Computing Riemann-Roch spaces for Algebraic Geometry codes

Elena Berardini
Eindhoven University of Technology

with S. Abelard (Thales), A. Couvreur (Inria), G. Lecerf (LIX)
Project funded by the Agence de I'Innovation de Défense

* EuroTechPostdoc2 Progranme

Journées Codes et Cryptographie $11^{\text {th }}$ April 2022

Hendaye

- Construction of Algebraic Geometry codes from curves (see previous talk):

- Construction of Algebraic Geometry codes from curves (see previous talk):

- Arithmetic operations on Jacobians of curves.

E K. Khuri-Makdisi, Mathematics of Computations, 2007.

Riemann-Roch spaces: definition

A divisor on a curve $\mathcal{C}: D=\sum_{P \in \mathcal{C}} n_{P} P, n_{P} \in \mathbb{Z}$.

The Riemann-Roch space $L(D)$ is the space of functions $\frac{G}{H}$ in the function field of \mathcal{C} such that:

- if $n_{P}<0$ then P must be a zero of G (of multiplicity $\geqslant-n_{P}$),
- if $n_{P}>0$ then P can be a zero of H (of multiplicity $\leqslant n_{P}$),
- G/H has no other poles outside the points P with $n_{P}>0$.

Here: Z must be a zero of G, the P_{i} can be zeros of H.

Riemann-Roch spaces: definition

A divisor on a curve $\mathcal{C}: D=\sum_{P \in \mathcal{C}} n_{P} P, n_{P} \in \mathbb{Z}$.

The Riemann-Roch space $L(D)$ is the space of functions $\frac{G}{H}$ in the function field of \mathcal{C} such that:

- if $n_{P}<0$ then P must be a zero of G (of multiplicity $\geqslant-n_{P}$),

■ if $n_{P}>0$ then P can be a zero of H (of multiplicity $\leqslant n_{P}$),

- G/H has no other poles outside the points P with $n_{P}>0$.

Here: Z must be a zero of G, the P_{i} can be zeros of H.

Riemann-Roch Theorem \rightsquigarrow dimension of $L(D)=\operatorname{deg} D+1-g$, where the degree of a divisor is $\operatorname{deg} D=\sum_{P} n_{P} \operatorname{deg}(P)$.

Riemann-Roch space: toy example

Let $\mathcal{C}=\mathbb{P}^{1}, P=[0: 1]$ and $Q=[1: 1]$. Let $D=P-Q$, then

$$
f \in L(D) \Longleftrightarrow\left\{\begin{array}{l}
\mathrm{f} \text { has a zero of order at least } 1 \text { at } Q, \\
\mathrm{f} \text { can have a pole of order at most } 1 \text { at } P, \\
\mathrm{f} \text { has not other poles outside } P .
\end{array}\right.
$$

Riemann-Roch space: toy example

Let $\mathcal{C}=\mathbb{P}^{1}, P=[0: 1]$ and $Q=[1: 1]$. Let $D=P-Q$, then

$$
f \in L(D) \Longleftrightarrow\left\{\begin{array}{l}
\mathrm{f} \text { has a zero of order at least } 1 \text { at } Q, \\
\mathrm{f} \text { can have a pole of order at most } 1 \text { at } P, \\
\mathrm{f} \text { has not other poles outside } P .
\end{array}\right.
$$

$\left.\begin{array}{l}\text { Denominator } H \text { passes through } P: H(X, Y) \equiv 0 \quad \bmod X \\ \quad \text { Numerator } G \text { passes through } Q: G(X, Y) \equiv 0 \quad \bmod X-1\end{array}\right\} \Rightarrow f=\frac{X-1}{X}$ is a solution.

Riemann-Roch space: toy example

Let $\mathcal{C}=\mathbb{P}^{1}, P=[0: 1]$ and $Q=[1: 1]$. Let $D=P-Q$, then

$$
f \in L(D) \Longleftrightarrow\left\{\begin{array}{l}
\mathrm{f} \text { has a zero of order at least } 1 \text { at } Q, \\
\mathrm{f} \text { can have a pole of order at most } 1 \text { at } P, \\
\mathrm{f} \text { has not other poles outside } P .
\end{array}\right.
$$

$\left.\begin{array}{l}\text { Denominator } H \text { passes through } P: H(X, Y) \equiv 0 \quad \bmod X \\ \quad \text { Numerator } G \text { passes through } Q: G(X, Y) \equiv 0\end{array} \quad \bmod X-1\right\} \Rightarrow f=\frac{X-1}{X}$ is a solution.

$$
\begin{aligned}
g=0, \operatorname{deg} D & =0 \xrightarrow[\text { Theorem }]{\text { Riemann-Roch }} \operatorname{dim} L(D)=\operatorname{deg} D+1-g=1 . \\
& \Rightarrow f \text { generates the space of solutions. }
\end{aligned}
$$

