Computing Riemann–Roch spaces for Algebraic Geometry codes

Elena Berardini

with S. Abelard (Thales), A. Couvreur (Inria), G. Lecerf (LIX)

Project funded by the French "Agence de l'Innovation de Défense"

Arbeitsgemeinschaft in Codierungstheorie und Kryptographie 6 April 2022 I. Introduction to Algebraic Geometry codes (motivation)

II. Introduction to Riemann-Roch spaces

III. Computation of Riemann-Roch spaces

IV. Conclusion & future questions

$AG \ codes \ (motivation)$ \bullet 000	Introduction to Riemann–Roch spaces 000	Computation of Riemann–Roch spaces 000000000000	Conclusion & future questions 00
Linear codes:	from Reed-Solomon	codes	
	\mathbb{F}_q -vector sub space of \mathbb{F}_q^n :: code of length n , dimension	k and minimum distance d	
min	dimension \leftrightarrow information imum distance \leftrightarrow correction ca	$\left. pacity ight\} k+d \leqslant {n}+1$ $m{ extsf{@}}$ Sing	βleton, 1964

the less the arithmetic is efficient.

AG codes (motivation) 0000 ...to Algebraic Geometry (AG) codes Riemann-Roch space $f \in L(D)$ P_1 \tilde{P}_n $\mathcal{C}((P_i)_i, D) := \{ (f(P_1), f(P_2), f(P_3), \dots, f(P_n)) \mid f \in L(D) \}$

AG codes (motivation) 0000 ...to Algebraic Geometry (AG) codes $f \in L(D)$ Riemann–Roch space P_1 P_n $\mathcal{C}((P_i)_i, D) := \{ (f(P_1), f(P_2), f(P_3), \dots, f(P_n)) \mid f \in L(D) \}$ Length: $|\#C(\mathbb{F}_q) - (q+1)| \leq g |2\sqrt{q}|$

Proposition

The parameters [n, k, d] of AG codes satisfy

$$n+1-g\leq k+d\leq n+1.$$

 \rightsquigarrow AG codes are a distance g from optimality

$AG \ codes \ (motivation)$	Introduction to Riemann-Roch spaces	Computation of Riemann-Roch spaces	Conclusion & future questions
0000	000	000000000000	00
AG codes: lor	ng story short		

$AG \ codes \ (motivation)$	Introduction to Riemann–Roch spaces	Computation of Riemann-Roch spaces	Conclusion & future questions
0000	000	000000000000	00
AG codes: log	ng story short		

1982: Tsfasman, Vlăduț and Zink use AG codes for beating the Gilbert-Varshamov bound

$AG \ codes \ (motivation)$	Introduction to Riemann–Roch spaces	Computation of Riemann-Roch spaces	Conclusion & future questions
0000	000	000000000000	00
AG codes: log	ng story short		

1982: Tsfasman, Vlăduț and Zink use AG codes for beating the Gilbert-Varshamov bound

XXc: different familles of curves are studied to obtain good AG codes

→ the most used curves are the ones for which Riemann–Roch spaces are already known (e.g. Hermitian curves)

$AG \ codes \ (motivation)$	Introduction to Riemann–Roch spaces	Computation of Riemann-Roch spaces	Conclusion & future questions
0000	000	000000000000	00
AG codes: log	ng story short		

1982: Tsfasman, Vlăduț and Zink use AG codes for beating the Gilbert-Varshamov bound

XXc: different familles of curves are studied to obtain good AG codes

 \hookrightarrow the most used curves are the ones for which Riemann–Roch spaces are already known (e.g. Hermitian curves)

XXIc: AG codes are used in new applications from information theory

$AG \ codes \ (motivation)$	
0000	000

Computation of Riemann-Roch spaces 000000000000

Conclusion & future questions

Riemann-Roch spaces: AG codes and beyond

AG codes are involved in

- Secret sharing¹
- Verifiable computing²
- ...

\rightsquigarrow need of computing Riemann–Roch spaces of curves

¹R. Cramer, M. Rambaud and C. Xing, Crypto 2021

²S. Bordage, M. Lhotel, J. Nardi and H. Randriam, preprint 2022

AG codes (motivation)		
0000	000	

Computation of Riemann-Roch spaces 000000000000

Conclusion & future questions

Riemann-Roch spaces: AG codes and beyond

AG codes are involved in

- Secret sharing¹
- Verifiable computing²
- ...

\rightsquigarrow need of computing Riemann–Roch spaces of curves

Can be used also for ...

• Arithmetic operations on Jacobians of curves³

• Symbolic integration⁴

¹R. Cramer, M. Rambaud and C. Xing, Crypto 2021

²S. Bordage, M. Lhotel, J. Nardi and H. Randriam, preprint 2022

³K. Khuri-Makdisi, Mathematics of Computations, 2007

⁴J.H. Davenport, Intern. Symp. on Symbolic et Algebraic Manipulation, 1979

AG codes (motivation) Introduction to Riemann-Roch spaces

Conclusion & future questions

Riemann-Roch spaces of curves

A divisor on a curve
$$C$$
: $D = \sum_{P \in C} n_P P, \ n_P \in \mathbb{Z}$

The **Riemann–Roch space** L(D) is the space of functions $\frac{G}{H} \in \mathbb{K}(\mathcal{C})$ such that:

- if n_P < 0 then P must be a zero of G (of multiplicity ≥ -n_P)
- if n_P > 0 then P can be a zero of H (of multiplicity ≤ n_P)
- G/H has no other poles outside the points P with $n_P > 0$

