Computing Riemann-Roch spaces for Algebraic Geometry codes

Elena Berardini

with S. Abelard (Thales), A. Couvreur (Inria), G. Lecerf (LIX)
Project funded by the French "Agence de I'Innovation de Défense"

TU/e
EuroTechPostdoc2 Programme

Arbeitsgemeinschaft in Codierungstheorie und Kryptographie 6 April 2022
I. Introduction to Algebraic Geometry codes (motivation)
II. Introduction to Riemann-Roch spaces
III. Computation of Riemann-Roch spaces
IV. Conclusion ${ }^{8}$ future questions

Linear codes: from Reed-Solomon codes...
Linear code: \mathbb{F}_{q}-vector sub space of \mathbb{F}_{q}^{n}
$[n, k, d]_{q}$-code: code of length \mathbf{n}, dimension \mathbf{k} and minimum distance \mathbf{d}

$$
\left.\begin{array}{c}
\text { dimension } \leftrightarrow \text { information } \\
\text { minimum distance } \leftrightarrow \text { correction capacity }
\end{array}\right\} \quad k+d \leqslant n+1 \text { esingleton, } 1964
$$

Linear codes: from Reed-Solomon codes...
Linear code: \mathbb{F}_{q}-vector sub space of \mathbb{F}_{q}^{n}
$[n, k, d]_{q}$-code: code of length \mathbf{n}, dimension \mathbf{k} and minimum distance \mathbf{d}

$$
\left.\begin{array}{c}
\text { dimension } \leftrightarrow \text { information } \\
\text { minimum distance } \leftrightarrow \text { correction capacity }
\end{array}\right\} \quad k+d \leqslant n+1 \text { esingleton, } 1964
$$

Reed-Solomon (RS) Codes EReed and Solomon, 1960

Linear codes: from Reed-Solomon codes...
Linear code: \mathbb{F}_{q}-vector sub space of \mathbb{F}_{q}^{n}
$[n, k, d]_{q}$-code: code of length \mathbf{n}, dimension \mathbf{k} and minimum distance \mathbf{d}

$$
\left.\begin{array}{c}
\text { dimension } \leftrightarrow \text { information } \\
\text { minimum distance } \leftrightarrow \text { correction capacity }
\end{array}\right\} \quad k+d \leqslant n+1 \text { esingleton, } 1964
$$

Reed-Solomon (RS) Codes Ele Red and Solomon, 1960

\checkmark Optimal parameters: $k+d=n+1$.
\checkmark Effective decoding algorithms
Berlekamp,1968
© Drawback: $n \leqslant q$.
The more q is big, the less the arithmetic is efficient.

...to Algebraic Geometry (AG) codes

Length: $\left|\# C\left(\mathbb{F}_{q}\right)-(q+1)\right| \leq g\lfloor 2 \sqrt{q}\rfloor$

Length: $\left|\# C\left(\mathbb{F}_{q}\right)-(q+1)\right| \leq g\lfloor 2 \sqrt{q}\rfloor$

Proposition

The parameters $[n, k, d]$ of $A G$ codes satisfy

$$
n+1-g \leq k+d \leq n+1
$$

\rightsquigarrow AG codes are a distance g from optimality

AG codes: long story short

1981: Goppa introduces AG codes from algebraic curves

AG codes: long story short

1981: Goppa introduces AG codes from algebraic curves

1982: Tsfasman, Vlăduț and Zink use AG codes for beating the Gilbert-Varshamov bound

1981: Goppa introduces AG codes from algebraic curves

1982: Tsfasman, Vlăduț and Zink use AG codes for beating the Gilbert-Varshamov bound

$X X c$: different familles of curves are studied to obtain good AG codes
\hookrightarrow the most used curves are the ones for which Riemann-Roch spaces are already known (e.g. Hermitian curves)

1981: Goppa introduces AG codes from algebraic curves

1982: Tsfasman, Vlăduț and Zink use AG codes for beating the Gilbert-Varshamov bound

$X X c$: different familles of curves are studied to obtain good AG codes
\hookrightarrow the most used curves are the ones for which Riemann-Roch spaces are already known (e.g. Hermitian curves)

XXIc: AG codes are used in new applications from information theory

Riemann-Roch spaces: AG codes and beyond

AG codes are involved in

- Secret sharing ${ }^{1}$
- Verifiable computing ${ }^{2}$
- ...
\rightsquigarrow need of computing Riemann-Roch spaces of curves
${ }^{1}$ R. Cramer, M. Rambaud and C. Xing, Crypto 2021
${ }^{2}$ S. Bordage, M. Lhotel, J. Nardi and H. Randriam, preprint 2022

AG codes are involved in

- Secret sharing ${ }^{1}$
- Verifiable computing ${ }^{2}$
- ...
\rightsquigarrow need of computing Riemann-Roch spaces of curves
Can be used also for...
- Arithmetic operations on Jacobians of curves ${ }^{3}$
- Symbolic integration ${ }^{4}$

[^0]Riemann-Roch spaces of curves
A divisor on a curve $\mathcal{C}: D=\sum_{P \in \mathcal{C}} n_{P} P, n_{P} \in \mathbb{Z}$

