fo+ X{fs=degh=d+q—1.
Take a curve C C S of degree §. Then C(F,) C CNCs.
If CNCs is a finite set of points, then

deg(C'NCy) < 0d+q—1)

min mp(CNCg) ~ 2
PeC(F,)

#CO(F,) <

Two necessary conditions for dim(C' N Cg) = 0:
® dim Cy = 1: in this case, the surface is said to be Frobenius classical;
Counterexample: the Hermitian surface X VaT! 4 yvatl 4 Zvatl o 7vatl — g over F,,.
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Strategy O0®
Strategy (2/2)

Let S: (f = 0) C P? be a smooth irreducible algebraic surface of degree d defined F,.
Set Cp & {P € S| ®(P) € TpS}. Then S(F,) C Cs.

Co: f=h=0forh:=X{fo+ X{fi + X fo+ X{fs=degh=d+q—1.
Take a curve C C S of degree §. Then C(F,) C CNCs.
If CNCs is a finite set of points, then

deg(C'NCy) < 0d+q—1)

min mp(CNCg) ~ 2
PeC(F,)

#CO(F,) <

Two necessary conditions for dim(C' N Cg) = 0:

® dim Cy = 1: in this case, the surface is said to be Frobenius classical;
Counterexample: the Hermitian surface X VaT! 4 yvatl 4 Zvatl o 7vatl — g over F,,.
v ptd(d—1)= S is Frobenius classical.

On the number of rational points on curves lying on a surface in P E. Berardini & J. Nardi



Strategy O0®
Strategy (2/2)

Let S: (f = 0) C P? be a smooth irreducible algebraic surface of degree d defined F,.
Set Cp & {P € S| ®(P) € TpS}. Then S(F,) C Cs.

Co: f=h=0forh:=X{fo+ X{fi + X fo+ X{fs=degh=d+q—1.
Take a curve C C S of degree §. Then C(F,) C CNCs.
If CNCs is a finite set of points, then

deg(C'NCy) < 0d+q—1)

min mp(CNCg) ~ 2
PeC(F,)

#CO(F,) <

Two necessary conditions for dim(C' N Cg) = 0:

® dim Cy = 1: in this case, the surface is said to be Frobenius classical;
Counterexample: the Hermitian surface X VaT! 4 yvatl 4 Zvatl o 7vatl — g over F,,.
v ptd(d—1)= S is Frobenius classical.

® C does not share any components with Cg.
Counterexample: if S contains a Fy—line L, then L C Cs. The bound does not hold.
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Strategy O0®
Strategy (2/2)

Let S: (f = 0) C P? be a smooth irreducible algebraic surface of degree d defined F,.
Set Cp & {P € S| ®(P) € TpS}. Then S(F,) C Cs.

Co: f=h=0forh:=X{fo+ X{fi + X fo+ X{fs=degh=d+q—1.
Take a curve C C S of degree §. Then C(F,) C CNCs.
If CNCs is a finite set of points, then

deg(C'NCy) < 0d+q—1)

min mp(CNCg) ~ 2
PeC(F,)

#CO(F,) <

Two necessary conditions for dim(C' N Cg) = 0:

® dim Cy = 1: in this case, the surface is said to be Frobenius classical;
Counterexample: the Hermitian surface X VaT! 4 yvatl 4 Zvatl o 7vatl — g over F,,.
v ptd(d—1)= S is Frobenius classical.

® C does not share any components with Cg.
Counterexample: if S contains a Fy—line L, then L C Cs. The bound does not hold.

Aim: understanding the components of the curve Cg for a Frobenius classical surface.

On the number of rational points on curves lying on a surface in P E. Berardini & J. Nardi



Geometry of curves ®000

Osculating spaces and P-orders (Stohr—Voloch theory 1)

Let C' C PP? be an absolutely irreducible projective space curve defined over F,. Fix P € C.
An integer j is a P—order if there exists a plane intersecting the curve C' with multiplicity j at P.
If C'is non—plane and P is non—singular, there are exactly four distinct P—orders:

Jo=0<j1 <j2 <js3.

