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Linear codes: from Reed–Solomon codes...
Linear code: Fq–vector sub space of Fn

q

[n, k, d ]q–code: code of length n, dimension k and minimum distance d

dimension↔ information
minimum distance↔ correction capacity

}
k + d 6 n + 1 � Singleton, 1964

Reed–Solomon (RS) Codes � Reed and Solomon, 1960

f ∈ Fq[x ]<k

RSk(x)
def
= {(f (x1), f (x2), f (x3), . . . , f (xn)) | f ∈ Fq[x ]<k}

•
x3

•
x2

•
x1

•
xn

Ë Optimal parameters:
k + d = n + 1.

Ë Effective decoding algorithms
� Berlekamp,1968

" Drawback: n 6 q.

The more q is big,
the less the arithmetic is efficient.
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...to Algebraic Geometry (AG) codes

f ∈ L(D)

C((Pi )i ,D) := {(f (P1), f (P2), f (P3), . . . , f (Pn)) | f ∈ L(D)}

Riemann–Roch space

•
P3•

P2

•P1 •
Pn

Length: |#C (Fq)− (q + 1)| ≤ gb2√qc

Proposition

The parameters [n, k, d ] of AG codes satisfy

n + 1− g ≤ k + d ≤ n + 1.

 AG codes are a distance g from optimality
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AG codes: long story short

1981: Goppa introduces AG codes from algebraic curves

1982: Tsfasman, Vlăduţ and Zink use AG codes for beating the Gilbert–Varshamov bound

XXc: different familles of curves are studied to obtain good AG codes
↪→ the most used curves are the ones for which Riemann–Roch spaces are already known

(e.g. Hermitian curves)

XXIc: AG codes are used in new applications from information theory
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Riemann–Roch spaces: AG codes and beyond

AG codes are involved in

Secret sharing1

Verifiable computing2

...

 need of computing Riemann–Roch spaces of curves

Can be used also for...

Arithmetic operations on Jacobians of curves

Symbolic integration

1R. Cramer, M. Rambaud and C. Xing, Crypto 2021
2S. Bordage, M. Lhotel, J. Nardi and H. Randriam, preprint 2022
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Riemann–Roch spaces of curves

A divisor on a curve C: D =
∑

P∈C nPP, nP ∈ Z

D=P1 + P2 + P3−Z

P2

P1 Z

P3

The Riemann–Roch space L(D) is the space
of functions G

H ∈ K(C) such that:
if nP < 0 then P must be a zero of G (of
multiplicity > −nP)
if nP > 0 then P can be a zero of H (of
multiplicity 6 nP)
G/H has no other poles outside the points
P with nP > 0

Here: Z must be a zero of G , the Pi can be zeros of H

Riemann–Roch Theorem  dimension of L(D) = degD + 1− g

where the degree of a divisor is degD =
∑

P nP deg(P)
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Toy example
Let C = P1, P = [0 : 1] and Q = [1 : 1]. Let D = P − Q, then

f ∈ L(D) ⇐⇒


f has a zero of order at least 1 at Q
f can have a pole of order at most 1 at P
f has not other poles outside P

f = X−1
X is a solution

g = 0, degD = 0 Riemann–Roch−−−−−−−−−→
Theorem

dim L(D) = degD + 1− g = 1

→ f generates the space of solutions

" no explicit method to compute a basis of L(D)
How do we solve the problem in general?

8 / 23



AG codes (motivation) Introduction to Riemann–Roch spaces Computation of Riemann–Roch spaces Conclusion & future questions

Toy example
Let C = P1, P = [0 : 1] and Q = [1 : 1]. Let D = P − Q, then

f ∈ L(D) ⇐⇒


f has a zero of order at least 1 at Q
f can have a pole of order at most 1 at P
f has not other poles outside P

f = X−1
X is a solution

g = 0, degD = 0 Riemann–Roch−−−−−−−−−→
Theorem

dim L(D) = degD + 1− g = 1

→ f generates the space of solutions

" no explicit method to compute a basis of L(D)
How do we solve the problem in general?

8 / 23



AG codes (motivation) Introduction to Riemann–Roch spaces Computation of Riemann–Roch spaces Conclusion & future questions

Toy example
Let C = P1, P = [0 : 1] and Q = [1 : 1]. Let D = P − Q, then

f ∈ L(D) ⇐⇒


f has a zero of order at least 1 at Q
f can have a pole of order at most 1 at P
f has not other poles outside P

f = X−1
X is a solution

g = 0, degD = 0 Riemann–Roch−−−−−−−−−→
Theorem

dim L(D) = degD + 1− g = 1

→ f generates the space of solutions

" no explicit method to compute a basis of L(D)
How do we solve the problem in general?

8 / 23



AG codes (motivation) Introduction to Riemann–Roch spaces Computation of Riemann–Roch spaces Conclusion & future questions

Toy example
Let C = P1, P = [0 : 1] and Q = [1 : 1]. Let D = P − Q, then

f ∈ L(D) ⇐⇒


f has a zero of order at least 1 at Q
f can have a pole of order at most 1 at P
f has not other poles outside P

f = X−1
X is a solution

g = 0, degD = 0 Riemann–Roch−−−−−−−−−→
Theorem

dim L(D) = degD + 1− g = 1

→ f generates the space of solutions

" no explicit method to compute a basis of L(D)
How do we solve the problem in general?