The Riemann-Roch space $L(D)$ is the space of functions $\frac{G}{H} \in \mathbb{K}(\mathcal{C})$ such that:

- if $n_{P}<0$ then P must be a zero of G (of multiplicity $\geqslant-n_{P}$)
- if $n_{P}>0$ then P can be a zero of H (of multiplicity $\leqslant n_{P}$)
- G / H has no other poles outside the points P with $n_{P}>0$

Here: Z must be a zero of G, the P_{i} can be zeros of H

A divisor on a curve $\mathcal{C}: D=\sum_{P \in \mathcal{C}} n_{P} P, n_{P} \in \mathbb{Z}$

The Riemann-Roch space $L(D)$ is the space of functions $\frac{G}{H} \in \mathbb{K}(\mathcal{C})$ such that:

- if $n_{P}<0$ then P must be a zero of G (of multiplicity $\geqslant-n_{P}$)
- if $n_{P}>0$ then P can be a zero of H (of multiplicity $\leqslant n_{P}$)
- G / H has no other poles outside the points P with $n_{P}>0$

Here: Z must be a zero of G, the P_{i} can be zeros of H

Riemann-Roch Theorem \rightsquigarrow dimension of $L(D)=\operatorname{deg} D+1-g$ where the degree of a divisor is $\operatorname{deg} D=\sum_{P} n_{P} \operatorname{deg}(P)$

Let $\mathcal{C}=\mathbb{P}^{1}, P=[0: 1]$ and $Q=[1: 1]$. Let $D=P-Q$, then

$$
f \in L(D) \Longleftrightarrow\left\{\begin{array}{l}
\mathrm{f} \text { has a zero of order at least } 1 \text { at } Q \\
\mathrm{f} \text { can have a pole of order at most } 1 \text { at } P \\
\mathrm{f} \text { has not other poles outside } P
\end{array}\right.
$$

Let $\mathcal{C}=\mathbb{P}^{1}, P=[0: 1]$ and $Q=[1: 1]$. Let $D=P-Q$, then

$$
f \in L(D) \Longleftrightarrow\left\{\begin{array}{l}
\mathrm{f} \text { has a zero of order at least } 1 \text { at } Q \\
\mathrm{f} \text { can have a pole of order at most } 1 \text { at } P \\
\mathrm{f} \text { has not other poles outside } P
\end{array}\right.
$$

$$
f=\frac{x-1}{x} \text { is a solution }
$$

Let $\mathcal{C}=\mathbb{P}^{1}, P=[0: 1]$ and $Q=[1: 1]$. Let $D=P-Q$, then

$$
\begin{aligned}
& f \in L(D) \Longleftrightarrow\left\{\begin{array}{l}
\mathrm{f} \text { has a zero of order at least } 1 \text { at } Q \\
\mathrm{f} \text { can have a pole of order at most } 1 \text { at } P \\
\mathrm{f} \text { has not other poles outside } P
\end{array}\right. \\
& \qquad f=\frac{x-1}{X} \text { is a solution } \\
& g=0, \operatorname{deg} D=0 \xrightarrow[\text { Theorem }]{\text { Riemann-Roch }} \operatorname{dim} L(D)=\operatorname{deg} D+1-g=1 \\
& \\
& \rightarrow f \text { generates the space of solutions }
\end{aligned}
$$

Let $\mathcal{C}=\mathbb{P}^{1}, P=[0: 1]$ and $Q=[1: 1]$. Let $D=P-Q$, then

$$
\begin{aligned}
& f \in L(D) \Longleftrightarrow\left\{\begin{array}{l}
\mathrm{f} \text { has a zero of order at least } 1 \text { at } Q \\
\mathrm{f} \text { can have a pole of order at most } 1 \text { at } P \\
\mathrm{f} \text { has not other poles outside } P
\end{array}\right. \\
& \qquad f=\frac{x-1}{X} \text { is a solution } \\
& g=0, \operatorname{deg} D=0 \xrightarrow[\text { Theorem }]{\text { Riemann-Roch }} \operatorname{dim} L(D)=\operatorname{deg} D+1-g=1 \\
& \\
& \rightarrow f \text { generates the space of solutions }
\end{aligned}
$$

© no explicit method to compute a basis of $L(D)$
How do we solve the problem in general?

Geometric Method:

(Brill-Noether theory~1874)

- Goppa, Le Brigand-Risler (80's)
- Huang-lerardi (90's)
- Khuri-Makdisi (2007)
- Le Gluher-Spaenlehauer (2018)
- Abelard-Couvreur-Lecerf (2020)

Arithmetic Method:

(Ideals in function fields)

- Hensel-Landberg (1902)
- Coates (1970)
- Davenport (1981)
- Hess (2001)

Geometric Method:

(Brill-Noether theory~1874)

- Goppa, Le Brigand-Risler (80's)
- Huang-lerardi (90's)
- Khuri-Makdisi (2007)
- Le Gluher-Spaenlehauer (2018)
- Abelard-Couvreur-Lecerf (2020)

Arithmetic Method:

(Ideals in function fields)

- Hensel-Landberg (1902)
- Coates (1970)
- Davenport (1981)
- Hess (2001)

Ordinary/nodal curves: Las Vegas algorithm computing $L(D)$ in sub-quadratic time
Non-ordinary curves: \quad no explicit complexity exponent

