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Riemann–Roch spaces: for what?

Construction of Algebraic Geometry codes from curves (see previous talk):

f ∈ L(D)

C((Pi)i, D)
def
= {(f (P1), f (P2), f (P3), . . . , f (Pn)) | f ∈ L(D)}

Riemann–Roch space

•
P3•

P2

•P1 •
Pn

Arithmetic operations on Jacobians of curves.
� K. Khuri–Makdisi, Mathematics of Computations, 2007.
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Riemann–Roch spaces: definition
A divisor on a curve C: D = ∑P∈C nPP, nP ∈ Z.

D=P1 + P2 + P3−Z

P2

P1 Z

P3

The Riemann–Roch space L(D) is the space of functions G
H in the

function field of C such that:
if nP < 0 then P must be a zero of G (of multiplicity > −nP),
if nP > 0 then P can be a zero of H (of multiplicity 6 nP),
G/H has no other poles outside the points P with nP > 0.

Here: Z must be a zero of G, the Pi can be zeros of H.

Riemann–Roch Theorem  dimension of L(D) = deg D + 1− g,
where the degree of a divisor is deg D = ∑P nP deg(P).
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Riemann–Roch space: toy example
Let C = P1, P = [0 : 1] and Q = [1 : 1]. Let D = P−Q, then

f ∈ L(D) ⇐⇒


f has a zero of order at least 1 at Q,
f can have a pole of order at most 1 at P,
f has not other poles outside P.

Denominator H passes through P : H(X, Y) ≡ 0 mod X
Numerator G passes through Q : G(X, Y) ≡ 0 mod X− 1

}
⇒ f =

X− 1
X

is a solution.

g = 0, deg D = 0 Riemann–Roch−−−−−−−−→
Theorem

dim L(D) = deg D + 1− g = 1.

⇒ f generates the space of solutions.

" No explicit method to compute a basis of L(D).
How do we solve the problem in general?
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Riemann–Roch problem: state of the art
Geometric Method: Arithmetic Method:
(Brill–Noether theory∼1874) (Ideals in function fields)
• Goppa, Le Brigand–Risler (80’s)
• Huang–Ierardi (90’s)
• Khuri–Makdisi (2007)
• Le Gluher–Spaenlehauer (2018)
• Abelard–Couvreur–Lecerf (2020)

• Hensel–Landberg (1902)
• Coates (1970)
• Davenport (1981)
• Hess (2001)

Ordinary/nodal curves: Las Vegas algorithm computing L(D) in sub–quadratic time.
.
Non–ordinary curves:

.
" no explicit complexity exponent!
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Brill–Noether method in a nutshell
Notations:

(H) = ∑P∈C ordP(H)P – divisor of the zeros of H with multiplicity,
D > D′  D−D′ = ∑ nPP with nP > 0 ∀P (D−D′ is effective),
We can alway write D = D+ −D− with D+, D− effective divisors.

Description of L(D) for C : F(X, Y, Z) = 0 a plane projective curve.

The non–zero elements are of the form Gi
H where:

How do we deal with singular points?
Ë The adjoint divisor A "encodes" the singular points of C with their multiplicities.

How do we represent divisors?
Ë Series expansions of multi–set representations ((Pi)i, ni) operations with negligible cost.

Elena Berardini Computing Riemann–Roch Spaces JC2 – 11/04/22 6 / 13



Brill–Noether method in a nutshell
Notations:

(H) = ∑P∈C ordP(H)P – divisor of the zeros of H with multiplicity,
D > D′  D−D′ = ∑ nPP with nP > 0 ∀P (D−D′ is effective),
We can alway write D = D+ −D− with D+, D− effective divisors.

Description of L(D) for C : F(X, Y, Z) = 0 a plane projective curve.

The non–zero elements are of the form Gi
H where:

H satisfies (H) > D+.
H vanishes at any singular point of C with ad hoc multiplicity.
deg Gi = deg H, Gi prime with F and (Gi) > (H)−D.

How do we deal with singular points?
Ë The adjoint divisor A "encodes" the singular points of C with their multiplicities.

How do we represent divisors?
Ë Series expansions of multi–set representations ((Pi)i, ni) operations with negligible cost.

Elena Berardini Computing Riemann–Roch Spaces JC2 – 11/04/22 6 / 13



Brill–Noether method in a nutshell
Notations:

(H) = ∑P∈C ordP(H)P – divisor of the zeros of H with multiplicity,
D > D′  D−D′ = ∑ nPP with nP > 0 ∀P (D−D′ is effective),
We can alway write D = D+ −D− with D+, D− effective divisors.

Description of L(D) for C : F(X, Y, Z) = 0 a plane projective curve.

The non–zero elements are of the form Gi
H where:

H satisfies (H) > D+.
H vanishes at any singular point of C with ad hoc multiplicity.
deg Gi = deg H, Gi prime with F and (Gi) > (H)−D.