Riemann-Roch space: toy example

Let $\mathcal{C}=\mathbb{P}^{1}, P=[0: 1]$ and $Q=[1: 1]$. Let $D=P-Q$, then

$$
f \in L(D) \Longleftrightarrow\left\{\begin{array}{l}
\mathrm{f} \text { has a zero of order at least } 1 \text { at } Q, \\
\mathrm{f} \text { can have a pole of order at most } 1 \text { at } P, \\
\mathrm{f} \text { has not other poles outside } P .
\end{array}\right.
$$

$\left.\begin{array}{l}\text { Denominator } H \text { passes through } P: H(X, Y) \equiv 0 \\ \quad \text { Numerator } G \text { passes through } Q: G(X, Y) \equiv 0 \\ \bmod X-1\end{array}\right\} \Rightarrow f=\frac{X-1}{X}$ is a solution.

$$
\begin{aligned}
g=0, \operatorname{deg} D & =0 \xrightarrow[\text { Theorem }]{\text { Riemann-Roch }} \operatorname{dim} L(D)=\operatorname{deg} D+1-g=1 . \\
& \Rightarrow f \text { generates the space of solutions. }
\end{aligned}
$$

\triangle No explicit method to compute a basis of $L(D)$.
How do we solve the problem in general?

Riemann-Roch problem: state of the art

Geometric Method:

(Brill-Noether theory~1874)

- Goppa, Le Brigand-Risler (80's)
- Huang-lerardi (90's)
- Khuri-Makdisi (2007)
- Le Gluher-Spaenlehauer (2018)
- Abelard-Couvreur-Lecerf (2020)

Arithmetic Method:

(Ideals in function fields)

- Hensel-Landberg (1902)
- Coates (1970)
- Davenport (1981)
- Hess (2001)

Riemann-Roch problem: state of the art

Geometric Method:

(Brill-Noether theory~1874)

- Goppa, Le Brigand-Risler (80's)
- Huang-lerardi (90's)
- Khuri-Makdisi (2007)
- Le Gluher-Spaenlehauer (2018)
- Abelard-Couvreur-Lecerf (2020)

Arithmetic Method:

(Ideals in function fields)

- Hensel-Landberg (1902)
- Coates (1970)
- Davenport (1981)
- Hess (2001)

Ordinary/nodal curves: Las Vegas algorithm computing $L(D)$ in sub-quadratic time.
Non-ordinary curves: $₫$ no explicit complexity exponent!

Brill-Noether method in a nutshell

Notations:

- (H) $=\sum_{P \in \mathcal{C}} \operatorname{ord}_{P}(H) P$ - divisor of the zeros of H with multiplicity,
- $D \geqslant D^{\prime} \rightsquigarrow D-D^{\prime}=\sum n_{P} P$ with $n_{P} \geqslant 0 \forall P\left(D-D^{\prime}\right.$ is effective $)$,
- We can alway write $D=D_{+}-D_{-}$with D_{+}, D_{-}effective divisors.

Brill-Noether method in a nutshell

Notations:

- (H) $=\sum_{P \in \mathcal{C}} \operatorname{ord}_{P}(H) P$ - divisor of the zeros of H with multiplicity,
- $D \geqslant D^{\prime} \rightsquigarrow D-D^{\prime}=\sum n_{P} P$ with $n_{P} \geqslant 0 \forall P\left(D-D^{\prime}\right.$ is effective $)$,
- We can alway write $D=D_{+}-D_{-}$with D_{+}, D_{-}effective divisors.

Description of $L(D)$ for $\mathcal{C}: F(X, Y, Z)=0$ a plane projective curve.
The non-zero elements are of the form $\frac{G_{i}}{H}$ where:

- H satisfies $(H) \geqslant D_{+}$.
- H vanishes at any singular point of \mathcal{C} with ad hoc multiplicity.
- $\operatorname{deg} G_{i}=\operatorname{deg} H, G_{i}$ prime with F and $\left(G_{i}\right) \geqslant(H)-D$.

Brill-Noether method in a nutshell

Notations:

- (H) $=\sum_{P \in \mathcal{C}} \operatorname{ord}_{P}(H) P$ - divisor of the zeros of H with multiplicity,
- $D \geqslant D^{\prime} \rightsquigarrow D-D^{\prime}=\sum n_{P} P$ with $n_{P} \geqslant 0 \forall P\left(D-D^{\prime}\right.$ is effective $)$,
- We can alway write $D=D_{+}-D_{-}$with D_{+}, D_{-}effective divisors.

Description of $L(D)$ for $\mathcal{C}: F(X, Y, Z)=0$ a plane projective curve.
The non-zero elements are of the form $\frac{G_{i}}{H}$ where:

- H satisfies $(H) \geqslant D_{+}$.
- H vanishes at any singular point of \mathcal{C} with ad hoc multiplicity.
- $\operatorname{deg} G_{i}=\operatorname{deg} H, G_{i}$ prime with F and $\left(G_{i}\right) \geqslant(H)-D$.