$\mathcal{C}: F(x, y, z)=0$ - plane curve, F absolutely irreducible of degree δ
$\operatorname{Sing}(\mathcal{C})$ - the singular points of \mathcal{C}, assumed in the affine chart $z=1$
$(H)=\sum_{P \in \mathcal{C}} \operatorname{ord}_{P}(H) P$ - divisor of zeros of H with multiplicity
$D \geqslant D^{\prime} \rightsquigarrow D-D^{\prime}=\sum n_{P} P$ with $n_{P} \geqslant 0 \forall P\left(D-D^{\prime}\right.$ is effective $)$
We can always write $D=D_{+}-D_{-}$with D_{+}and D_{-}two effective divisors
$\mathcal{C}: F(x, y, z)=0$ - plane curve, F absolutely irreducible of degree δ
$\operatorname{Sing}(\mathcal{C})$ - the singular points of \mathcal{C}, assumed in the affine chart $z=1$
$(H)=\sum_{P \in \mathcal{C}} \operatorname{ord}_{P}(H) P$ - divisor of zeros of H with multiplicity
$D \geqslant D^{\prime} \rightsquigarrow D-D^{\prime}=\sum n_{P} P$ with $n_{P} \geqslant 0 \forall P\left(D-D^{\prime}\right.$ is effective $)$
We can always write $D=D_{+}-D_{-}$with D_{+}and D_{-}two effective divisors
\mathbb{K} - perfect field (zero or positive characteristic)
$\mathbb{K}[[x]]$ - ring of power series in x
$\mathbb{K}((x))$ - Laurent series field
$\overline{\mathbb{K}}\langle x\rangle$ - Puiseux series field
$\mathcal{C}: F(x, y, z)=0$ - plane curve, F absolutely irreducible of degree δ
$\operatorname{Sing}(\mathcal{C})$ - the singular points of \mathcal{C}, assumed in the affine chart $z=1$
$(H)=\sum_{P \in \mathcal{C}} \operatorname{ord}(H) P$ - divisor of zeros of H with multiplicity
$D \geqslant D^{\prime} \rightsquigarrow D-D^{\prime}=\sum n_{P} P$ with $n_{P} \geqslant 0 \forall P\left(D-D^{\prime}\right.$ is effective $)$
We can always write $D=D_{+}-D_{-}$with D_{+}and D_{-}two effective divisors
\mathbb{K} - perfect field (zero or positive characteristic)
$\mathbb{K}[[x]]$ - ring of power series in x
$\mathbb{K}((x))$ - Laurent series field
$\overline{\mathbb{K}}\langle x\rangle$ - Puiseux series field
© well defined in characteristic 0 or positive "large"

Description of $L(D)$ for $\mathcal{C}: F(X, Y, Z)=0$ a plane projective curve.
The non-zero elements are of the form $\frac{G_{i}}{H}$ where

- H satisfies $(H) \geqslant D_{+}$
- H vanishes at any singular point of \mathcal{C} with ad hoc multiplicity
- $\operatorname{deg} G_{i}=\operatorname{deg} H, G_{i}$ prime with F and $\left(G_{i}\right) \geqslant(H)-D$

Description of $L(D)$ for $\mathcal{C}: F(X, Y, Z)=0$ a plane projective curve.
The non-zero elements are of the form $\frac{G_{i}}{H}$ where

- H satisfies $(H) \geqslant D_{+}$
- H vanishes at any singular point of \mathcal{C} with ad hoc multiplicity
- $\operatorname{deg} G_{i}=\operatorname{deg} H, G_{i}$ prime with F and $\left(G_{i}\right) \geqslant(H)-D$

How do we manage singular points?

Description of $L(D)$ for $\mathcal{C}: F(X, Y, Z)=0$ a plane projective curve.
The non-zero elements are of the form $\frac{G_{i}}{H}$ where

- H satisfies $(H) \geqslant D_{+}$
- H vanishes at any singular point of \mathcal{C} with ad hoc multiplicity
- $\operatorname{deg} G_{i}=\operatorname{deg} H, G_{i}$ prime with F and $\left(G_{i}\right) \geqslant(H)-D$

> How do we manage singular points?
the adjoint divisor \mathcal{A} "encodes" the singular points of \mathcal{C} with their multiplicities

Description of $L(D)$ for $\mathcal{C}: F(X, Y, Z)=0$ a plane projective curve.
The non-zero elements are of the form $\frac{G_{i}}{H}$ where

- H satisfies $(H) \geqslant D_{+}$
- H satisfies $(H) \geqslant \mathcal{A}$ (we say that " H is adjoint to the curve")
- $\operatorname{deg} G_{i}=\operatorname{deg} H, G_{i}$ prime with F and $\left(G_{i}\right) \geqslant(H)-D$

How do we manage singular points?

the adjoint divisor \mathcal{A} "encodes" the singular points of \mathcal{C} with their multiplicities

Description of $L(D)$ for $\mathcal{C}: F(X, Y, Z)=0$ a plane projective curve.
The non-zero elements are of the form $\frac{G_{i}}{H}$ where

- H satisfies $(H) \geqslant D_{+}$
- H satisfies $(H) \geqslant \mathcal{A}$
- $\operatorname{deg} G_{i}=\operatorname{deg} H, G_{i}$ prime with F and $\left(G_{i}\right) \geqslant(H)-D$

How do we manage singular points?

the adjoint divisor \mathcal{A} "encodes" the singular points of \mathcal{C} with their multiplicities
How do we represent divisors?