8 / 23



AG codes (motivation) Introduction to Riemann–Roch spaces Computation of Riemann–Roch spaces Conclusion & future questions

Riemann–Roch problem: state of the art
Geometric Method: Arithmetic Method:
(Brill–Noether theory∼1874) (Ideals in function fields)
• Goppa, Le Brigand–Risler (80’s)
• Huang–Ierardi (90’s)
• Khuri–Makdisi (2007)
• Le Gluher–Spaenlehauer (2018)
• Abelard–Couvreur–Lecerf (2020)

• Hensel–Landberg (1902)
• Coates (1970)
• Davenport (1981)
• Hess (2001)

Ordinary/nodal curves: Las Vegas algorithm computing L(D) in sub–quadratic time
.
Non–ordinary curves:

.
" no explicit complexity exponent
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Notations and hypotheses
C : F (x , y , z) = 0 – plane curve, F absolutely irreducible of degree δ

Sing(C) – the singular points of C, assumed in the affine chart z = 1

(H) =
∑

P∈C ordP(H)P – divisor of zeros of H with multiplicity

D > D ′  D − D ′ =
∑

nPP with nP > 0 ∀P (D − D ′ is effective)

We can always write D = D+ − D− with D+ and D− two effective divisors

K – perfect field (zero or positive characteristic)

K[[x ]] – ring of power series in x

K((x)) – Laurent series field

K〈x〉 – Puiseux series field

" well defined in characteristic 0 or positive "large"
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Brill–Noether method

Description of L(D) for C : F (X ,Y ,Z ) = 0 a plane projective curve.

The non–zero elements are of the form Gi

H where
H satisfies (H) > D+

H vanishes at any singular point of C with ad hoc multiplicity
degGi = degH, Gi prime with F and (Gi ) > (H)− D

How do we manage singular points?

the adjoint divisor A "encodes" the singular points of C with their multiplicities

How do we represent divisors?

series expansions of multi–set
representations ((Pi )i , ni )

 
operations on divisors with

negligible cost
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Sketch of the algorithm

Input

C : F (X ,Y ,Z ) = 0 a plane curve of degre δ, D a smooth divisor.

Step 1 : Compute the adjoint divisor A

Step 2 : Compute the common denominator H

Step 3 : Compute (H)− D

Step 4 : Compute the numerators Gi (similar to Step 2)

Output

A basis of the Riemann–Roch space L(D) in terms of H and the Gi .

12 / 23
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Warm up: adjoint divisor in the ordinary case

Definition

Let P ∈ Sing(C). The local adjoint divisor is

AP = −
∑
P|P

valP
(

dx

Fy (x , y , 1)

)
P.

Let P ∈ Sing(C) ordinary of multiplicity m, wlog P = (0 : 0 : 1). Then F locally factorises as

F (x , y , 1) = u(x , y)
m∏
i=1

(y − ϕi (x))

with u ∈ K[[x , y ]] invertible, ϕi (x) ∈ xK[[x ]] and ϕ′i (0) 6= ϕ′j(0).

Germ of the curve
parametrized by ϕi (x)

←→ place Pi in the
functions field K(C)

The local adjoint divisor becomes AP = (m − 1)
m∑
i=1

Pi .

13 / 23
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Adjoint condition via Puiseux series
Let F ∈ K[x , y ] be absolutely irreducible, monic in y and of degree d in y . F ∈ K((x))[y ] has
d distinct roots in K〈〈x〉〉, ϕ1, . . . , ϕd , and writes as

F =
d∏

i=1

(y − ϕi ) =
d∏

i=1

y −
∞∑
j=n

βi,jx
j/ei

 .

We fix ϕ of degree e, ζ a primitive e-th root of unity. For 0 6 k < e we can construct other e
Puiseux series by replacing x1/e with ζkx1/e . They are all equivalent and represented by...

Definition

A Rational Puiseux Expansion (RPE) is a pair (X (t),Y (t)) =
(
γte ,

∑∞
j=n βj t

j
)
such that

F (X (t),Y (t)) = 0.

Rational Puiseux
Expansion of F (x , y , 1) ←→ places of K(C) in

the chart z = 1

14 / 23
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d distinct roots in K〈〈x〉〉, ϕ1, . . . , ϕd , and writes as

F =
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y −
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Example

C : y2 − x3 = 0 in the chart z = 1

(0, 0) unique singular point, non ordinary

Puiseux series: (y − x3/2)(y + x3/2) = 0

(Unique) RPE: (X (t),Y (t)) = (t2, t3)

"the RPE are often defined over an extension of K.
It is an algorithmic question to take the minimal extension of the field.
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The adjoint divisor

Let P ∈ Sing(C) ordinary, w.l.o.g. P = (0 : 0 : 1). Then F locally factorises as

F (x , y , 1) = u(x , y)
m∏
i=1

(y − ϕi (x)),

with u ∈ K[[x , y ]] invertible and ϕi Puiseux series of F ∈ K[[x ]][y ].