Remark: ji1 =1 < C'is non—singular at the point P.
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Geometry of curves ®000

Osculating spaces and P-orders (Stohr—Voloch theory 1)

Let C' C PP? be an absolutely irreducible projective space curve defined over F,. Fix P € C.
An integer j is a P—order if there exists a plane intersecting the curve C' with multiplicity j at P.
If C'is non—plane and P is non—singular, there are exactly four distinct P—orders:

Jo=0<71 <j2 <Js.
Remark: ji1 =1 < C'is non—singular at the point P.
For almost every point P € C, the sequence of P—orders is the same, say (¢, 1,£2,€3).
There are only finitely many points such that (jo, j1, jo, j3) # (€0, €1,€2,€3), which are called the

Weierstrass points of the curve.
Remark: €1 = 1 since almost every point is non—singular.

A curve is said to be classical if (g9,€1,2,¢3) = (0,1,2,3) and non—classical otherwise.

On the number of rational points on curves lying on a surface in E. Berardini & J. Nardi 10/19



Geometry of curves O®00
Osculating spaces (Stohr—Voloch theory 2)

Fix P € C C P? with P-orders (0,}/'1,']'2,,}‘:},).
Osculating spaces: TI(;I')O = ({planes H s.t. mp(C, H) > ji 11}

T™V'Cc =P,
N

TI(,DC = tangent line for a non—singular point P,
N

TI(DQ)C’ = osculating plane of C' at P.

N
PB

On the number of rational points on curves lying on a surface in p3 E. Berardini & J. Nardi 11/19



Geometry of curves O®00
Osculating spaces (Stohr—Voloch theory 2)

Fix P € C C P3 with P-orders (0, j;, jo, j3).
Osculating spaces: TI(;I')O = ({planes H s.t. mp(C, H) > ji 11}

T™V'Cc =P,
N
TI(DI)C = tangent line for a non—singular point P,
N
TI(DQ)C’ = osculating plane of C' at P.
N
P? X X, X, X3
Equation of the osculating plane TI(DQ)C : Dt('g’?'())xo D;’C})xl Dg%@ Dt('g’?'%xg

Dg‘lz)l‘o Dg‘jj)xl Dt('jz)l‘g Dg‘lz)l‘zg

=0

where Dt(j) are the Hasse derivatives with respect to a a local parameter t at P defined by

Dt(i)tk _ <k> k=i
2

E. Berardini & J. Nardi 11/19
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Geometry of curves OO®0
Frobenius orders (Stohr—Voloch theory 3)

Fix P € C C P? with P—orders (0, j1, j2,j3). Then ®(P) € TI(DQ)C if and only if
6 xf 3 5
o X1 To I3 0
Dt(jl)CCO Dgh)l’l Dt(Jl).’EQ Dt(jl)ng o
Dt(Jz)zO Dt(Jz)l,1 D§J2)$2 Dt(”).rg

On the number of rational points on curves lying on a surface in

E. Berardini & J. Nardi



Introduction OOOO Strategy OOOC Geometry of curves OO®0 Curves over Frobenius classical surface

Frobenius orders (Stohr—VoIoch theory 3)

Fix P € C C P? with P—orders (0, j1, j2,j3). Then ®(P) € TI(DQ)C if and only if

q q q q
Zg Xq Ty X3
o X1 To I3 0
(41) (41) (41) (41) =
Dt o Dt Iy Dt xTo Dt T3

Dt(j2)1'0 Dt(jz)l,l DEjQ)ZCQ Dt(j2)l‘3

Theorem [Stohr—Voloch, 1986]

q q q q
Lo Ly ) L3

Zo Z1 Z2 Zs3 . .
Dt(yl)l‘o Dt(ul)xl Dt(ul)xz D,g”l)xg is a nonzero function.
DIEW).’EO D§y2)$1 Dt(u2)l'2 D§u2)(£3
Choose them minimally with respect to the lexicographic order. Then {vy,15} C {e1,e2,e3}.

There exist integers 11 < vs s.t.

The integers vy = 0,11, 15 are called the Frobenius orders of C.

The curve C is Frobenius classical if (v1,12) = (1,2), Frobenius non—classical otherwise.
Remark: No implication between Frobenius classical and classical.