Description of $L(D)$ for $\mathcal{C}: F(X, Y, Z)=0$ a plane projective curve.

The non-zero elements are of the form $\frac{G_{i}}{H}$ where

- H satisfies $(H) \geqslant D_{+}$
- H satisfies $(H) \geqslant \mathcal{A}$
- $\operatorname{deg} G_{i}=\operatorname{deg} H, G_{i}$ prime with F and $\left(G_{i}\right) \geqslant(H)-D$

How do we manage singular points?

the adjoint divisor \mathcal{A} "encodes" the singular points of \mathcal{C} with their multiplicities
How do we represent divisors?
series expansions of multi-set representations $\left(\left(P_{i}\right)_{i}, n_{i}\right)$
operations on divisors with negligible cost

Input

$\mathcal{C}: F(X, Y, Z)=0$ a plane curve of degre δ, D a smooth divisor.

Step 1: Compute the adjoint divisor \mathcal{A}
Step 2 : Compute the common denominator H
Step 3 : Compute $(H)-D$
Step 4: Compute the numerators G_{i} (similar to Step 2)

Output
A basis of the Riemann-Roch space $L(D)$ in terms of H and the G_{i}.

Input

$\mathcal{C}: F(X, Y, Z)=0$ a plane curve of degre δ, D a smooth divisor.

Step 1: Compute the adjoint divisor \mathcal{A}
Step 2 : Compute the common denominator H
Step 3 : Compute $(H)-D \vee \leftarrow \tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D_{+}\right)^{2}\right)$
Step 4: Compute the numerators G_{i} (similar to Step 2)

Output

A basis of the Riemann-Roch space $L(D)$ in terms of H and the G_{i}.

Input

$\mathcal{C}: F(X, Y, Z)=0$ a plane curve of degre δ, D a smooth divisor.

Step 1: Compute the adjoint divisor \mathcal{A}
Step 2 : Compute the common denominator H
Step 3 : Compute $(H)-D \vee \leftarrow \tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D_{+}\right)^{2}\right)$
Step 4: Compute the numerators G_{i} (similar to Step 2)

Output

A basis of the Riemann-Roch space $L(D)$ in terms of H and the G_{i}.

Warm up: adjoint divisor in the ordinary case
Definition
Let $P \in \operatorname{Sing}(\mathcal{C})$. The local adjoint divisor is

$$
\mathcal{A}_{P}=-\sum_{\mathcal{P} \mid \mathcal{P}} \operatorname{val}_{\mathcal{P}}\left(\frac{d x}{F_{y}(x, y, 1)}\right) \mathcal{P} .
$$

Definition

Let $P \in \operatorname{Sing}(\mathcal{C})$. The local adjoint divisor is

$$
\mathcal{A}_{P}=-\sum_{\mathcal{P} \mid P} \operatorname{val}_{\mathcal{P}}\left(\frac{d x}{F_{y}(x, y, 1)}\right) \mathcal{P}
$$

Let $P \in \operatorname{Sing}(\mathcal{C})$ ordinary of multiplicity m, wlog $P=(0: 0: 1)$. Then F locally factorises as

$$
F(x, y, 1)=u(x, y) \prod_{i=1}^{m}\left(y-\varphi_{i}(x)\right)
$$

with $u \in \overline{\mathbb{K}}[[x, y]]$ invertible, $\varphi_{i}(x) \in x \overline{\mathbb{K}}[[x]]$ and $\varphi_{i}^{\prime}(0) \neq \varphi_{j}^{\prime}(0)$.

Definition

Let $P \in \operatorname{Sing}(\mathcal{C})$. The local adjoint divisor is

$$
\mathcal{A}_{P}=-\sum_{\mathcal{P} \mid \mathcal{P}} \operatorname{val}_{\mathcal{P}}\left(\frac{d x}{F_{y}(x, y, 1)}\right) \mathcal{P}
$$

Let $P \in \operatorname{Sing}(\mathcal{C})$ ordinary of multiplicity m, wlog $P=(0: 0: 1)$. Then F locally factorises as

$$
F(x, y, 1)=u(x, y) \prod_{i=1}^{m}\left(y-\varphi_{i}(x)\right)
$$

with $u \in \overline{\mathbb{K}}[[x, y]]$ invertible, $\varphi_{i}(x) \in x \overline{\mathbb{K}}[[x]]$ and $\varphi_{i}^{\prime}(0) \neq \varphi_{j}^{\prime}(0)$.

$$
\text { Germ of the curve } \longleftrightarrow \text { place } \mathcal{P}_{i} \text { in the }
$$

parametrized by $\varphi_{i}(x) \quad \longleftrightarrow \quad$ functions field $\overline{\mathbb{K}}(\mathcal{C})$