How do we deal with singular points?

Brill-Noether method in a nutshell

Notations:

- (H) $=\sum_{P \in \mathcal{C}} \operatorname{ord}_{P}(H) P$ - divisor of the zeros of H with multiplicity,
- $D \geqslant D^{\prime} \rightsquigarrow D-D^{\prime}=\sum n_{P} P$ with $n_{P} \geqslant 0 \forall P\left(D-D^{\prime}\right.$ is effective $)$,
- We can alway write $D=D_{+}-D_{-}$with D_{+}, D_{-}effective divisors.

Description of $L(D)$ for $\mathcal{C}: F(X, Y, Z)=0$ a plane projective curve.
The non-zero elements are of the form $\frac{G_{i}}{H}$ where:

- H satisfies $(H) \geqslant D_{+}$.
- H vanishes at any singular point of \mathcal{C} with ad hoc multiplicity.
- $\operatorname{deg} G_{i}=\operatorname{deg} H, G_{i}$ prime with F and $\left(G_{i}\right) \geqslant(H)-D$.

How do we deal with singular points?
\checkmark The adjoint divisor \mathcal{A} "encodes" the singular points of \mathcal{C} with their multiplicities.

Brill-Noether method in a nutshell

Notations:

- (H) $=\sum_{P \in \mathcal{C}} \operatorname{ord}_{P}(H) P$ - divisor of the zeros of H with multiplicity,
- $D \geqslant D^{\prime} \rightsquigarrow D-D^{\prime}=\sum n_{P} P$ with $n_{P} \geqslant 0 \forall P\left(D-D^{\prime}\right.$ is effective $)$,
- We can alway write $D=D_{+}-D_{-}$with D_{+}, D_{-}effective divisors.

Description of $L(D)$ for $\mathcal{C}: F(X, Y, Z)=0$ a plane projective curve.
The non-zero elements are of the form $\frac{G_{i}}{H}$ where:

- H satisfies $(H) \geqslant D_{+}$.
- H satisfies $(H) \geqslant \mathcal{A}$.
- $\operatorname{deg} G_{i}=\operatorname{deg} H, G_{i}$ prime with F and $\left(G_{i}\right) \geqslant(H)-D$.

How do we deal with singular points?
\checkmark The adjoint divisor \mathcal{A} "encodes" the singular points of \mathcal{C} with their multiplicities.

Brill-Noether method in a nutshell

Notations:

- (H) $=\sum_{P \in \mathcal{C}} \operatorname{ord}_{P}(H) P$ - divisor of the zeros of H with multiplicity,
- $D \geqslant D^{\prime} \rightsquigarrow D-D^{\prime}=\sum n_{P} P$ with $n_{P} \geqslant 0 \forall P\left(D-D^{\prime}\right.$ is effective $)$,
- We can alway write $D=D_{+}-D_{-}$with D_{+}, D_{-}effective divisors.

Description of $L(D)$ for $\mathcal{C}: F(X, Y, Z)=0$ a plane projective curve.
The non-zero elements are of the form $\frac{G_{i}}{H}$ where:

- H satisfies $(H) \geqslant D_{+}$.
- H satisfies $(H) \geqslant \mathcal{A}$.
- $\operatorname{deg} G_{i}=\operatorname{deg} H, G_{i}$ prime with F and $\left(G_{i}\right) \geqslant(H)-D$.

How do we deal with singular points?
\checkmark The adjoint divisor \mathcal{A} "encodes" the singular points of \mathcal{C} with their multiplicities.
How do we represent divisors?

Brill-Noether method in a nutshell

Notations:

■ $(H)=\sum_{P \in \mathcal{C}} \operatorname{ord}_{P}(H) P$ - divisor of the zeros of H with multiplicity,
■ $D \geqslant D^{\prime} \rightsquigarrow D-D^{\prime}=\sum n_{P} P$ with $n_{P} \geqslant 0 \forall P\left(D-D^{\prime}\right.$ is effective $)$,
■ We can alway write $D=D_{+}-D_{-}$with D_{+}, D_{-}effective divisors.
Description of $L(D)$ for $\mathcal{C}: F(X, Y, Z)=0$ a plane projective curve.
The non-zero elements are of the form $\frac{G_{i}}{H}$ where:

- H satisfies $(H) \geqslant D_{+}$.
- H satisfies $(H) \geqslant \mathcal{A}$.
$\square \operatorname{deg} G_{i}=\operatorname{deg} H, G_{i}$ prime with F and $\left(G_{i}\right) \geqslant(H)-D$.