" " " —=
On the number of rational points on curves lying on a surface in P
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Geometry of curves O00®
Notations

Let C' C S. Fix a generic point P on C, w.l.o.g. P is a non—singular point. We choose affine
coordinates such that P = (0,0,0) and S and C are locally given by

2z =u(x JuZ
S (z,y), ¢ {zzu(%g(m»-

Denote by (Z, 7, 2) déf@(m,y,z). Note that (Z,7, 2) = (z%,y7, 29) if and only if P € C(F,).

On the number of rational points on curves lying on a surface in p3 E. Berardini & J. Nardi 13/19



Geometry of curves O00®
Notations

Let C' C S. Fix a generic point P on C, w.l.o.g. P is a non—singular point. We choose affine
coordinates such that P = (0,0,0) and S and C are locally given by

2z =u(x JuZ
S (z,y), ¢ {zzu(%g(m»-

Denote by (Z, 7, 2) déf@(m,y,z). Note that (Z,7, 2) = (z%,y7, 29) if and only if P € C(F,).
For integers 1 < i < j, we consider the function

1 @ g z

.. def 1 z y z
Al j) = det | o ) 9D u(z, g(x))®
0 0 g(j) u(x,g(x))(j)

E. Berardini & J. Nardi 13/19
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Geometry of curves O00®
Notations

Let C' C S. Fix a generic point P on C, w.l.o.g. P is a non—singular point. We choose affine
coordinates such that P = (0,0,0) and S and C are locally given by

2z =u(x JuZ
S (z,y), ¢ {zzu(%g(m»-

Denote by (Z, 7, 2) déf@(m,y,z). Note that (Z,7, 2) = (z%,y7, 29) if and only if P € C(F,).
For integers 1 < i < j, we consider the function
1 =z z
..\ def €T z
A(i,7) = det i i i
(i,9) @ Wz, g(x))®

1
0

0 0 g9 w(zg(x)?
(

Stohr—Voloch Theorem = J vy, vs s.t. A(v1,ve) is a nonzero function if C'is non—plane.

E. Berardini & J. Nardi 13/19
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Curves over Frobenius classical surfaces ®000
Useful lemma

Aim: Understand the components of Co= {P € S | ®(P) € TpS} on a Frob. classical surface.
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Curves over Frobenius classical surfaces €000

Useful lemma

Aim: Understand the components of Co= {P € S | ®(P) € TpS} on a Frob. classical surface.

Lemma [BN21]

Assume that we have u() = g(j)uy for every j > max{2,v,}. Then either v; > 1 and C' is plane
or vy =1 and ®(P) ¢ TpS for a generic point P € C.
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Curves over Frobenius classical surfaces €000

Useful lemma
Aim: Understand the components of Co= {P € S | ®(P) € TpS} on a Frob. classical surface.

Lemma [BN21]
Assume that we have u() = g(j)uy for every j > max{2,v,}. Then either v; > 1 and C' is plane
or vy =1 and ®(P) ¢ TpS for a generic point P € C.

Assume vy > 1. Since for j > v; we have ul) = g(Wy,, we obtain

1 & g z
. 1 =z Y z . .
A(vy,j) = det 0 0 g gy, =0= A(vy,j) = 0V (plane curve).
0 0

g gy,

E. Berardini & J. Nardi
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Curves over Frobenius classical surfaces €000

Useful lemma
Aim: Understand the components of Co= {P € S | ®(P) € TpS} on a Frob. classical surface.

Lemma [BN21]

Assume that we have u() = g(J)uy for every j > max{2,v,}. Then either v; > 1 and C' is plane
or vy =1 and ®(P) ¢ TpS for a generic point P € C.

Assume vy > 1. Since for j > v; we have ul) = g(Wy,, we obtain

1 & g z
. 1 =z y z . .
A(vy,j) = det 0 0 g gy, =0= A(vy,j) = 0V (plane curve).
0 0

g gy,

>

Assume v; = 1. Using that u(/) = U )uy for j > 2 we get

1z g z
. ; 1 =z z N
ALy =gPdet | o 7 5 F | =901 o (- y)u, (- 2)),
g Uz TGy 750 if ®(P)¢TpS.
00 1 u,

E. Berardini & J. Nardi 14 /19

" " " —=
On the number of rational points on curves lying on a surface in P



Curves over Frobenius classical surfaces O®00

Frobenius non—classical curves with 1 = 1 are not components of Cs (1/2)

Aim: Understand the components of C' on a Frobenius classical surface.