Definition

Let $P \in \operatorname{Sing}(\mathcal{C})$. The local adjoint divisor is

$$
\mathcal{A}_{P}=-\sum_{\mathcal{P} \mid P} \operatorname{val}_{\mathcal{P}}\left(\frac{d x}{F_{y}(x, y, 1)}\right) \mathcal{P}
$$

Let $P \in \operatorname{Sing}(\mathcal{C})$ ordinary of multiplicity m, wlog $P=(0: 0: 1)$. Then F locally factorises as

$$
F(x, y, 1)=u(x, y) \prod_{i=1}^{m}\left(y-\varphi_{i}(x)\right)
$$

with $u \in \overline{\mathbb{K}}[[x, y]]$ invertible, $\varphi_{i}(x) \in x \overline{\mathbb{K}}[[x]]$ and $\varphi_{i}^{\prime}(0) \neq \varphi_{j}^{\prime}(0)$.

Germ of the curve
parametrized by $\varphi_{i}(x)$
place \mathcal{P}_{i} in the
$\longleftrightarrow \quad$ functions field $\overline{\mathbb{K}}(\mathcal{C})$

The local adjoint divisor becomes $\quad \mathcal{A}_{P}=(m-1) \sum_{i=1}^{m} \mathcal{P}_{i}$.

Let $F \in \mathbb{K}[x, y]$ be absolutely irreducible, monic in y and of degree d in $y . F \in \mathbb{K}((x))[y]$ has d distinct roots in $\overline{\mathbb{K}}\langle\langle x\rangle\rangle, \varphi_{1}, \ldots, \varphi_{d}$, and writes as

$$
F=\prod_{i=1}^{d}\left(y-\varphi_{i}\right)=\prod_{i=1}^{d}\left(y-\sum_{j=n}^{\infty} \beta_{i, j} x^{j / e_{i}}\right)
$$

Let $F \in \mathbb{K}[x, y]$ be absolutely irreducible, monic in y and of degree d in $y . F \in \mathbb{K}((x))[y]$ has d distinct roots in $\overline{\mathbb{K}}\langle\langle x\rangle\rangle, \varphi_{1}, \ldots, \varphi_{d}$, and writes as

$$
F=\prod_{i=1}^{d}\left(y-\varphi_{i}\right)=\prod_{i=1}^{d}\left(y-\sum_{j=n}^{\infty} \beta_{i, j} \chi^{j / e_{i}}\right) .
$$

We fix φ of degree e, ζ a primitive e-th root of unity. For $0 \leqslant k<e$ we can construct other e Puiseux series by replacing $x^{1 / e}$ with $\zeta^{k} x^{1 / e}$.

Adjoint condition via Puiseux series

Let $F \in \mathbb{K}[x, y]$ be absolutely irreducible, monic in y and of degree d in $y . F \in \mathbb{K}((x))[y]$ has d distinct roots in $\overline{\mathbb{K}}\langle\langle x\rangle\rangle, \varphi_{1}, \ldots, \varphi_{d}$, and writes as

$$
F=\prod_{i=1}^{d}\left(y-\varphi_{i}\right)=\prod_{i=1}^{d}\left(y-\sum_{j=n}^{\infty} \beta_{i, j} x^{j / e_{i}}\right) .
$$

We fix φ of degree e, ζ a primitive e-th root of unity. For $0 \leqslant k<e$ we can construct other e Puiseux series by replacing $x^{1 / e}$ with $\zeta^{k} x^{1 / e}$. They are all equivalent and represented by...

Definition

A Rational Puiseux Expansion (RPE) is a pair $(X(t), Y(t))=\left(\gamma t^{e}, \sum_{j=n}^{\infty} \beta_{j} t^{j}\right)$ such that $F(X(t), Y(t))=0$.

Adjoint condition via Puiseux series

Let $F \in \mathbb{K}[x, y]$ be absolutely irreducible, monic in y and of degree d in $y . F \in \mathbb{K}((x))[y]$ has d distinct roots in $\overline{\mathbb{K}}\langle\langle x\rangle\rangle, \varphi_{1}, \ldots, \varphi_{d}$, and writes as

$$
F=\prod_{i=1}^{d}\left(y-\varphi_{i}\right)=\prod_{i=1}^{d}\left(y-\sum_{j=n}^{\infty} \beta_{i, j} X^{j / e_{i}}\right) .
$$

We fix φ of degree e, ζ a primitive e-th root of unity. For $0 \leqslant k<e$ we can construct other e Puiseux series by replacing $x^{1 / e}$ with $\zeta^{k} x^{1 / e}$. They are all equivalent and represented by...

Definition

A Rational Puiseux Expansion (RPE) is a pair $(X(t), Y(t))=\left(\gamma t^{e}, \sum_{j=n}^{\infty} \beta_{j} t^{j}\right)$ such that $F(X(t), Y(t))=0$.