How do we deal with singular points?
\checkmark The adjoint divisor \mathcal{A} "encodes" the singular points of \mathcal{C} with their multiplicities.
How do we represent divisors?
Series expansions of multi-set representations $\left(\left(P_{i}\right)_{i}, n_{i}\right) \rightsquigarrow$ operations with negligible cost.

Sketch of the algorithm

Input
$\mathcal{C}: F(X, Y, Z)=0$ a plane curve of degree δ, D a smooth divisor.
Step 1 Compute the adjoint divisor \mathcal{A}.
Step 2 Compute the common denominator H.
Step 3 Compute $(H)-D$.
Step 4 Compute the numerators G_{i}.

Output

A basis of the Riemann-Roch space $L(D)$ in terms of H and the G_{i}.

Sketch of the algorithm

Input
$\mathcal{C}: F(X, Y, Z)=0$ a plane curve of degree δ, D a smooth divisor.
Step 1 Compute the adjoint divisor \mathcal{A}.
Step 2 Compute the common denominator H.
Step 3 Compute $(H)-D . \checkmark \leftarrow \tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D\right)^{2}\right)$
Step 4 Compute the numerators G_{i}.

Output

A basis of the Riemann-Roch space $L(D)$ in terms of H and the G_{i}.

Sketch of the algorithm

Input
$\mathcal{C}: F(X, Y, Z)=0$ a plane curve of degree δ, D a smooth divisor.
Step 1 Compute the adjoint divisor \mathcal{A}.
Step 2 Compute the common denominator H.
Step 3 Compute $(H)-D . \checkmark \leftarrow \tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D\right)^{2}\right)$
Step 4 Compute the numerators G_{i}. (similar to Step 2)

Output

A basis of the Riemann-Roch space $L(D)$ in terms of H and the G_{i}.

Sketch of the algorithm

Input
$\mathcal{C}: F(X, Y, Z)=0$ a plane curve of degree δ, D a smooth divisor.
Step 1 Compute the adjoint divisor \mathcal{A}.
Step 2 Compute the common denominator H.
Step 3 Compute $(H)-D . \checkmark \leftarrow \tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D\right)^{2}\right)$
Step 4 Compute the numerators G_{i}. (similar to Step 2)

Output

A basis of the Riemann-Roch space $L(D)$ in terms of H and the G_{i}.

The adjoint divisor via Puiseux series

Definition

Let $P \in \operatorname{Sing}(\mathcal{C})$. The local adjoint divisor is $\mathcal{A}_{P}=-\sum_{\mathcal{P} \mid P} \operatorname{val}_{\mathcal{P}}\left(\frac{d x}{F_{y}(x, y, 1)}\right) \mathcal{P}$.

The adjoint divisor via Puiseux series

Definition

Let $P \in \operatorname{Sing}(\mathcal{C})$. The local adjoint divisor is $\mathcal{A}_{P}=-\sum_{\mathcal{P} \mid P} \operatorname{val}_{\mathcal{P}}\left(\frac{d x}{F_{y}(x, y, 1)}\right) \mathcal{P}$.
Ordinary case: local factorisation of F allows writing of \mathcal{A}_{P} in a convenient manner. $\mathcal{A}_{P}=(m-1) \sum_{i=1}^{m} \mathcal{P}_{i}$

The adjoint divisor via Puiseux series

Definition

Let $P \in \operatorname{Sing}(\mathcal{C})$. The local adjoint divisor is $\mathcal{A}_{P}=-\sum_{\mathcal{P} \mid P} \operatorname{val}_{\mathcal{P}}\left(\frac{d x}{F_{y}(x, y, 1)}\right) \mathcal{P}$.
Ordinary case: local factorisation of F allows writing of \mathcal{A}_{P} in a convenient manner. $\mathcal{A}_{P}=(m-1) \sum_{i=1}^{m} \mathcal{P}_{i}$ Non-ordinary case: the nice local factorisation does not hold \rightsquigarrow need to find another tool.

The adjoint divisor via Puiseux series

Definition

Let $P \in \operatorname{Sing}(\mathcal{C})$. The local adjoint divisor is $\mathcal{A}_{P}=-\sum_{\mathcal{P} \mid P} \operatorname{val}_{\mathcal{P}}\left(\frac{d x}{F_{y}(x, y, 1)}\right) \mathcal{P}$.
Ordinary case: local factorisation of F allows writing of \mathcal{A}_{P} in a convenient manner. $\mathcal{A}_{P}=(m-1) \sum_{i=1}^{m} \mathcal{P}_{i}$ Non-ordinary case: the nice local factorisation does not hold \rightsquigarrow Puiseux series!