Proposition [BN21]

Let C be a non—plane curve lying on a Frobenius classical surface S. Assume that C is Frobenius
non—classical with vy = 1. Then, for a generic point P € C, we have ®(P) ¢ TpS.
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Curves over Frobenius classical surfaces O®00

Frobenius non—classical curves with 1 = 1 are not components of Cs (1/2)

Aim: Understand the components of C' on a Frobenius classical surface.

Proposition [BN21]

Let C be a non—plane curve lying on a Frobenius classical surface S. Assume that C is Frobenius
non—classical with vy = 1. Then, for a generic point P € C, we have ®(P) ¢ TpS.

By contradiction, take P such that ®(P) € TpS.

E. Berardini & J. Nardi
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Curves over Frobenius classical surfaces O®00

Frobenius non—classical curves with 1 = 1 are not components of Cs (1/2)

Aim: Understand the components of C' on a Frobenius classical surface.

Proposition [BN21]

Let C be a non—plane curve lying on a Frobenius classical surface S. Assume that C is Frobenius
non—classical with vy = 1. Then, for a generic point P € C, we have ®(P) ¢ TpS.

By contradiction, take P such that ®(P) € TpS. Since C' is Frobenius non—classical we have
A(L2) = (z — B)[g'u" = g" (s + g'uy)] = (y = Pu” + (2 = 2)g" =0

E. Berardini & J. Nardi 15/19
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Curves over Frobenius classical surfaces O®00

Frobenius non—classical curves with 1 = 1 are not components of Cs (1/2)

Aim: Understand the components of C' on a Frobenius classical surface.

Proposition [BN21]

Let C be a non—plane curve lying on a Frobenius classical surface S. Assume that C is Frobenius
non—classical with vy = 1. Then, for a generic point P € C, we have ®(P) ¢ TpS.

By contradiction, take P such that ®(P) € TpS. Since C' is Frobenius non—classical we have
A(L2) = (z — B)[g'u" = g" (s + g'uy)] = (y = Pu” + (2 = 2)g" =0
O(P)eTpS e z—Z2=1u(x—2)+uy(y — 7).
= (&= 3)(gu" = g"g'uy) = (y =P = g"uy) = [(= = )9 = (y = D" = g"uy) = 0.

E. Berardini & J. Nardi
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Curves over Frobenius classical surfaces O®00

Frobenius non—classical curves with 1 = 1 are not components of Cs (1/2)

Aim: Understand the components of C' on a Frobenius classical surface.

Proposition [BN21]

Let C be a non—plane curve lying on a Frobenius classical surface S. Assume that C is Frobenius
non—classical with vy = 1. Then, for a generic point P € C, we have ®(P) ¢ TpS.

By contradiction, take P such that ®(P) € TpS. Since C' is Frobenius non—classical we have
A(1,2) = (z = B)[g'u" — 9" (ua + g'uy)] = (y = P + (2 = 2)g" =0
O(P)eTpS e z—Z2=1u(x—2)+uy(y — 7).

/1

= (x—2)(gu" —g"g'uy) — (y — ) (" — g"uy) = [(x — )" — (y — )] (" — g"uy) = 0.

Case 1: ¢’ = (y —7)/(z — 1)
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Curves over Frobenius classical surfaces O®00

Frobenius non—classical curves with 1 = 1 are not components of Cs (1/2)

Aim: Understand the components of C' on a Frobenius classical surface.

Proposition [BN21]

Let C be a non—plane curve lying on a Frobenius classical surface S. Assume that C is Frobenius
non—classical with vy = 1. Then, for a generic point P € C, we have ®(P) ¢ TpS.

By contradiction, take P such that ®(P) € TpS. Since C' is Frobenius non—classical we have
A(1,2) = (z = B)[g'u" — 9" (ua + g'uy)] = (y = P + (2 = 2)g" =0
O(P)eTpS e z—Z2=1u(x—2)+uy(y — 7).

/1

= (x—2)(gu" —g"g'uy) — (y — ) (" — g"uy) = [(x — )" — (y — )] (" — g"uy) = 0.