Rational Puiseux
Expansion of $F(x, y, 1)$
places of $\overline{\mathbb{K}}(\mathcal{C})$ in
the chart $z=1$

Example

$$
\mathcal{C}: y^{2}-x^{3}=0 \text { in the chart } z=1
$$

Example

$\mathcal{C}: y^{2}-x^{3}=0$ in the chart $z=1$
$(0,0)$ unique singular point, non ordinary

Example

$\mathcal{C}: y^{2}-x^{3}=0$ in the chart $z=1$
$(0,0)$ unique singular point, non ordinary
Puiseux series: $\left(y-x^{3 / 2}\right)\left(y+x^{3 / 2}\right)=0$

Example

$\mathcal{C}: y^{2}-x^{3}=0$ in the chart $z=1$
$(0,0)$ unique singular point, non ordinary
Puiseux series: $\left(y-x^{3 / 2}\right)\left(y+x^{3 / 2}\right)=0$
(Unique) RPE: $(X(t), Y(t))=\left(t^{2}, t^{3}\right)$

Example

$\mathcal{C}: y^{2}-x^{3}=0$ in the chart $z=1$
$(0,0)$ unique singular point, non ordinary
Puiseux series: $\left(y-x^{3 / 2}\right)\left(y+x^{3 / 2}\right)=0$
(Unique) RPE: $(X(t), Y(t))=\left(t^{2}, t^{3}\right)$
\triangle the RPE are often defined over an extension of \mathbb{K}. It is an algorithmic question to take the minimal extension of the field.

Let $P \in \operatorname{Sing}(\mathcal{C})$ w.l.o.g. $P=(0: 0: 1)$. Then F locally factorises as

$$
F(x, y, 1)=u(x, y) \prod_{i=1}^{m}\left(y-\varphi_{i}(x)\right)
$$

with $u \in \mathbb{K}[[x, y]]$ invertible and φ_{i} Puiseux series of $F \in \overline{\mathbb{K}}[[x]][y]$.

Let $P \in \operatorname{Sing}(\mathcal{C})$ w.l.o.g. $P=(0: 0: 1)$. Then F locally factorises as

$$
F(x, y, 1)=u(x, y) \prod_{i=1}^{m}\left(y-\varphi_{i}(x)\right)
$$

with $u \in \mathbb{K}[[x, y]]$ invertible and φ_{i} Puiseux series of $F \in \overline{\mathbb{K}}[[x]][y]$.

$$
\left\{\varphi_{1}, \ldots, \varphi_{m}\right\} \quad \rightsquigarrow
$$

$$
\text { RPEs/places }\left(X_{i}(t), Y_{i}(t)\right)
$$

$$
i \in\{1, \ldots, s\}, s \leqslant m
$$

Let $P \in \operatorname{Sing}(\mathcal{C})$ w.l.o.g. $P=(0: 0: 1)$. Then F locally factorises as

$$
F(x, y, 1)=u(x, y) \prod_{i=1}^{m}\left(y-\varphi_{i}(x)\right)
$$

with $u \in \mathbb{K}[[x, y]]$ invertible and φ_{i} Puiseux series of $F \in \overline{\mathbb{K}}[[x]][y]$.

$$
\begin{array}{cc}
\left\{\varphi_{1}, \ldots, \varphi_{m}\right\}
\end{array} \rightsquigarrow \quad \begin{gathered}
\text { RPEs } / \text { places }\left(X_{i}(t), Y_{i}(t)\right) \\
i \in\{1, \ldots, s\}, s \leqslant m
\end{gathered}
$$

The local adjoint divisor becomes

$$
\mathcal{A}_{P}=-\sum_{\mathcal{P} \mid P} \operatorname{val}_{t}\left(\frac{e t^{e-1}}{F_{y}(X(t), Y(t), 1)}\right) \mathcal{P}
$$

Let $P \in \operatorname{Sing}(\mathcal{C})$ w.l.o.g. $P=(0: 0: 1)$. Then F locally factorises as

$$
F(x, y, 1)=u(x, y) \prod_{i=1}^{m}\left(y-\varphi_{i}(x)\right)
$$

with $u \in \mathbb{K}[[x, y]]$ invertible and φ_{i} Puiseux series of $F \in \overline{\mathbb{K}}[[x]][y]$.

$$
\begin{array}{cc}
\left\{\varphi_{1}, \ldots, \varphi_{m}\right\}
\end{array} \rightsquigarrow \quad \begin{gathered}
\mathrm{RPEs} / \text { places }\left(X_{i}(t), Y_{i}(t)\right) \\
i \in\{1, \ldots, s\}, s \leqslant m
\end{gathered}
$$

The local adjoint divisor becomes

$$
\mathcal{A}_{P}=-\sum_{\mathcal{P} \mid P} \operatorname{val}_{t}\left(\frac{e t^{e-1}}{F_{y}(X(t), Y(t), 1)}\right) \mathcal{P} .
$$

In practice: algorithm for computing Puiseux series ${ }^{5} \rightsquigarrow \mathcal{A}$ computed with $\tilde{O}\left(\delta^{3}\right)$ operations.