Here: Z must be a zero of G, the P_i can be zeros of H

AG codes (motivation) Introduction to Riemann-Roch spaces

Computation of Riemann-Roch spaces

Conclusion & future questions

Riemann-Roch spaces of curves

A divisor on a curve
$$C$$
: $D = \sum_{P \in C} n_P P, n_P \in \mathbb{Z}$

The **Riemann–Roch space** L(D) is the space of functions $\frac{G}{H} \in \mathbb{K}(\mathcal{C})$ such that:

- if n_P < 0 then P must be a zero of G (of multiplicity ≥ -n_P)
- if n_P > 0 then P can be a zero of H (of multiplicity ≤ n_P)
- G/H has no other poles outside the points P with $n_P > 0$

Here: Z must be a zero of G, the P_i can be zeros of H

Riemann–Roch Theorem \rightsquigarrow dimension of $L(D) = \deg D + 1 - g$ where the degree of a divisor is deg $D = \sum_{P} n_P \deg(P)$

AG codes (motivation)	Introduction to Riemann-Roch spaces $0 \bullet 0$	Computation of Riemann-Roch spaces	Conclusion & future questions
0000		000000000000	00
Toy example			

$$f \in L(D) \iff \begin{cases} f \text{ has a zero of order at least 1 at } Q \\ f \text{ can have a pole of order at most 1 at } P \\ f \text{ has not other poles outside } P \end{cases}$$

$AG \ codes \ (motivation)$ 0000	Introduction to Riemann-Roch spaces $0 \bullet 0$	Computation of Riemann-Roch spaces	Conclusion & future questions 00
Toy example			

$$f \in L(D) \iff \begin{cases} f \text{ has a zero of order at least 1 at } Q \\ f \text{ can have a pole of order at most 1 at } P \\ f \text{ has not other poles outside } P \end{cases}$$

$$f = \frac{X-1}{X}$$
 is a solution

AG codes (motivation)	Introduction to Riemann-Roch spaces $0 \bullet 0$	Computation of Riemann-Roch spaces	Conclusion & future questions
0000		000000000000	00
Toy example			

$$f \in L(D) \iff \begin{cases} f \text{ has a zero of order at least 1 at } Q \\ f \text{ can have a pole of order at most 1 at } P \\ f \text{ has not other poles outside } P \end{cases}$$

$$f = \frac{X-1}{X}$$
 is a solution

$$g = 0, \deg D = 0 \xrightarrow{\text{Riemann-Roch}} \dim L(D) = \deg D + 1 - g = 1$$

 $\rightarrow f \text{ generates the space of solutions}$

AG codes (motivation)	Introduction to Riemann-Roch spaces $0 \bullet 0$	Computation of Riemann-Roch spaces	Conclusion & future questions
0000		000000000000	00
Toy example			

$$f \in L(D) \iff \begin{cases} f \text{ has a zero of order at least 1 at } Q \\ f \text{ can have a pole of order at most 1 at } P \\ f \text{ has not other poles outside } P \end{cases}$$

$$f = \frac{X-1}{X}$$
 is a solution

$$g = 0, \deg D = 0 \xrightarrow{\text{Riemann-Roch}} \dim L(D) = \deg D + 1 - g = 1$$

 $\rightarrow f \text{ generates the space of solutions}$

 \bigwedge no explicit method to compute a basis of L(D)How do we solve the problem in general? AG codes (motivation) 0000 Introduction to Riemann–Roch spaces $OO \bullet$

Computation of Riemann-Roch spaces 000000000000 Conclusion & future questions

Riemann-Roch problem: state of the art

Geometric Method:

(Brill–Noether theory~1874)

- Goppa, Le Brigand-Risler (80's)
- Huang-lerardi (90's)
- Khuri–Makdisi (2007)
- Le Gluher-Spaenlehauer (2018)
- Abelard–Couvreur–Lecerf (2020)

Arithmetic Method:

(Ideals in function fields)

- Hensel-Landberg (1902)
- Coates (1970)
- Davenport (1981)
- Hess (2001)

AG codes (motivation) 0000 Introduction to Riemann–Roch spaces $OO \bullet$

Computation of Riemann-Roch spaces 000000000000 Conclusion & future questions

Riemann-Roch problem: state of the art

Geometric Method:

(Brill–Noether theory~1874)

- Goppa, Le Brigand-Risler (80's)
- Huang-lerardi (90's)
- Khuri-Makdisi (2007)
- Le Gluher-Spaenlehauer (2018)
- Abelard–Couvreur–Lecerf (2020)

Arithmetic Method:

(Ideals in function fields)

- Hensel-Landberg (1902)
- Coates (1970)
- Davenport (1981)
- Hess (2001)

Ordinary/nodal curves: Las Vegas algorithm computing L(D) in sub-quadratic time

Non-ordinary curves:

 \wedge no explicit complexity exponent

AG codes (motivation) 0000	Introduction to Riemann-Roch spaces 000	Computation of Riemann-Roch spaces •00000000000	Conclusion & future questions 00
Notations an	d hypotheses		

C: F(x, y, z) = 0 – plane curve, F absolutely irreducible of degree δ

 $\operatorname{Sing}(\mathcal{C})$ – the singular points of \mathcal{C} , assumed in the affine chart z = 1

 $(H) = \sum_{P \in C} \operatorname{ord}_P(H)P$ – divisor of zeros of H with multiplicity

 $D \ge D' \rightsquigarrow D - D' = \sum n_P P$ with $n_P \ge 0 \ \forall P \ (D - D' \text{ is effective})$

We can always write $D = D_+ - D_-$ with D_+ and D_- two effective divisors

AG codes (motivation) 0000	Introduction to Riemann-Roch spaces 000	Computation of Riemann-Roch spaces •00000000000	Conclusion ඦ future questions 00
Notations an	d hypotheses		