Case 1: ¢’ = (y —9)/(x — &) = v1 > 1 — contradiction. (C has vy =1.)
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Curves over Frobenius classical surfaces OO®0O

Frobenius non—classical curves with 1 = 1 are not components of Cs (2/2)

Case 2: u” — ¢"uy = uyy(g')* + 29 gy + Uyy = 0.
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Curves over Frobenius classical surfaces OO®0O

Frobenius non—classical curves with 1 = 1 are not components of Cs (2/2)

Case 2: u”’ — g"uy = uyy(g')* + 29'tyy + Uz = 0. Solving in the variable ¢’ gives

/

g =W—9)/(x—=2) or g = —uy,/uy,.
v (Case 1)
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Curves over Frobenius classical surfaces OO®0O

Frobenius non—classical curves with 1 = 1 are not components of Cs (2/2)

Case 2: u”’ — g"uy = uyy(g')* + 29'tyy + Uz = 0. Solving in the variable ¢’ gives
g=Wy—-9)/(x—) or ¢ = u/uy,.
v (Case 1)

F
Compute u'7): w! = g//uy'

u® = 9(3)uy + g”(“-l‘.u + .(//“,1/!/) = 9(3)uy

By recursion, we have that u(z, g(x))) = g\Wu, for every j > 2
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Curves over Frobenius classical surfaces OO®0O

Frobenius non—classical curves with 1 = 1 are not components of Cs (2/2)

Case 2: u”’ — g"uy = uyy(g')* + 29'tyy + Uz = 0. Solving in the variable ¢’ gives
g=Wy—-9)/(x—) or ¢ = u/uy,.
v (Case 1)

F
Compute u'7): w! = g//uy'

u® = 9(3)uy + g”(“-l‘.u + .(//“,1/!/) = 9(3)uy
By recursion, we have that u(z, g(x))) = gWu, for every j > 2 = ®(P) ¢ TpS. (Lemma)
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Curves over Frobenius classical surfaces OO®0O

Frobenius non—classical curves with 1 = 1 are not components of Cs (2/2)

Case 2: u”’ — g"uy = uyy(g')* + 29'tyy + Uz = 0. Solving in the variable ¢’ gives
g=Wy—-9)/(x—) or ¢ = u/uy,.
v (Case 1)

F
Compute u'7): w! = g//uy'

u® = g(g)uy + gH(“-I‘.u + .(//”,1/!/) = 9(3)uy
By recursion, we have that u(z, g(x))) = gWu, for every j > 2 = ®(P) ¢ TpS. (Lemma)

Conclusion: Frobenius non—classical curves with 1y = 1 are not components of Cg.
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Curves over Frobenius classical surfaces OO®0O

Frobenius non—classical curves with 1 = 1 are not components of Cs (2/2)

Case 2: u”’ — g"uy = uyy(g')* + 29'tyy + Uz = 0. Solving in the variable ¢’ gives

/

g =W—9)/(x—=2) or g = —uy,/uy,.
v (Case 1)

F
Compute u'7): w! = g//uy'

u® = 9(3)uy + g”(“-l‘.u + .(//“,1/!/) = 9(3)uy
By recursion, we have that u(z, g(x))) = gWu, for every j > 2 = ®(P) ¢ TpS. (Lemma)

Conclusion: Frobenius non—classical curves with 1y = 1 are not components of Cg.

What about v > 17

16 /19
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Curves over Frobenius classical surfaces OO®0O

Frobenius non—classical curves with 1 = 1 are not components of Cs (2/2)

Case 2: u”’ — g"uy = uyy(g')* + 29'tyy + Uz = 0. Solving in the variable ¢’ gives
g=Wy—-9)/(x—) or ¢ = u/uy,.
v (Case 1)

F
Compute u'7): w! = g//uy'

u® = 9(3)uy + g”(“-l‘.u + .(//“,1/!/) = 9(3)uy
By recursion, we have that u(z, g(x))) = gWu, for every j > 2 = ®(P) ¢ TpS. (Lemma)

Conclusion: Frobenius non—classical curves with 1y = 1 are not components of Cg.