[^1]
Example

$\mathcal{C}: y^{2}-x^{3}=0$ in the chart $z=1$

$(0,0)$ unique singular point, non-ordinary
Puiseux series: $\left(y-x^{3 / 2}\right)\left(y+x^{3 / 2}\right)=0$
(Unique) RPE : $(X(t), Y(t))=\left(t^{2}, t^{3}\right)$
Adjoint condition: $F_{y}=2 y, x=t^{2} \Rightarrow d x=2 t$

Example

$\mathcal{C}: y^{2}-x^{3}=0$ in the chart $z=1$

$(0,0)$ unique singular point, non-ordinary
Puiseux series: $\left(y-x^{3 / 2}\right)\left(y+x^{3 / 2}\right)=0$
(Unique) RPE : $(X(t), Y(t))=\left(t^{2}, t^{3}\right)$
Adjoint condition: $F_{y}=2 y, x=t^{2} \Rightarrow d x=2 t$

$$
\operatorname{val}_{t}\left(\frac{e t^{e-1}}{F_{y}(X(t), Y(t), 1)}\right)=\operatorname{val}_{t}\left(\frac{2 t}{2 t^{3}}\right)=\operatorname{val}_{t}\left(\frac{1}{t^{2}}\right)=-2
$$

Example

$\mathcal{C}: y^{2}-x^{3}=0$ in the chart $z=1$

$(0,0)$ unique singular point, non-ordinary
Puiseux series: $\left(y-x^{3 / 2}\right)\left(y+x^{3 / 2}\right)=0$
(Unique) RPE : $(X(t), Y(t))=\left(t^{2}, t^{3}\right)$
Adjoint condition: $F_{y}=2 y, x=t^{2} \Rightarrow d x=2 t$
$\operatorname{val}_{t}\left(\frac{e t^{e-1}}{F_{y}(X(t), Y(t), 1)}\right)=\operatorname{val}_{t}\left(\frac{2 t}{2 t^{3}}\right)=\operatorname{val}_{t}\left(\frac{1}{t^{2}}\right)=-2$
H is adjoint $\Longleftrightarrow \operatorname{val}_{t} H\left(t^{2}, t^{3}\right) \geq 2$

```
Input
C}:F(X,Y,Z)=0 a plane curve of degree \delta,D a smooth divisor.
```

Step 1: Compute the adjoint divisor $\mathcal{A} \checkmark \leftarrow \tilde{O}\left(\delta^{3}\right)$
Step 2 : Compute the common denominator H
Step $3: \quad$ Compute $(H)-D \leftarrow \tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D_{+}\right)^{2}\right)$
Step 4 : Compute the numerators G_{i} (similar to Step 2)

Output

A basis of the Riemann-Roch space $L(D)$ in terms of H and the G_{i}.

```
Input
C}:F(X,Y,Z)=0 a plane curve of degree \delta,D a smooth divisor.
```

Step 1: Compute the adjoint divisor $\mathcal{A} \checkmark \leftarrow \tilde{O}\left(\delta^{3}\right)$
Step 2 : Compute the common denominator H
Step $3: \quad$ Compute $(H)-D \leftarrow \tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D_{+}\right)^{2}\right)$
Step 4 : Compute the numerators G_{i} (similar to Step 2)

Output

A basis of the Riemann-Roch space $L(D)$ in terms of H and the G_{i}.

Let $d:=\operatorname{deg} H$.

$$
\text { Condition }(H) \geqslant \mathcal{A}+D_{+}
$$

\rightsquigarrow linear system with $\operatorname{deg} \mathcal{A}+\operatorname{deg} D_{+} \sim \delta^{2}+\operatorname{deg} D_{+}$equations
\rightsquigarrow Gauss elimination costs

$$
\tilde{O}\left(\left(d \delta+\delta^{2}+\operatorname{deg} D\right)^{\omega}\right) \text { operations }^{6} \text { in } \mathbb{K}
$$

[^2]Let $d:=\operatorname{deg} H$.

$$
\text { Condition }(H) \geqslant \mathcal{A}+D_{+}
$$

\rightsquigarrow linear system with $\operatorname{deg} \mathcal{A}+\operatorname{deg} D_{+} \sim \delta^{2}+\operatorname{deg} D_{+}$equations
\rightsquigarrow Gauss elimination costs

$$
\tilde{O}\left(\left(d \delta+\delta^{2}+\operatorname{deg} D\right)^{\omega}\right) \text { operations }^{6} \text { in } \mathbb{K}
$$

How big is d ?
We showed that $d=\left\lceil\frac{(\delta-1)(\delta-2)+\operatorname{deg} D_{+}}{\delta}\right\rceil$ is enough
\rightsquigarrow denominator computed with $\tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D_{+}\right)^{\omega}\right)$ operations in \mathbb{K}

[^3]\[

$$
\begin{gathered}
\text { Condition }(H) \geqslant \mathcal{A} \\
\rightsquigarrow \operatorname{val}_{t}\left(H(X(t), Y(t), 1) \geqslant-\operatorname{val}_{t}\left(\frac{e t^{e-1}}{F_{y}(X(t), Y(t), 1)}\right)\right.
\end{gathered}
$$
\]

(similar equations for the condition $(H) \geqslant D_{+}$)
The space of polynomials $H(x, y, 1)$ that satisfy these conditions is a $\mathbb{K}[x]$-module
\rightsquigarrow Computing a basis ${ }^{7}$ costs $\tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D\right)^{\omega}\right)$ operations

[^4]\[

$$
\begin{gathered}
\text { Condition }(H) \geqslant \mathcal{A} \\
\rightsquigarrow \operatorname{val}_{t}\left(H(X(t), Y(t), 1) \geqslant-\operatorname{val}_{t}\left(\frac{e t^{e-1}}{F_{y}(X(t), Y(t), 1)}\right)\right.
\end{gathered}
$$
\]

(similar equations for the condition $(H) \geqslant D_{+}$)
The space of polynomials $H(x, y, 1)$ that satisfy these conditions is a $\mathbb{K}[x]$-module
\rightsquigarrow Computing a basis ${ }^{7}$ costs $\tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D\right)^{\omega}\right)$ operations
Same complexity exponent but with some

Advantages:

- better complexity exponent over algebraically closed fields: $\tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D\right)^{\frac{\omega+1}{2}}\right)$,
- potential improvement in the future.