The adjoint divisor via Puiseux series

Definition

Let $P \in \operatorname{Sing}(\mathcal{C})$. The local adjoint divisor is $\mathcal{A}_{P}=-\sum_{\mathcal{P} \mid P} \operatorname{val}_{\mathcal{P}}\left(\frac{d x}{F_{y}(x, y, 1)}\right) \mathcal{P}$.
Ordinary case: local factorisation of F allows writing of \mathcal{A}_{P} in a convenient manner. $\mathcal{A}_{P}=(m-1) \sum_{i=1}^{m} \mathcal{P}_{i}$ Non-ordinary case: the nice local factorisation does not hold \rightsquigarrow Puiseux series!
Let $P \in \operatorname{Sing}(\mathcal{C})$, w.l.o.g. $P=(0: 0: 1)$. Then F locally factorises as

$$
F(x, y, 1)=u(x, y) \prod_{i=1}^{m}\left(y-\varphi_{i}(x)\right)
$$

with $u \in \mathbb{K}[[x, y]]$ invertible and the φ_{i} are the Puiseux series of $F \in \overline{\mathbb{K}}[[x]][y]$.

The adjoint divisor via Puiseux series

Definition

Let $P \in \operatorname{Sing}(\mathcal{C})$. The local adjoint divisor is $\mathcal{A}_{P}=-\sum_{\mathcal{P} \mid P} \operatorname{val}_{\mathcal{P}}\left(\frac{d x}{F_{y}(x, y, 1)}\right) \mathcal{P}$.
Ordinary case: local factorisation of F allows writing of \mathcal{A}_{P} in a convenient manner. $\mathcal{A}_{P}=(m-1) \sum_{i=1}^{m} \mathcal{P}_{i}$ Non-ordinary case: the nice local factorisation does not hold \rightsquigarrow Puiseux series!
Let $P \in \operatorname{Sing}(\mathcal{C})$, w.l.o.g. $P=(0: 0: 1)$. Then F locally factorises as

$$
F(x, y, 1)=u(x, y) \prod_{i=1}^{m}\left(y-\varphi_{i}(x)\right)
$$

with $u \in \mathbb{K}[[x, y]]$ invertible and the φ_{i} are the Puiseux series of $F \in \overline{\mathbb{K}}[[x]][y]$.

$$
\left\{\varphi_{1}, \ldots, \varphi_{m}\right\}
$$

The adjoint divisor via Puiseux series

Definition

Let $P \in \operatorname{Sing}(\mathcal{C})$. The local adjoint divisor is $\mathcal{A}_{P}=-\sum_{\mathcal{P} \mid P} \operatorname{val}_{\mathcal{P}}\left(\frac{d x}{F_{y}(x, y, 1)}\right) \mathcal{P}$.
Ordinary case: local factorisation of F allows writing of \mathcal{A}_{P} in a convenient manner. $\mathcal{A}_{P}=(m-1) \sum_{i=1}^{m} \mathcal{P}_{i}$ Non-ordinary case: the nice local factorisation does not hold \rightsquigarrow Puiseux series!
Let $P \in \operatorname{Sing}(\mathcal{C})$, w.l.o.g. $P=(0: 0: 1)$. Then F locally factorises as

$$
F(x, y, 1)=u(x, y) \prod_{i=1}^{m}\left(y-\varphi_{i}(x)\right)=u(x, y) \prod_{i=1}^{s} \prod_{k=1}^{e_{i}}\left(y-\sum_{j=n}^{\infty} \beta_{i, j}\left(\zeta_{i}^{k}\left(x / \gamma_{i}\right)^{1 / e_{i}}\right)^{j}\right)
$$

with $u \in \mathbb{K}[[x, y]]$ invertible and the φ_{i} are the Puiseux series of $F \in \overline{\mathbb{K}}[[x]][y]$.

$$
\left\{\varphi_{1}, \ldots, \varphi_{m}\right\} \xrightarrow[\text { root of unity }]{\zeta_{i} \text { a } e_{i}-\text { th primitive }}
$$

Rational Puiseux Expansions

$$
\left(X_{i}(t), Y_{i}(t)\right)_{i \in\{1, \ldots, s\}} \text { of } F(x, y, 1)
$$

The adjoint divisor via Puiseux series

Definition

Let $P \in \operatorname{Sing}(\mathcal{C})$. The local adjoint divisor is $\mathcal{A}_{P}=-\sum_{\mathcal{P} \mid P} \operatorname{val}_{\mathcal{P}}\left(\frac{d x}{F_{y}(x, y, 1)}\right) \mathcal{P}$.
Ordinary case: local factorisation of F allows writing of \mathcal{A}_{P} in a convenient manner. $\mathcal{A}_{P}=(m-1) \sum_{i=1}^{m} \mathcal{P}_{i}$ Non-ordinary case: the nice local factorisation does not hold \rightsquigarrow Puiseux series!
Let $P \in \operatorname{Sing}(\mathcal{C})$, w.l.o.g. $P=(0: 0: 1)$. Then F locally factorises as

$$
F(x, y, 1)=u(x, y) \prod_{i=1}^{m}\left(y-\varphi_{i}(x)\right)=u(x, y) \prod_{i=1}^{s} \prod_{k=1}^{e_{i}}\left(y-\sum_{j=n}^{\infty} \beta_{i, j}\left(\zeta_{i}^{k}\left(x / \gamma_{i}\right)^{1 / e_{i}}\right)^{j}\right)
$$

with $u \in \mathbb{K}[[x, y]]$ invertible and the φ_{i} are the Puiseux series of $F \in \overline{\mathbb{K}}[[x]][y]$.