What about vy > 17 1y > 1= ®(P) € THC c TpS

(Sad) Fact: Frobenius non—classical curves with v; > 1 are components of Cs.
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Curves over Frobenius classical surfaces OO®0O

Frobenius non—classical curves with 1 = 1 are not components of Cs (2/2)

Case 2: u”’ — g"uy = uyy(g')* + 29'tyy + Uz = 0. Solving in the variable ¢’ gives

/

g=Wy—-9)/(x—) or ¢ = u/uy,.
v (Case 1)

F
Compute u'7): w! = g//uy'

u® = g(g)uy + g”(“-l‘.u + f//”!/!/) = 9(3)uy
By recursion, we have that u(z, g(x))) = gWu, for every j > 2 = ®(P) ¢ TpS. (Lemma)
Conclusion: Frobenius non—classical curves with 1y = 1 are not components of Cg.
What about vy > 17 1y > 1= ®(P) € THC c TpS
(Sad) Fact: Frobenius non—classical curves with v; > 1 are components of Cy. However...
Proposition [BN21]

Assume that C' is Frobenius non—classical with v; > 1 and 6 < q. Then C'is plane.
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Curves over Frobenius classical surfaces OO0®
Frobenius classical components of Cs

Recap: A component of Cy falls in one of the following cases:
® 1 > 1: in this case, if it has § < ¢, it is plane;
® it is Frobenius classical, i.e. {11,102} = {1,2}.

Conjecture: Frobenius classical non—plane irreducible component of the Cy have degree § > ¢.
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Curves over Frobenius classical surfaces OO0®
Frobenius classical components of Cs

Recap: A component of Cy falls in one of the following cases:
® 1 > 1: in this case, if it has § < ¢, it is plane;
® it is Frobenius classical, i.e. {11,102} = {1,2}.
Conjecture: Frobenius classical non—plane irreducible component of the Cy have degree § > ¢.

Rephrased: Non—plane Frobenius classical curves with 6 < g are not components of Cg.
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Curves over Frobenius classical surfaces OOO®

Frobenius classical components of Cs

Recap: A component of Cy falls in one of the following cases:
® 1 > 1: in this case, if it has § < ¢, it is plane;
® it is Frobenius classical, i.e. {11,102} = {1,2}.
Conjecture: Frobenius classical non—plane irreducible component of the Cy have degree § > ¢.

Rephrased: Non—plane Frobenius classical curves with 6 < g are not components of Cg.

Example of surface with highly reducible Cg

Over F5, consider the surface S defined by

f= 2XoX2+2X3+2X2X2 + 2X0X1 X, + X2 X2 + 2X0 X3 + 3X, X2
+3X3 + 4X3X5 + XoX1X3 + X2 X3 + 2X1 Xo X3 + 2X3X;3
+3XoX2 +4X, X2 + X2 X2.

The curve Cg has degree 21 and is formed of 15 lines and one non—plane sextic (6 = ¢ + 1).

" " . —=
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Introduction OOOO Strategy OO0 Result and conclusion @O

Main result & Remarks

Theorem [BN21]

Let S be an irreducible Frobenius classical surface of degree d > 1 in P2. Let C be a non—plane
irreducible curve of degree 0 < ¢ lying on S. Suppose C' is Frobenius non—classical. Then

0(d+qg—1)
o, < NI

Under the conjecture, the bound also holds for Frobenius classical curves.

On the number of rational points on curves lying on a surface in
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Introduction OOOO Strategy OO0 over Frobenius classical surfaces OOOO Result and conclusion @O

Main result & Remarks

Theorem [BN21]

Let S be an irreducible Frobenius classical surface of degree d > 1 in P2. Let C be a non—plane
irreducible curve of degree 0 < ¢ lying on S. Suppose C' is Frobenius non—classical. Then

0(d+qg—1)
o, < NI

Under the conjecture, the bound also holds for Frobenius classical curves.

® The proof we presented works for absolutely irreducible curves. For a I, ~irreducible but
[F,~reducible C' of degree § < g and genus 7, we have #C(F,) <7 +1<d(d+q—1)/2.
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Main result & Remarks

Theorem [BN21]

Let S be an irreducible Frobenius classical surface of degree d > 1 in P2. Let C be a non—plane
irreducible curve of degree 0 < ¢ lying on S. Suppose C' is Frobenius non—classical. Then

0(d+qg—1)
o, < NI

Under the conjecture, the bound also holds for Frobenius classical curves.