C: F(x, y, z) = 0 – plane curve, F absolutely irreducible of degree δ

 $\operatorname{Sing}(\mathcal{C})$ – the singular points of \mathcal{C} , assumed in the affine chart z = 1

 $(H) = \sum_{P \in C} \operatorname{ord}_P(H)P$ – divisor of zeros of H with multiplicity

 $D \ge D' \rightsquigarrow D - D' = \sum n_P P$ with $n_P \ge 0 \ \forall P \ (D - D' \text{ is effective})$

We can always write $D = D_+ - D_-$ with D_+ and D_- two effective divisors

 \mathbb{K} – perfect field (zero or positive characteristic)

 $\mathbb{K}[[x]]$ – ring of power series in x

 $\mathbb{K}((x))$ – Laurent series field

 $\overline{\mathbb{K}}\langle x \rangle$ – Puiseux series field

AG codes (motivation) 0000	Introduction to Riemann-Roch spaces 000	Computation of Riemann-Roch spaces •00000000000	Conclusion & future questions 00
Notations an	d hypotheses		

 $\mathcal{C}: F(x, y, z) = 0$ – plane curve, F absolutely irreducible of degree δ

 $\operatorname{Sing}(\mathcal{C})$ – the singular points of \mathcal{C} , assumed in the affine chart z=1

 $(H) = \sum_{P \in \mathcal{C}} \operatorname{ord}_P(H)P$ – divisor of zeros of H with multiplicity

 $D \ge D' \rightsquigarrow D - D' = \sum n_P P$ with $n_P \ge 0 \ \forall P \ (D - D' \text{ is effective})$

We can always write $D = D_+ - D_-$ with D_+ and D_- two effective divisors

 \mathbb{K} – perfect field (zero or positive characteristic)

 $\mathbb{K}[[x]]$ – ring of power series in x

 $\mathbb{K}((x))$ – Laurent series field

 $\overline{\mathbb{K}}\langle x \rangle$ – Puiseux series field

▲ well defined in characteristic 0 or positive "large"

AG codes (motivation)	Introduction to Riemann-Roch spaces	Computation of Riemann-Roch spaces $000000000000000000000000000000000000$	Conclusion & future questions
0000	000		00
Brill-Noether	r method		

The non-zero elements are of the form $\frac{G_i}{H}$ where

- H satisfies $(H) \ge D_+$
- H vanishes at any singular point of $\mathcal C$ with ad hoc multiplicity
- deg $G_i = \deg H$, G_i prime with F and $(G_i) \ge (H) D$

AG codes (motivation)	Introduction to Riemann-Roch spaces	Computation of Riemann-Roch spaces $000000000000000000000000000000000000$	Conclusion & future questions
0000	000		00
Brill-Noether	r method		

The non-zero elements are of the form $\frac{G_i}{H}$ where

- H satisfies $(H) \ge D_+$
- H vanishes at any singular point of $\mathcal C$ with ad hoc multiplicity
- deg $G_i = \text{deg } H$, G_i prime with F and $(G_i) \ge (H) D$

How do we manage singular points?

AG codes (motivation)	Introduction to Riemann-Roch spaces	Computation of Riemann-Roch spaces $000000000000000000000000000000000000$	Conclusion & future questions
0000	000		00
Brill-Noether	r method		

The non-zero elements are of the form $\frac{G_i}{H}$ where

- H satisfies $(H) \ge D_+$
- H vanishes at any singular point of $\mathcal C$ with ad hoc multiplicity
- deg $G_i = \deg H$, G_i prime with F and $(G_i) \ge (H) D$

How do we manage singular points?

the adjoint divisor ${\mathcal A}$ "encodes" the singular points of ${\mathcal C}$ with their multiplicities

AG codes (motivation)	Introduction to Riemann-Roch spaces	Computation of Riemann-Roch spaces $0 \bullet 000000000000000000000000000000000$	Conclusion & future questions
0000	000		00
Brill-Noether	r method		

The non-zero elements are of the form $\frac{G_i}{H}$ where

- *H* satisfies $(H) \ge D_+$
- H satisfies $(H) \ge A$ (we say that "H is adjoint to the curve")
- deg $G_i = \deg H$, G_i prime with F and $(G_i) \ge (H) D$

How do we manage singular points?

the adjoint divisor ${\mathcal A}$ "encodes" the singular points of ${\mathcal C}$ with their multiplicities

AG codes (motivation)	Introduction to Riemann-Roch spaces	Computation of Riemann-Roch spaces $0 \bullet 000000000000000000000000000000000$	Conclusion & future questions
0000	000		00
Brill-Noether	r method		

The non-zero elements are of the form $\frac{G_i}{H}$ where

- *H* satisfies $(H) \ge D_+$
- H satisfies $(H) \ge A$
- deg $G_i = \deg H$, G_i prime with F and $(G_i) \ge (H) D$

How do we manage singular points?

the adjoint divisor ${\mathcal A}$ "encodes" the singular points of ${\mathcal C}$ with their multiplicities

How do we represent divisors?

AG codes (motivation)	Introduction to Riemann-Roch spaces	Computation of Riemann-Roch spaces $0 \bullet 000000000000000000000000000000000$	Conclusion & future questions
0000	000		00
Brill-Noether	r method		

The non-zero elements are of the form $\frac{G_i}{H}$ where

- *H* satisfies $(H) \ge D_+$
- H satisfies $(H) \ge A$
- deg G_i = deg H, G_i prime with F and $(G_i) \ge (H) D$

How do we manage singular points?

the adjoint divisor ${\mathcal A}$ "encodes" the singular points of ${\mathcal C}$ with their multiplicities

How do we represent divisors?

series expansions of multi-set representations $((P_i)_i, n_i)$

operations on divisors with negligible cost

AG codes (motivation) 0000	Introduction to Riemann-Roch spaces 000	Computation of Riemann-Roch spaces $000000000000000000000000000000000000$	Conclusion
Sketch of the	algorithm		

Input

C: F(X, Y, Z) = 0 a plane curve of degre δ , D a smooth divisor.