$$
\left\{\varphi_{1}, \ldots, \varphi_{m}\right\} \xrightarrow[\text { root of unity }]{\zeta_{i} \text { a } e_{i} \text {-th primitive }}
$$

Rational Puiseux Expansions $\left(X_{i}(t), Y_{i}(t)\right)_{i \in\{1, \ldots, s\}}$ of $F(x, y, 1)$

Places of $\overline{\mathbb{K}}(\mathcal{C})$ in the chart $z=1$

The adjoint divisor via Puiseux series

Definition

Let $P \in \operatorname{Sing}(\mathcal{C})$. The local adjoint divisor is $\mathcal{A}_{P}=-\sum_{\mathcal{P} \mid P} \operatorname{val}_{\mathcal{P}}\left(\frac{d x}{F_{y}(x, y, 1)}\right) \mathcal{P}$.
Ordinary case: local factorisation of F allows writing of \mathcal{A}_{P} in a convenient manner. $\mathcal{A}_{P}=(m-1) \sum_{i=1}^{m} \mathcal{P}_{i}$ Non-ordinary case: the nice local factorisation does not hold \rightsquigarrow Puiseux series!
Let $P \in \operatorname{Sing}(\mathcal{C})$, w.l.o.g. $P=(0: 0: 1)$. Then F locally factorises as

$$
F(x, y, 1)=u(x, y) \prod_{i=1}^{m}\left(y-\varphi_{i}(x)\right)=u(x, y) \prod_{i=1}^{s} \prod_{k=1}^{e_{i}}\left(y-\sum_{j=n}^{\infty} \beta_{i, j}\left(\zeta_{i}^{k}\left(x / \gamma_{i}\right)^{1 / e_{i}}\right)^{j}\right)
$$

with $u \in \mathbb{K}[[x, y]]$ invertible and the φ_{i} are the Puiseux series of $F \in \overline{\mathbb{K}}[[x]][y]$.

$$
\left\{\varphi_{1}, \ldots, \varphi_{m}\right\} \xrightarrow[\text { root of unity }]{\zeta_{i} \text { a } e_{i} \text {-th primitive }} \quad \begin{gathered}
\text { Rational Puiseux Expansions } \\
\left(X_{i}(t), Y_{i}(t)\right)_{i \in\{1, \ldots, s\}} \text { of } F(x, y, 1)
\end{gathered} \longleftrightarrow \quad \begin{gathered}
\text { Places of } \overline{\mathbb{K}}(\mathcal{C}) \text { in } \\
\text { chart } z=1
\end{gathered} \text { the }
$$

The local adjoint divisor becomes $\mathcal{A}_{P}=-\sum_{\mathcal{P} \mid P} \operatorname{val}_{t}\left(\frac{e t^{e-1}}{F_{y}(X(t), Y(t), 1)}\right) \mathcal{P}$.

The adjoint divisor via Puiseux series

Definition

Let $P \in \operatorname{Sing}(\mathcal{C})$. The local adjoint divisor is $\mathcal{A}_{P}=-\sum_{\mathcal{P} \mid P} \operatorname{val}_{\mathcal{P}}\left(\frac{d x}{F_{y}(x, y, 1)}\right) \mathcal{P}$.
Ordinary case: local factorisation of F allows writing of \mathcal{A}_{P} in a convenient manner. $\mathcal{A}_{P}=(m-1) \sum_{i=1}^{m} \mathcal{P}_{i}$ Non-ordinary case: the nice local factorisation does not hold \rightsquigarrow Puiseux series!
Let $P \in \operatorname{Sing}(\mathcal{C})$, w.l.o.g. $P=(0: 0: 1)$. Then F locally factorises as

$$
F(x, y, 1)=u(x, y) \prod_{i=1}^{m}\left(y-\varphi_{i}(x)\right)=u(x, y) \prod_{i=1}^{s} \prod_{k=1}^{e_{i}}\left(y-\sum_{j=n}^{\infty} \beta_{i, j}\left(\zeta_{i}^{k}\left(x / \gamma_{i}\right)^{1 / e_{i}}\right)^{j}\right)
$$

with $u \in \mathbb{K}[[x, y]]$ invertible and the φ_{i} are the Puiseux series of $F \in \overline{\mathbb{K}}[[x]][y]$.