How do we deal with singular points?

Ë The adjoint divisor A "encodes" the singular points of C with their multiplicities.

How do we represent divisors?
Ë Series expansions of multi–set representations ((Pi)i, ni) operations with negligible cost.

Elena Berardini Computing Riemann–Roch Spaces JC2 – 11/04/22 6 / 13



Brill–Noether method in a nutshell
Notations:

(H) = ∑P∈C ordP(H)P – divisor of the zeros of H with multiplicity,
D > D′  D−D′ = ∑ nPP with nP > 0 ∀P (D−D′ is effective),
We can alway write D = D+ −D− with D+, D− effective divisors.

Description of L(D) for C : F(X, Y, Z) = 0 a plane projective curve.

The non–zero elements are of the form Gi
H where:

H satisfies (H) > D+.
H vanishes at any singular point of C with ad hoc multiplicity.
deg Gi = deg H, Gi prime with F and (Gi) > (H)−D.

How do we deal with singular points?
Ë The adjoint divisor A "encodes" the singular points of C with their multiplicities.

How do we represent divisors?
Ë Series expansions of multi–set representations ((Pi)i, ni) operations with negligible cost.

Elena Berardini Computing Riemann–Roch Spaces JC2 – 11/04/22 6 / 13



Brill–Noether method in a nutshell
Notations:

(H) = ∑P∈C ordP(H)P – divisor of the zeros of H with multiplicity,
D > D′  D−D′ = ∑ nPP with nP > 0 ∀P (D−D′ is effective),
We can alway write D = D+ −D− with D+, D− effective divisors.

Description of L(D) for C : F(X, Y, Z) = 0 a plane projective curve.

The non–zero elements are of the form Gi
H where:

H satisfies (H) > D+.
H satisfies (H) > A.
deg Gi = deg H, Gi prime with F and (Gi) > (H)−D.

How do we deal with singular points?
Ë The adjoint divisor A "encodes" the singular points of C with their multiplicities.

How do we represent divisors?
Ë Series expansions of multi–set representations ((Pi)i, ni) operations with negligible cost.

Elena Berardini Computing Riemann–Roch Spaces JC2 – 11/04/22 6 / 13



Brill–Noether method in a nutshell
Notations:

(H) = ∑P∈C ordP(H)P – divisor of the zeros of H with multiplicity,
D > D′  D−D′ = ∑ nPP with nP > 0 ∀P (D−D′ is effective),
We can alway write D = D+ −D− with D+, D− effective divisors.

Description of L(D) for C : F(X, Y, Z) = 0 a plane projective curve.

The non–zero elements are of the form Gi
H where:

H satisfies (H) > D+.
H satisfies (H) > A.
deg Gi = deg H, Gi prime with F and (Gi) > (H)−D.

How do we deal with singular points?
Ë The adjoint divisor A "encodes" the singular points of C with their multiplicities.

How do we represent divisors?

Ë Series expansions of multi–set representations ((Pi)i, ni) operations with negligible cost.

Elena Berardini Computing Riemann–Roch Spaces JC2 – 11/04/22 6 / 13



Brill–Noether method in a nutshell
Notations:

(H) = ∑P∈C ordP(H)P – divisor of the zeros of H with multiplicity,
D > D′  D−D′ = ∑ nPP with nP > 0 ∀P (D−D′ is effective),
We can alway write D = D+ −D− with D+, D− effective divisors.

Description of L(D) for C : F(X, Y, Z) = 0 a plane projective curve.

The non–zero elements are of the form Gi
H where:

H satisfies (H) > D+.
H satisfies (H) > A.
deg Gi = deg H, Gi prime with F and (Gi) > (H)−D.

How do we deal with singular points?
Ë The adjoint divisor A "encodes" the singular points of C with their multiplicities.

How do we represent divisors?
Ë Series expansions of multi–set representations ((Pi)i, ni) operations with negligible cost.

Elena Berardini Computing Riemann–Roch Spaces JC2 – 11/04/22 6 / 13



Sketch of the algorithm

Input

C : F(X, Y, Z) = 0 a plane curve of degree δ, D a smooth divisor.

Step 1 Compute the adjoint divisor A.

Step 2 Compute the common denominator H.

Step 3 Compute (H)−D.

Step 4 Compute the numerators Gi.

Output

A basis of the Riemann–Roch space L(D) in terms of H and the Gi.
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The adjoint divisor via Puiseux series
Definition
Let P ∈ Sing(C). The local adjoint divisor is AP = −∑P|P valP

(
dx

Fy(x,y,1)

)
P .