- **Step 1** : Compute the adjoint divisor \mathcal{A}
- **Step 2** : Compute the common denominator *H*
- **Step 3** : Compute (H) D
- **Step 4 :** Compute the numerators *G_i* (similar to Step 2)

Output

A basis of the Riemann–Roch space L(D) in terms of H and the G_i .

$AG \ codes \ (motivation)$	Introduction to Riemann-Roch spaces 000	Computation of Riemann-Roch spaces $000000000000000000000000000000000000$	
Sketch of the	algorithm		

Input

C: F(X, Y, Z) = 0 a plane curve of degre δ , D a smooth divisor.

- **Step 1** : Compute the adjoint divisor \mathcal{A}
- **Step 2** : Compute the common denominator *H*
- **Step 3**: Compute $(H) D \checkmark \leftarrow \tilde{O}((\delta^2 + \deg D_+)^2)$
- **Step 4 :** Compute the numerators *G_i* (similar to Step 2)

Output

A basis of the Riemann–Roch space L(D) in terms of H and the G_i .

$AG \ codes \ (motivation)$	Introduction to Riemann-Roch spaces 000	Computation of Riemann-Roch spaces $000000000000000000000000000000000000$	
Sketch of the	algorithm		

Input

C: F(X, Y, Z) = 0 a plane curve of degre δ , D a smooth divisor.

Step 1 : Compute the adjoint divisor \mathcal{A}

- **Step 2** : Compute the common denominator *H*
- **Step 3**: Compute $(H) D \checkmark \leftarrow \tilde{O}((\delta^2 + \deg D_+)^2)$
- **Step 4 :** Compute the numerators *G_i* (similar to Step 2)

Output

A basis of the Riemann–Roch space L(D) in terms of H and the G_i .

Warm up: adjoint divisor in the ordinary case

Definition

Let $P \in Sing(C)$. The local adjoint divisor is

$$\mathcal{A}_{\mathcal{P}} = -\sum_{\mathcal{P}|\mathcal{P}} \operatorname{val}_{\mathcal{P}} \left(\frac{dx}{F_{y}(x, y, 1)} \right) \mathcal{P}.$$

Computation of Riemann-Roch spaces

Warm up: adjoint divisor in the ordinary case

Definition

Let $P \in \text{Sing}(\mathcal{C})$. The local adjoint divisor is

$$\mathcal{A}_{\mathcal{P}} = -\sum_{\mathcal{P}|\mathcal{P}} \operatorname{val}_{\mathcal{P}} \left(rac{dx}{F_y(x,y,1)}
ight) \mathcal{P}.$$

Let $P \in \text{Sing}(\mathcal{C})$ ordinary of multiplicity *m*, wlog P = (0:0:1). Then *F* locally factorises as

$$F(x, y, 1) = u(x, y) \prod_{i=1}^{m} (y - \varphi_i(x))$$

with $u \in \overline{\mathbb{K}}[[x, y]]$ invertible, $\varphi_i(x) \in x\overline{\mathbb{K}}[[x]]$ and $\varphi'_i(0) \neq \varphi'_i(0)$.

AG codes (motivation) Introduction to Riemann-Roch spaces 000 0000 000 INtroduction to Riemann-Roch spaces 000 000 INtroduction to Riemann-Roch spaces 000 000 000 000 000 00 00

Warm up: adjoint divisor in the ordinary case

Definition

Let $P \in \text{Sing}(\mathcal{C})$. The local adjoint divisor is

$$\mathcal{A}_{P} = -\sum_{\mathcal{P}|P} \operatorname{val}_{\mathcal{P}} \left(\frac{dx}{F_{y}(x, y, 1)} \right) \mathcal{P}.$$

Let $P \in \text{Sing}(\mathcal{C})$ ordinary of multiplicity m, wlog P = (0:0:1). Then F locally factorises as

$$F(x, y, 1) = u(x, y) \prod_{i=1}^{m} (y - \varphi_i(x))$$

with $u \in \overline{\mathbb{K}}[[x, y]]$ invertible, $\varphi_i(x) \in x\overline{\mathbb{K}}[[x]]$ and $\varphi'_i(0) \neq \varphi'_j(0)$.

Germ of the curve place
$$\mathcal{P}_i$$
 in the parametrized by $\varphi_i(x) \qquad \longleftrightarrow \qquad \text{functions field } \overline{\mathbb{K}}(\mathcal{C})$

Warm up: adjoint divisor in the ordinary case

Definition

Let $P \in \text{Sing}(\mathcal{C})$. The local adjoint divisor is

$$\mathcal{A}_{P} = -\sum_{\mathcal{P}|P} \operatorname{val}_{\mathcal{P}} \left(\frac{dx}{F_{y}(x, y, 1)} \right) \mathcal{P}.$$

Let $P \in \text{Sing}(\mathcal{C})$ ordinary of multiplicity m, wlog P = (0:0:1). Then F locally factorises as

$$F(x,y,1) = u(x,y) \prod_{i=1}^{m} (y - \varphi_i(x))$$

with $u \in \overline{\mathbb{K}}[[x, y]]$ invertible, $\varphi_i(x) \in x\overline{\mathbb{K}}[[x]]$ and $\varphi'_i(0) \neq \varphi'_j(0)$.