$$
\left\{\varphi_{1}, \ldots, \varphi_{m}\right\} \xrightarrow[\text { root of unity }]{\zeta_{i} \text { a } e_{i} \text {-th primitive }} \quad \begin{gathered}
\text { Rational Puiseux Expansions } \\
\left(X_{i}(t), Y_{i}(t)\right)_{i \in\{1, \ldots, s\}} \text { of } F(x, y, 1)
\end{gathered} \longleftrightarrow \quad \begin{gathered}
\text { Places of } \overline{\mathbb{K}}(\mathcal{C}) \text { in } \\
\text { chart } z=1
\end{gathered} \text { the }
$$

The local adjoint divisor becomes $\mathcal{A}_{P}=-\sum_{\mathcal{P} \mid P} \operatorname{val}_{t}\left(\frac{e t^{e-1}}{F_{y}(X(t), Y(t), 1)}\right) \mathcal{P}$.
In practice: algorithm for computing Puiseux series $\rightsquigarrow \mathcal{A}$ computed with $\tilde{O}\left(\delta^{3}\right)$ operations.

$$
\text { E A. Poteaux and M. Weimann, Annales Herni Lebesgue, } 2021
$$

Sketch of the algorithm

Input
$\mathcal{C}: F(X, Y, Z)=0$ a plane curve of degree δ, D a smooth divisor.

Step 1 Compute the adjoint divisor \mathcal{A}. $\checkmark \leftarrow \tilde{O}\left(\delta^{3}\right)$
Step 2 Compute the common denominator H.
Step 3 Compute $(H)-D . \vee \leftarrow \tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D\right)^{2}\right)$
Step 4 Compute the numerators G_{i}. (similar to Step 2)

Output

A basis of the Riemann-Roch space $L(D)$ in terms of H and the G_{i}.

Sketch of the algorithm

Input
$\mathcal{C}: F(X, Y, Z)=0$ a plane curve of degree δ, D a smooth divisor.

Step 1 Compute the adjoint divisor \mathcal{A}. $\checkmark \leftarrow \tilde{O}\left(\delta^{3}\right)$
Step 2 Compute the common denominator H.
Step 3 Compute $(H)-D . \vee \leftarrow \tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D\right)^{2}\right)$
Step 4 Compute the numerators G_{i}. (similar to Step 2)

Output

A basis of the Riemann-Roch space $L(D)$ in terms of H and the G_{i}.
\rightsquigarrow linear system with $\operatorname{deg} \mathcal{A}+\operatorname{deg} D_{+} \sim \delta^{2}+\operatorname{deg} D_{+}$equations.
\rightsquigarrow Gauss elimination costs $\tilde{O}\left(\left(\operatorname{deg}(H) \delta+\delta^{2}+\operatorname{deg} D_{+}\right)^{\omega}\right)$ operations in \mathbb{K}.

$$
\text { Condition }(H) \geqslant \mathcal{A}+D_{+}
$$

\rightsquigarrow linear system with $\operatorname{deg} \mathcal{A}+\operatorname{deg} D_{+} \sim \delta^{2}+\operatorname{deg} D_{+}$equations.
\rightsquigarrow Gauss elimination costs $\tilde{O}\left(\left(\operatorname{deg}(H) \delta+\delta^{2}+\operatorname{deg} D_{+}\right)^{\omega}\right)$ operations in \mathbb{K}.
How big is $\operatorname{deg}(H)$?
We showed that $\operatorname{deg}(H)=\left\lceil\frac{(\delta-1)(\delta-2)+\operatorname{deg} D_{+}}{\delta}\right\rceil$ is enough
\rightsquigarrow denominator computed with $\tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D_{+}\right)^{\omega}\right)$ operations 1 in \mathbb{K}.

[^0]
Find a denominator in practice: classical linear algebra

$$
\text { Condition }(H) \geqslant \mathcal{A}+D_{+}
$$

\rightsquigarrow linear system with $\operatorname{deg} \mathcal{A}+\operatorname{deg} D_{+} \sim \delta^{2}+\operatorname{deg} D_{+}$equations.
\rightsquigarrow Gauss elimination costs $\tilde{O}\left(\left(\operatorname{deg}(H) \delta+\delta^{2}+\operatorname{deg} D_{+}\right)^{\omega}\right)$ operations in \mathbb{K}.
How big is $\operatorname{deg}(H)$?
We showed that $\operatorname{deg}(H)=\left\lceil\frac{(\delta-1)(\delta-2)+\operatorname{deg} D_{+}}{\delta}\right\rceil$ is enough
\rightsquigarrow denominator computed with $\tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D_{+}\right)^{\omega}\right)$ operations 1 in \mathbb{K}.

Second method:

structured linear algebra \rightsquigarrow same complexity exponent but hope for future improvements.
(see the paper)

[^1]
Sketch of the algorithm

Input
$\mathcal{C}: F(X, Y, Z)=0$ a plane curve of degree δ, D a smooth divisor.