® The proof we presented works for absolutely irreducible curves. For a I, ~irreducible but

[F,~reducible C' of degree § < g and genus 7, we have #C(F,) <7 +1<d(d+q—1)/2.

® A plane curve on a degree d surface has § < d = our bound holds for plane curves which
have at least one point P such that ®(P) ¢ TpC by Stohr—Voloch bound (6(6 + ¢ — 1)/2).
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Main result & Remarks

Theorem [BN21]

Let S be an irreducible Frobenius classical surface of degree d > 1 in P2. Let C be a non—plane
irreducible curve of degree 0 < ¢ lying on S. Suppose C' is Frobenius non—classical. Then

0(d+qg—1
pom,) < W2l
Under the conjecture, the bound also holds for Frobenius classical curves.

® The proof we presented works for absolutely irreducible curves. For a I, ~irreducible but

[F,~reducible C' of degree § < g and genus 7, we have #C(F,) <7 +1<d(d+q—1)/2.

® A plane curve on a degree d surface has § < d = our bound holds for plane curves which
have at least one point P such that ®(P) ¢ TpC by Stohr—Voloch bound (6(6 + ¢ — 1)/2).
* Embedding entails arithmetic and geometric constraints on a variety:
For 0 =11 and d = 5 over Fg, C has genus at most 17 and #C(F,) < 72.
In ManyPoints, maximum curves of genus 16 and 17 have 74 Fg—points.
These record curves cannot lie on a Frob. classical surface, unless being a component of C.

On the number of rational points on curves lying on a surface in p3 E. Berardini & J. Nardi 18/19
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Result and conclusion O®

What about C C S C P" for n > 47?

Our theorem essentially relies on the geometry of space curves and the intersection theory in P3.

Can we generalize our approach when C € S C P”, forn > 47
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Result and conclusion O®

What about C C S C P" for n > 47?

Our theorem essentially relies on the geometry of space curves and the intersection theory in P3.

Can we generalize our approach when C € S C P”, forn > 47

Consider the varieties in S x P"
e I'c ={(P,®(P)) € C? | P € C} the graph of ® restricted to the curve C,
o Ts={(P,Q)eSxP"|PecS QecTpS}.

Then C(F,) <~ T'e NTs = {P € C | ®(P) € TpS}.
Remark: Cg was the image of I'c N Tg € S x P2 under the 1°¢ projection.
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Result and conclusion O®

What about C C S C P" for n > 47?

Our theorem essentially relies on the geometry of space curves and the intersection theory in P3.

Can we generalize our approach when C € S C P”, forn > 47
Consider the varieties in S x P"
e I'c ={(P,®(P)) € C? | P € C} the graph of ® restricted to the curve C, (dim 1)
s Ts={(P,Q)eSxP"|PeS QeTpS} (dim 4)
Then C(F,) <~ T'e NTs = {P € C | ®(P) € TpS}.
Remark: Cg was the image of I'c N Tg € S x P2 under the 1°¢ projection.

I'c and Ts have complementary dimensions in S x P" (of dim n + 2) if and only if n = 3.
— bound the number of rational points on C' by a fraction of the intersection product [I'¢] - [Ts].

When n >4, [T'¢] - [Ts] = 0 while Te N Ts # @.
Idea: Fix this dimension incompatibility by blowing up 7g or S x S.
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Result and conclusion O®

What about C C S C P" for n > 47?

Our theorem essentially relies on the geometry of space curves and the intersection theory in P3.
Can we generalize our approach when C € S C P”, forn > 47
Consider the varieties in S x P"
e I'c ={(P,®(P)) € C? | P € C} the graph of ® restricted to the curve C, (dim 1)
s Ts={(P,Q)eSxP"|PeS QeTpS} (dim 4)
Then C(F,) <~ T'e NTs = {P € C | ®(P) € TpS}.
Remark: Cg was the image of I'c N Tg € S x P2 under the 1°¢ projection.

I'c and Ts have complementary dimensions in S x P" (of dim n + 2) if and only if n = 3.
— bound the number of rational points on C' by a fraction of the intersection product [I'¢] - [Ts].

When n >4, [T'¢] - [Ts] = 0 while Te N Ts # @.
Idea: Fix this dimension incompatibility by blowing up 7g or S x S.

Thank you for your attention!
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