$$\begin{array}{ccc} \text{Germ of the curve} & & \text{place } \mathcal{P}_i \text{ in the} \\ \text{parametrized by } \varphi_i(x) & & & \text{functions field } \overline{\mathbb{K}}(\mathcal{C}) \end{array}$$

The local adjoint divisor becomes $\mathcal{A}_P = (m-1)\sum_{i=1}^{m} \mathcal{P}_i.$

$AG \ codes \ (motivation) \\ 0000$		Computation of Riemann-Roch spaces $000000000000000000000000000000000000$	
A 7 · · · / 7 ·	י י י י י		

Adjoint condition via Puiseux series

Let $F \in \mathbb{K}[x, y]$ be absolutely irreducible, monic in y and of degree d in y. $F \in \mathbb{K}((x))[y]$ has d distinct roots in $\overline{\mathbb{K}}\langle\langle x \rangle\rangle$, $\varphi_1, \ldots, \varphi_d$, and writes as

$$F = \prod_{i=1}^{d} (y - \varphi_i) = \prod_{i=1}^{d} \left(y - \sum_{j=n}^{\infty} \beta_{i,j} x^{j/e_i} \right).$$

$AG \ codes \ (motivation) \\ 0000$		Computation of Riemann-Roch spaces $000000000000000000000000000000000000$	Conclusion & future questions 00
A disingt som di	Determine Determine		

Adjoint condition via Puiseux series

Let $F \in \mathbb{K}[x, y]$ be absolutely irreducible, monic in y and of degree d in y. $F \in \mathbb{K}((x))[y]$ has d distinct roots in $\overline{\mathbb{K}}\langle\langle x \rangle\rangle$, $\varphi_1, \ldots, \varphi_d$, and writes as

$$F = \prod_{i=1}^{d} (y - \varphi_i) = \prod_{i=1}^{d} \left(y - \sum_{j=n}^{\infty} \beta_{i,j} x^{j/e_i} \right).$$

We fix φ of degree e, ζ a primitive e-th root of unity. For $0 \leq k < e$ we can construct other ePuiseux series by replacing $x^{1/e}$ with $\zeta^k x^{1/e}$.

$AG \ codes \ (motivation)$ 0000		Computation of Riemann-Roch spaces $000000000000000000000000000000000000$	Conclusion & future questions 00
A Jining	י מי י		

Adjoint condition via Puise<u>ux series</u>

Let $F \in \mathbb{K}[x, y]$ be absolutely irreducible, monic in y and of degree d in y. $F \in \mathbb{K}((x))[y]$ has d distinct roots in $\overline{\mathbb{K}}\langle\langle x \rangle\rangle$, $\varphi_1, \ldots, \varphi_d$, and writes as

$$F = \prod_{i=1}^{d} (y - \varphi_i) = \prod_{i=1}^{d} \left(y - \sum_{j=n}^{\infty} \beta_{i,j} x^{j/e_i} \right).$$

We fix φ of degree e, ζ a primitive e-th root of unity. For $0 \le k < e$ we can construct other ePuiseux series by replacing $x^{1/e}$ with $\zeta^k x^{1/e}$. They are all equivalent and represented by...

Definition

A Rational Puiseux Expansion (RPE) is a pair $(X(t), Y(t)) = \left(\gamma t^e, \sum_{j=n}^{\infty} \beta_j t^j\right)$ such that F(X(t), Y(t)) = 0.

$AG \ codes \ (motivation)$ 0000	Introduction to Riemann-Roch spaces 000	Conclusion & future questions 00
A 1 · · · J	י י י י י י י	

Adjoint condition via Puiseux series

Let $F \in \mathbb{K}[x, y]$ be absolutely irreducible, monic in y and of degree d in y. $F \in \mathbb{K}((x))[y]$ has d distinct roots in $\overline{\mathbb{K}}\langle\langle x \rangle\rangle$, $\varphi_1, \ldots, \varphi_d$, and writes as

$$F = \prod_{i=1}^{d} (y - \varphi_i) = \prod_{i=1}^{d} \left(y - \sum_{j=n}^{\infty} \beta_{i,j} x^{j/e_i} \right).$$

We fix φ of degree e, ζ a primitive e-th root of unity. For $0 \le k < e$ we can construct other ePuiseux series by replacing $x^{1/e}$ with $\zeta^k x^{1/e}$. They are all equivalent and represented by...

Definition

A Rational Puiseux Expansion (RPE) is a pair $(X(t), Y(t)) = \left(\gamma t^e, \sum_{j=n}^{\infty} \beta_j t^j\right)$ such that F(X(t), Y(t)) = 0.

Rational Puiseux	/	places of $\overline{\mathbb{K}}(\mathcal{C})$ in
Expansion of $F(x, y, 1)$	\longleftrightarrow	the chart $z=1$

 $C: y^2 - x^3 = 0$ in the chart z = 1

(0,0) unique singular point, non ordinary <u>Puiseux series</u>: $(y - x^{3/2})(y + x^{3/2}) = 0$

 $C: y^2 - x^3 = 0$ in the chart z = 1

(0,0) unique singular point, non ordinary <u>Puiseux series</u>: $(y - x^{3/2})(y + x^{3/2}) = 0$ (Unique) RPE: $(X(t), Y(t)) = (t^2, t^3)$

 $C: y^2 - x^3 = 0$ in the chart z = 1

(0,0) unique singular point, non ordinary <u>Puiseux series</u>: $(y - x^{3/2})(y + x^{3/2}) = 0$ (Unique) RPE: $(X(t), Y(t)) = (t^2, t^3)$

<u>A</u>the RPE are often defined over an extension of \mathbb{K} . It is an algorithmic question to take the minimal extension of the field.