Step 1 Compute the adjoint divisor $\mathcal{A} . \vee \leftarrow \tilde{O}\left(\delta^{3}\right)$
Step 2 Compute the common denominator $H . ~ \leftarrow \tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D_{+}\right)^{\omega}\right)$
Step 3 Compute $(H)-D . \vee \leftarrow \tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D\right)^{2}\right)$
Step 4 Compute the numerators G_{i} (similar to Step 2).

Output

A basis of the Riemann-Roch space $L(D)$ in terms of H and the G_{i}.

Sketch of the algorithm

Input

$\mathcal{C}: F(X, Y, Z)=0$ a plane curve of degree δ, D a smooth divisor.
Step 1 Compute the adjoint divisor $\mathcal{A} . \checkmark \leftarrow \tilde{O}\left(\delta^{3}\right)$
Step 2 Compute the common denominator H. $\checkmark \leftarrow \tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D_{+}\right)^{\omega}\right)$
Step 3 Compute $(H)-D . \vee \leftarrow \tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D\right)^{2}\right)$
Step 4 Compute the numerators $G_{i} . \checkmark \leftarrow \tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D_{+}\right)^{\omega}\right)$

Output

A basis of the Riemann-Roch space $L(D)$ in terms of H and the G_{i}.
Theorem (Abelard, B-, Couvreur, Lecerf Ξ Journal of Complexity 2022)
The algorithm computes $L(D)$ with $\tilde{\mathcal{O}}\left(\left(\delta^{2}+\operatorname{deg} D_{+}\right)^{\omega}\right)$ operations in \mathbb{K}.

What to take away?

0 . Implementation of AG codes

1. Brill-Noether method
2. Puiseux series
3. Linear Algebra
\rightsquigarrow need of computing Riemann-Roch space $L(D)$.
necessary and sufficient conditions on G and H such that $G / H \in L(D)$.
\rightsquigarrow handling the non-ordinary singular points of the curve.
\rightsquigarrow computing H and G in practice.

What to take away?

0 . Implementation of AG codes

1. Brill-Noether method
2. Puiseux series
3. Linear Algebra
\rightsquigarrow need of computing Riemann-Roch space $L(D)$.
necessary and sufficient conditions on G and H such that $G / H \in L(D)$.
\rightsquigarrow handling the non-ordinary singular points of the curve.
\rightsquigarrow computing H and G in practice.

Main result
We can compute Riemann-Roch spaces of any plane curve with a good complexity exponent.

Future questions

- Computing Riemann-Roch spaces of non-ordinary curves in positive "small" characteristic.
Main obstacle: find an alternative tool to Puiseux series.

Future questions

- Computing Riemann-Roch spaces of non-ordinary curves in positive "small" characteristic.
Main obstacle: find an alternative tool to Puiseux series.
- Implementing the algorithm.

Future questions

- Computing Riemann-Roch spaces of non-ordinary curves in positive "small" characteristic.
Main obstacle: find an alternative tool to Puiseux series.
- Implementing the algorithm.
- Improving the complexity exponent in the non-ordinary case.
(Sub-quadratic as in the ordinary case?)
Main obstacle: linear algebra.

Future questions

- Computing Riemann-Roch spaces of non-ordinary curves in positive "small" characteristic.
Main obstacle: find an alternative tool to Puiseux series.
- Implementing the algorithm.
- Improving the complexity exponent in the non-ordinary case.
(Sub-quadratic as in the ordinary case?)
Main obstacle: linear algebra.
- Can we develop a "Brill-Noether" theory for computing Riemann-Roch spaces of surfaces?

Future questions

- Computing Riemann-Roch spaces of non-ordinary curves in positive "small" characteristic.
Main obstacle: find an alternative tool to Puiseux series.
- Implementing the algorithm.
- Improving the complexity exponent in the non-ordinary case.
(Sub-quadratic as in the ordinary case?)
Main obstacle: linear algebra.
- Can we develop a "Brill-Noether" theory for computing Riemann-Roch spaces of surfaces?
- Computing Riemann-Roch spaces of non-ordinary curves in positive "small" characteristic.
Main obstacle: find an alternative tool to Puiseux series.
- Implementing the algorithm.
- Improving the complexity exponent in the non-ordinary case.

> (Sub-quadratic as in the ordinary case?)

Main obstacle: linear algebra.

- Can we develop a "Brill-Noether" theory for computing Riemann-Roch spaces of surfaces?

Thank you for your attention!

Questions? e.berardini@tue.nl

[^0]: ${ }^{1} 2 \leqslant \omega \leqslant 3$ is a feasible exponent for linear algebra.

[^1]: ${ }^{1} 2 \leqslant \omega \leqslant 3$ is a feasible exponent for linear algebra.