{ϕ1, . . . , ϕm}  
RPEs/places (Xi (t),Yi (t))

i ∈ {1, . . . , s}, s 6 m.

The local adjoint divisor becomes

AP = −
∑
P|P

valt
(

ete−1

Fy (X (t),Y (t), 1)

)
P.

In practice: algorithm for computing Puiseux series  A computed with Õ(δ3) operations.
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Example

C : y2 − x3 = 0 in the chart z = 1

(0, 0) unique singular point, non–ordinary

Puiseux series: (y − x3/2)(y + x3/2) = 0

(Unique) RPE : (X (t),Y (t)) = (t2, t3)

Adjoint condition: Fy = 2y , x = t2 ⇒ dx = 2t

valt
(

ete−1

Fy (X (t),Y (t),1)

)
= valt

( 2t
2t3
)
= valt

( 1
t2

)
= −2

H is adjoint ⇐⇒ valtH(t2, t3) ≥ 2
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Sketch of the algorithm

Input

C : F (X ,Y ,Z ) = 0 a plane curve of degree δ, D a smooth divisor .

Step 1 : Compute the adjoint divisor A Ë ← Õ(δ3)

Step 2 : Compute the common denominator H

Step 3 : Compute (H)− D ← Õ((δ2 + degD+)
2)

Step 4 : Compute the numerators Gi (similar to Step 2)

Output

A basis of the Riemann–Roch space L(D) in terms of H and the Gi .

18 / 23



AG codes (motivation) Introduction to Riemann–Roch spaces Computation of Riemann–Roch spaces Conclusion & future questions

Sketch of the algorithm

Input

C : F (X ,Y ,Z ) = 0 a plane curve of degree δ, D a smooth divisor .

Step 1 : Compute the adjoint divisor A Ë ← Õ(δ3)

Step 2 : Compute the common denominator H

Step 3 : Compute (H)− D ← Õ((δ2 + degD+)
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Find a denominator in practice: classical linear algebra

Let d := degH.

Condition (H) > A+ D+

 linear system with degA+ degD+ ∼ δ2 + degD+ equations

 Gauss elimination costs

Õ((dδ + δ2 + degD)ω) operations6 in K

How big is d?

We showed that d =
⌈
(δ−1)(δ−2)+degD+

δ

⌉
is enough

 denominator computed with Õ((δ2 + degD+)
ω) operations in K

62 6 ω 6 3 is a feasible exponent for linear algebra (ω = 2.373)
19 / 23
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Second method: structured linear algebra

Condition (H) > A

 valt(H(X (t),Y (t), 1) > −valt
(

ete−1

Fy (X (t),Y (t), 1)

)
(similar equations for the condition (H) > D+ )

The space of polynomials H(x , y , 1) that satisfy these conditions is a K[x ]–module

 Computing a basis7 costs Õ((δ2 + degD)ω) operations

Same complexity exponent but with some

Advantages:
better complexity exponent over algebraically closed fields: Õ((δ2 + degD)

ω+1
2 ),

potential improvement in the future.

7C.-P. Jeannerod, V. Neiger, É. Schost and G. Villard, J. Symbolic Comput. 2017
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Sketch of the algorithm

Input

C : F (X ,Y ,Z ) = 0 a plane curve of degree δ, D a smooth divisor .

Step 1 : Compute the adjoint divisor A Ë ← Õ(δ3)

Step 2 : Compute the common denominator H Ë ← Õ((δ2 + degD+)
ω)

Step 3 : Compute (H)− D Ë ← Õ((δ2 + degD+)
2)

Step 4 : Compute the numerators Gi (similar to Step 2)

Output

A basis of the Riemann–Roch space L(D) in terms of H and the Gi .

Theorem (Abelard, B–, Couvreur, Lecerf – Journal of Complexity 2022)

The previous algorithm computes L(D) with Õ((δ2 + degD+)
ω) operations in K.
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2)

Step 4 : Compute the numerators Gi Ë ← Õ((δ2 + degD+)
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What to take away?

0. Implementation of AG codes  need of computing Riemann–Roch space L(D)

1. Brill–Noether method  
necessary and sufficient conditions on G and H

such that G/H ∈ L(D)

2. Puiseux series  
management of non–ordinary singular points of

the curve

3. Linear Algebra  Computing H and G in practice

Main result
We can compute Riemann–Roch spaces of any
plane curve with a good complexity exponent.
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Future questions
.
� Computing Riemann–Roch spaces of non–ordinary curves

in positive “small” characteristic (in progress).
Main obstacle: find an alternative tool to Puiseux series
to handle the adjoint condition.

� Implementing the algorithm (soon).

� Improving the complexity exponent in the non–ordinary case.
(Sub–quadratic as in the ordinary case?)
Main obstacle: linear algebra.

� Can we develop a "Brill–Noether" theory
for computing Riemann–Roch spaces of surfaces?

Thank you for your attention!
Questions? e.berardini@tue.nl
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