$AG \ codes \ (motivation)$		Computation of Riemann-Roch spaces	Conclusion & future questions
		00000000000	
The adjoint of	livisor		

$$F(x,y,1) = u(x,y)\prod_{i=1}^m (y-\varphi_i(x)),$$

with $u \in \mathbb{K}[[x, y]]$ invertible and φ_i Puiseux series of $F \in \overline{\mathbb{K}}[[x]][y]$.

$AG \ codes \ (motivation)$	Introduction to Riemann-Roch spaces 000	Computation of Riemann-Roch spaces $000000000000000000000000000000000000$	Conclusion & future questions 00
The adjoint of	divisor		

$$F(x,y,1) = u(x,y)\prod_{i=1}^{m}(y-\varphi_i(x)),$$

with $u \in \mathbb{K}[[x, y]]$ invertible and φ_i Puiseux series of $F \in \overline{\mathbb{K}}[[x]][y]$.

$$\{\varphi_1, \ldots, \varphi_m\} \qquad \rightsquigarrow \qquad \qquad \begin{array}{c} \mathsf{RPEs/places} \left(X_i(t), Y_i(t)\right) \\ i \in \{1, \ldots, s\}, \ s \leq m. \end{array}$$

AG codes (motivation)	Introduction to Riemann-Roch spaces	Computation of Riemann–Roch spaces	Conclusion & future questions
0000	000	000000000000	00
The adjoint of	divisor		

$$F(x,y,1) = u(x,y) \prod_{i=1}^{m} (y - \varphi_i(x)),$$

with $u \in \mathbb{K}[[x, y]]$ invertible and φ_i Puiseux series of $F \in \overline{\mathbb{K}}[[x]][y]$.

$$\{\varphi_1, \dots, \varphi_m\} \qquad \rightsquigarrow \qquad \qquad \begin{array}{c} \mathsf{RPEs/places}\left(X_i(t), Y_i(t)\right) \\ i \in \{1, \dots, s\}, \ s \leqslant m. \end{array}$$

The local adjoint divisor becomes

$$\mathcal{A}_{\mathcal{P}} = -\sum_{\mathcal{P}|\mathcal{P}} \operatorname{val}_t \left(\frac{et^{e-1}}{F_y(X(t), Y(t), 1)} \right) \mathcal{P}_t$$

AG codes (motivation)	Introduction to Riemann-Roch spaces	Computation of Riemann-Roch spaces	Conclusion & future questions
		00000000000	
The adjoint of	divisor		

$$F(x, y, 1) = u(x, y) \prod_{i=1}^{m} (y - \varphi_i(x)),$$

with $u \in \mathbb{K}[[x, y]]$ invertible and φ_i Puiseux series of $F \in \overline{\mathbb{K}}[[x]][y]$.

$$\{\varphi_1, \ldots, \varphi_m\} \qquad \rightsquigarrow \qquad \qquad \begin{array}{c} \mathsf{RPEs/places} \left(X_i(t), Y_i(t)\right) \\ i \in \{1, \ldots, s\}, \ s \leq m. \end{array}$$

The local adjoint divisor becomes

$$\mathcal{A}_P = -\sum_{\mathcal{P}|P} \operatorname{val}_t \left(rac{et^{e-1}}{F_y(X(t),Y(t),1)}
ight) \mathcal{P}.$$

In practice: algorithm for computing Puiseux series⁵ $\rightsquigarrow \mathcal{A}$ computed with $\tilde{O}(\delta^3)$ operations.

⁵A. Poteaux and M. Weimann, Annales Herni Lebesgue, 2021

 $C: y^{2} - x^{3} = 0 \text{ in the chart } z = 1$ (0,0) unique singular point, non-ordinary $\underline{\text{Puiseux series:}} (y - x^{3/2})(y + x^{3/2}) = 0$ $\underline{(\text{Unique}) \text{ RPE}} : (X(t), Y(t)) = (t^{2}, t^{3})$ $Adjoint \text{ condition: } F_{y} = 2y, x = t^{2} \Rightarrow dx = 2t$

 $C: y^2 - x^3 = 0$ in the chart z = 1(0,0) unique singular point, non-ordinary Puiseux series: $(y - x^{3/2})(y + x^{3/2}) = 0$ (Unique) RPE : $(X(t), Y(t)) = (t^2, t^3)$ Adjoint condition: $F_y = 2y$, $x = t^2 \Rightarrow dx = 2t$ $\operatorname{val}_t\left(\frac{et^{e^{-1}}}{F_{e}(X(t),Y(t),1)}\right) = \operatorname{val}_t\left(\frac{2t}{2t^3}\right) = \operatorname{val}_t\left(\frac{1}{t^2}\right) = -2$

 $C: y^2 - x^3 = 0$ in the chart z = 1(0,0) unique singular point, non-ordinary Puiseux series: $(y - x^{3/2})(y + x^{3/2}) = 0$ (Unique) RPE : $(X(t), Y(t)) = (t^2, t^3)$ Adjoint condition: $F_y = 2y$, $x = t^2 \Rightarrow dx = 2t$ $\operatorname{Val}_t\left(\frac{et^{e^{-1}}}{F_v(X(t),Y(t),1)}\right) = \operatorname{val}_t\left(\frac{2t}{2t^3}\right) = \operatorname{val}_t\left(\frac{1}{t^2}\right) = -2$ H is adjoint $\iff \operatorname{val}_t H(t^2, t^3) > 2$

AG codes (motivation)	Introduction to Riemann-Roch spaces	Computation of Riemann–Roch spaces	Conclusion & future questions
0000	000	0000000000000	00
Sketch of the	algorithm		

Input

C: F(X, Y, Z) = 0 a plane curve of degree δ , D a smooth divisor.