Ordinary case: local factorisation of F allows writing of AP in a convenient manner. AP = (m− 1)∑m
i=1 Pi

Non–ordinary case: the nice local factorisation does not hold  
Let P ∈ Sing(C), w.l.o.g. P = (0 : 0 : 1). Then F locally factorises as

F(x, y, 1) = u(x, y)
m

∏
i=1

(y− ϕi(x))

with u ∈ K[[x, y]] invertible and the ϕi are the Puiseux series of F ∈ K[[x]][y].

{ϕ1, . . . , ϕm}
ζi a ei−th primitive−−−−−−−−−−−→

root of unity

Rational Puiseux Expansions
(Xi(t), Yi(t))i∈{1,...,s} of F(x, y, 1) ←→ Places of K(C) in the

chart z = 1

The local adjoint divisor becomes AP = −∑P|P valt
(

ete−1

Fy(X(t),Y(t),1)

)
P .

In practice: algorithm for computing Puiseux series  A computed with Õ(δ3) operations.
� A. Poteaux and M. Weimann, Annales Herni Lebesgue, 2021
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Non–ordinary case: the nice local factorisation does not hold  Puiseux series!
Let P ∈ Sing(C), w.l.o.g. P = (0 : 0 : 1). Then F locally factorises as

F(x, y, 1) = u(x, y)
m

∏
i=1

(y− ϕi(x)) = u(x, y)
s

∏
i=1

ei

∏
k=1

(
y−

∞

∑
j=n

βi,j(ζ
k
i (x/γi)

1/ei)j

)
with u ∈ K[[x, y]] invertible and the ϕi are the Puiseux series of F ∈ K[[x]][y].

{ϕ1, . . . , ϕm}
ζi a ei−th primitive−−−−−−−−−−−→

root of unity

Rational Puiseux Expansions
(Xi(t), Yi(t))i∈{1,...,s} of F(x, y, 1) ←→ Places of K(C) in the

chart z = 1

The local adjoint divisor becomes AP = −∑P|P valt
(

ete−1

Fy(X(t),Y(t),1)

)
P .

In practice: algorithm for computing Puiseux series  A computed with Õ(δ3) operations.
� A. Poteaux and M. Weimann, Annales Herni Lebesgue, 2021
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Sketch of the algorithm

Input

C : F(X, Y, Z) = 0 a plane curve of degree δ, D a smooth divisor.

Step 1 Compute the adjoint divisor A. Ë ← Õ(δ3)

Step 2 Compute the common denominator H.

Step 3 Compute (H)−D. Ë ← Õ((δ2 + deg D)2)

Step 4 Compute the numerators Gi. (similar to Step 2)

Output

A basis of the Riemann–Roch space L(D) in terms of H and the Gi.
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Find a denominator in practice: classical linear algebra

Condition (H) > A+ D+

 linear system with degA+ deg D+ ∼ δ2 + deg D+ equations.

 Gauss elimination costs Õ((deg(H)δ + δ2 + deg D+)ω) operations in K.

How big is deg(H)?

We showed that deg(H) =
⌈
(δ−1)(δ−2)+deg D+

δ

⌉
is enough

 denominator computed with Õ((δ2 + deg D+)ω) operations in K.

Second method:
structured linear algebra  same complexity exponent but hope for future improvements.

(see the paper)
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Sketch of the algorithm

Input

C : F(X, Y, Z) = 0 a plane curve of degree δ, D a smooth divisor .

Step 1 Compute the adjoint divisor A. Ë ← Õ(δ3)

Step 2 Compute the common denominator H. Ë ← Õ((δ2 + deg D+)ω)

Step 3 Compute (H)−D. Ë ← Õ((δ2 + deg D)2)

Step 4 Compute the numerators Gi (similar to Step 2).

Output

A basis of the Riemann–Roch space L(D) in terms of H and the Gi.

Theorem (Abelard, B–, Couvreur, Lecerf � Journal of Complexity 2022)

The algorithm computes L(D) with Õ((δ2 + deg D+)ω) operations in K.
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What to take away?

0. Implementation of AG codes  need of computing Riemann–Roch space L(D).

1. Brill–Noether method  
necessary and sufficient conditions on G and H such that
G/H ∈ L(D).

2. Puiseux series  handling the non–ordinary singular points of the curve.

3. Linear Algebra  computing H and G in practice.

Main result
We can compute Riemann–Roch spaces of any
plane curve with a good complexity exponent.
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Future questions
.

Computing Riemann–Roch spaces of non–ordinary curves
in positive “small” characteristic.
Main obstacle: find an alternative tool to Puiseux series.

Implementing the algorithm.

Improving the complexity exponent in the non–ordinary case.
(Sub–quadratic as in the ordinary case?)

Main obstacle: linear algebra.

Can we develop a "Brill–Noether" theory
for computing Riemann–Roch spaces of surfaces?

Thank you for your attention!
Questions? e.berardini@tue.nl
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