- **Step 1** : Compute the adjoint divisor $\mathcal{A} \checkmark \leftarrow \tilde{O}(\delta^3)$
- **Step 2 :** Compute the common denominator *H*
- **Step 3**: Compute $(H) D \leftarrow \tilde{O}((\delta^2 + \deg D_+)^2)$
- **Step 4 :** Compute the numerators *G_i* (similar to Step 2)

Output

A basis of the Riemann–Roch space L(D) in terms of H and the G_i .

AG codes (motivation)	Introduction to Riemann-Roch spaces	Computation of Riemann−Roch spaces	Conclusion & future questions
0000	000	0000000000000	00
Sketch of the	algorithm		

Input

 $\mathcal{C}: F(X, Y, Z) = 0$ a plane curve of degree δ , D a smooth divisor .

- **Step 1** : Compute the adjoint divisor $\mathcal{A} \checkmark \leftarrow \tilde{O}(\delta^3)$
- **Step 2** : Compute the common denominator *H*
- **Step 3**: Compute $(H) D \leftarrow \tilde{O}((\delta^2 + \deg D_+)^2)$
- **Step 4 :** Compute the numerators *G_i* (similar to Step 2)

Output

A basis of the Riemann–Roch space L(D) in terms of H and the G_i .

AG codes (motivation) 0000	Introduction to Riemann-Roch spaces 000	Computation of Riemann–Roch spaces $000000000000000000000000000000000000$	Conclusion & future questions 00
Find a denom	ninator in practice: c	lassical linear algebra	
Let $d \coloneqq \deg F$	1.		

Condition $(H) \ge A + D_+$

 \rightsquigarrow linear system with $\deg {\cal A} + \deg D_+ \sim \delta^2 + \deg D_+$ equations

 \rightsquigarrow Gauss elimination costs

 $ilde{O}((d\delta+\delta^2+\deg D)^\omega)$ operations⁶ in $\mathbb K$

 $^{{}^{6}2\}leqslant\omega\leqslant3$ is a feasible exponent for linear algebra ($\omega=2.373)$

$AG \ codes \ (motivation)$ 0000	Introduction to Riemann-Roch spaces 000	Computation of Riemann-Roch spaces	Conclusion
Find a denon	ninator in practice: cl	lassical linear algebra	
Let $d \coloneqq \deg h$	1.		

Condition $(H) \ge A + D_+$

 \rightsquigarrow linear system with $\deg {\cal A} + \deg D_+ \sim \delta^2 + \deg D_+$ equations

 \rightsquigarrow Gauss elimination costs

 $ilde{O}((d\delta + \delta^2 + \deg D)^\omega)$ operations⁶ in $\mathbb K$

How big is d?

We showed that $d = \left\lceil rac{(\delta-1)(\delta-2) + \deg D_+}{\delta}
ight
ceil$ is enough

 \rightsquigarrow denominator computed with $ilde{O}((\delta^2 + \deg D_+)^\omega)$ operations in $\mathbb K$

 ${}^{6}2\leqslant\omega\leqslant3$ is a feasible exponent for linear algebra ($\omega=2.373)$

	Introduction to Riemann-Roch spaces	Computation of Riemann-Roch spaces	Conclusion & future questions
0000	000	00000000000	00
Second metho	od: structured linear a	lgebra	

Condition $(H) \ge A$

$$\rightsquigarrow \operatorname{val}_t(H(X(t),Y(t),1) \geqslant -\operatorname{val}_t\left(\frac{et^{e-1}}{F_y(X(t),Y(t),1)}\right)$$

(similar equations for the condition $(H) \geqslant D_+$)

The space of polynomials H(x, y, 1) that satisfy these conditions is a $\mathbb{K}[x]$ -module \rightsquigarrow Computing a basis⁷ costs $\tilde{O}((\delta^2 + \deg D)^{\omega})$ operations

⁷C.-P. Jeannerod, V. Neiger, É. Schost and G. Villard, J. Symbolic Comput. 2017

AG codes (motivation)	Introduction to Riemann-Roch spaces	Computation of Riemann-Roch spaces $000000000000000000000000000000000000$	Conclusion & future questions
0000	000		00
Second metho	od: structured linear a	lgebra	

Condition $(H) \ge A$

$$\rightsquigarrow \operatorname{val}_t(H(X(t),Y(t),1) \geqslant -\operatorname{val}_t\left(\frac{et^{e-1}}{F_y(X(t),Y(t),1)}\right)$$

(similar equations for the condition $(H) \geqslant D_+$)

The space of polynomials H(x, y, 1) that satisfy these conditions is a $\mathbb{K}[x]$ -module \rightsquigarrow Computing a basis⁷ costs $\tilde{O}((\delta^2 + \deg D)^{\omega})$ operations

Same complexity exponent but with some

Advantages:

- better complexity exponent over algebraically closed fields: $\tilde{O}((\delta^2 + \deg D)^{\frac{\omega+1}{2}})$,
- potential improvement in the future.

⁷C.-P. Jeannerod, V. Neiger, É. Schost and G. Villard, J. Symbolic Comput. 2017

$AG \ codes \ (motivation)$ 0000	Introduction to Riemann–Roch spaces 000	Computation of Riemann–Roch spaces	
Sketch of the	algorithm		

Input

C: F(X, Y, Z) = 0 a plane curve of degree δ , D a smooth divisor.

- **Step 1** : Compute the adjoint divisor $\mathcal{A} \checkmark \leftarrow \tilde{O}(\delta^3)$
- **Step 2**: Compute the common denominator $H \checkmark \leftarrow \tilde{O}((\delta^2 + \deg D_+)^{\omega})$
- **Step 3**: Compute $(H) D \checkmark \leftarrow \tilde{O}((\delta^2 + \deg D_+)^2)$
- **Step 4** : Compute the numerators *G_i* (similar to Step 2)

Output

A basis of the Riemann–Roch space L(D) in terms of H and the G_i .

$AG \ codes \ (motivation)$	Introduction to Riemann-Roch spaces	Computation of Riemann-Roch spaces 000000000000	Conclusion & future questions
0000	000		00
Sketch of the	algorithm		

Input

C: F(X, Y, Z) = 0 a plane curve of degree δ , D a smooth divisor.

- **Step 1** : Compute the adjoint divisor $\mathcal{A} \checkmark \leftarrow \tilde{O}(\delta^3)$
- **Step 2** : Compute the common denominator $H \checkmark \leftarrow \tilde{O}((\delta^2 + \deg D_+)^\omega)$
- **Step 3**: Compute $(H) D \checkmark \leftarrow \tilde{O}((\delta^2 + \deg D_+)^2)$
- **Step 4 :** Compute the numerators $G_i \checkmark \leftarrow \tilde{O}((\delta^2 + \deg D_+)^\omega)$

Output

A basis of the Riemann–Roch space L(D) in terms of H and the G_i .

Theorem (Abelard, B-, Couvreur, Lecerf – Journal of Complexity 2022)

The previous algorithm computes L(D) with $\tilde{\mathcal{O}}((\delta^2 + \deg D_+)^{\omega})$ operations in \mathbb{K} .

	Introduction to Riemann-1 000		Computation of Riemann-Roch		Conclusion & future questions ●0
What to take	away?				
0. Implement:	ation of AG codes	\rightsquigarrow need c	of computing Riemann–F	Roch spa	ce <i>L</i> (<i>D</i>)
1. Brill–Noeth	her method	$_{\sim \rightarrow}$ necessa	ary and sufficient conditising such that $G/H \in H$		G and H

 \rightarrow

 \rightarrow

management of *non-ordinary* singular points of the curve

3. Linear Algebra

2. Puiseux series

Computing *H* and *G* in practice

AG codes (motivation) 0000	Introduction to Riemann-R 000	Roch spaces Computation of Riemann-Roch	spaces Conclusion & future questions ●0
What to take	away?		
0. Implement	ation of AG codes	→ need of computing Riemann-R	,

- 1. Brill-Noether method
- 2. Puiseux series
- 3. Linear Algebra

necessary and sufficient conditions on G and H such that $G/H \in L(D)$

management of *non-ordinary* singular points of the curve

 $a \qquad \qquad \rightsquigarrow \qquad \text{Computing } H \text{ and } G \text{ in practice}$

Main result

We can compute Riemann–Roch spaces of any plane curve with a good complexity exponent.

~~

AG codes (motivation) 0000	Introduction to Riemann–Roch spaces 000	Computation of Riemann-Roch spaces 000000000000	Conclusion & future questions ○●
Future question	ons		

 Computing Riemann-Roch spaces of non-ordinary curves in positive "small" characteristic (in progress).
 Main obstacle: find an alternative tool to Puiseux series to handle the adjoint condition.

AG codes (motivation) 0000	Introduction to Riemann–Roch spaces 000	Computation of Riemann-Roch spaces 000000000000	Conclusion & future questions 0●
Future quest	ions		

- Computing Riemann-Roch spaces of non-ordinary curves in positive "small" characteristic (in progress).
 Main obstacle: find an alternative tool to Puiseux series to handle the adjoint condition.
- ◊ Implementing the algorithm (soon).

$AG \ codes \ (motivation)$	Introduction to Riemann-Roch spaces	Computation of Riemann–Roch spaces	Conclusion & future questions
	000	000000000000	0●
Future questi	ons		

- Computing Riemann-Roch spaces of non-ordinary curves in positive "small" characteristic (in progress).
 Main obstacle: find an alternative tool to Puiseux series to handle the adjoint condition.
- ◊ Implementing the algorithm (soon).
- Improving the complexity exponent in the non-ordinary case. (Sub-quadratic as in the ordinary case?)
 Main obstacle: linear algebra.

AG codes (motivation)	Introduction to Riemann-Roch spaces	Computation of Riemann-Roch spaces	Conclusion & future questions $0 \bullet$
0000	000	000000000000	
Future questi	ons		

- Computing Riemann-Roch spaces of non-ordinary curves in positive "small" characteristic (in progress).
 Main obstacle: find an alternative tool to Puiseux series to handle the adjoint condition.
- ◊ Implementing the algorithm (soon).
- Improving the complexity exponent in the non-ordinary case. (Sub-quadratic as in the ordinary case?)
 Main obstacle: linear algebra.
- Can we develop a "Brill-Noether" theory for computing Riemann-Roch spaces of surfaces?

AG codes (motivation)	Introduction to Riemann–Roch spaces	Computation of Riemann-Roch spaces	Conclusion & future questions $0 \bullet$
0000	000	000000000000	
Future questi	ons		

- Computing Riemann-Roch spaces of non-ordinary curves in positive "small" characteristic (in progress).
 Main obstacle: find an alternative tool to Puiseux series to handle the adjoint condition.
- ◊ Implementing the algorithm (soon).
- Improving the complexity exponent in the non-ordinary case. (Sub-quadratic as in the ordinary case?)
 Main obstacle: linear algebra.
- Can we develop a "Brill-Noether" theory for computing Riemann-Roch spaces of surfaces?

Thank you for your attention!

Questions? e.berardini@tue.nl