[^5]
Input

$\mathcal{C}: F(X, Y, Z)=0$ a plane curve of degree δ, D a smooth divisor.
Step 1: Compute the adjoint divisor $\mathcal{A} \checkmark \leftarrow \tilde{O}\left(\delta^{3}\right)$
Step 2 : Compute the common denominator $H \vee \leftarrow \tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D_{+}\right)^{\omega}\right)$
Step 3 : Compute $(H)-D \vee \leftarrow \tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D_{+}\right)^{2}\right)$
Step 4 : Compute the numerators G_{i} (similar to Step 2)

Output

A basis of the Riemann-Roch space $L(D)$ in terms of H and the G_{i}.

Sketch of the algorithm

Input

$\mathcal{C}: F(X, Y, Z)=0$ a plane curve of degree δ, D a smooth divisor.
Step 1: Compute the adjoint divisor $\mathcal{A} \checkmark \leftarrow \tilde{O}\left(\delta^{3}\right)$
Step 2 : Compute the common denominator $H \vee \leftarrow \tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D_{+}\right)^{\omega}\right)$
Step 3 : Compute $(H)-D \vee \leftarrow \tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D_{+}\right)^{2}\right)$
Step 4: Compute the numerators $G_{i} \checkmark \leftarrow \tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D_{+}\right)^{\omega}\right)$

Output

A basis of the Riemann-Roch space $L(D)$ in terms of H and the G_{i}.
Theorem (Abelard, B-, Couvreur, Lecerf - Journal of Complexity 2022)
The previous algorithm computes $L(D)$ with $\tilde{\mathcal{O}}\left(\left(\delta^{2}+\operatorname{deg} D_{+}\right)^{\omega}\right)$ operations in \mathbb{K}.

0 . Implementation of AG codes

1. Brill-Noether method
2. Puiseux series
3. Linear Algebra
\rightsquigarrow need of computing Riemann-Roch space $L(D)$ necessary and sufficient conditions on G and H such that $G / H \in L(D)$
management of non-ordinary singular points of the curve

Computing H and G in practice

0 . Implementation of AG codes

1. Brill-Noether method
2. Puiseux series
3. Linear Algebra
\rightsquigarrow need of computing Riemann-Roch space $L(D)$ necessary and sufficient conditions on G and H such that $G / H \in L(D)$
management of non-ordinary singular points of the curve

Computing H and G in practice

Main result
We can compute Riemann-Roch spaces of any plane curve with a good complexity exponent.
\diamond Computing Riemann-Roch spaces of non-ordinary curves in positive "small" characteristic (in progress).
Main obstacle: find an alternative tool to Puiseux series to handle the adjoint condition.
\diamond Computing Riemann-Roch spaces of non-ordinary curves in positive "small" characteristic (in progress).
Main obstacle: find an alternative tool to Puiseux series to handle the adjoint condition.
\diamond Implementing the algorithm (soon).
\diamond Computing Riemann-Roch spaces of non-ordinary curves in positive "small" characteristic (in progress).
Main obstacle: find an alternative tool to Puiseux series to handle the adjoint condition.
\diamond Implementing the algorithm (soon).
\diamond Improving the complexity exponent in the non-ordinary case.
 (Sub-quadratic as in the ordinary case?)
Main obstacle: linear algebra.
\diamond Computing Riemann-Roch spaces of non-ordinary curves in positive "small" characteristic (in progress).
Main obstacle: find an alternative tool to Puiseux series to handle the adjoint condition.
\diamond Implementing the algorithm (soon).
\diamond Improving the complexity exponent in the non-ordinary case.
 (Sub-quadratic as in the ordinary case?)
Main obstacle: linear algebra.
\diamond Can we develop a "Brill-Noether" theory for computing Riemann-Roch spaces of surfaces?
\diamond Computing Riemann-Roch spaces of non-ordinary curves in positive "small" characteristic (in progress).
Main obstacle: find an alternative tool to Puiseux series to handle the adjoint condition.
\diamond Implementing the algorithm (soon).
\diamond Improving the complexity exponent in the non-ordinary case.
 (Sub-quadratic as in the ordinary case?)
Main obstacle: linear algebra.
\diamond Can we develop a "Brill-Noether" theory for computing Riemann-Roch spaces of surfaces?

Thank you for your attention!
Questions? e.berardini@tue.nl

[^0]: ${ }^{1}$ R. Cramer, M. Rambaud and C. Xing, Crypto 2021
 ${ }^{2}$ S. Bordage, M. Lhotel, J. Nardi and H. Randriam, preprint 2022
 ${ }^{3}$ K. Khuri-Makdisi, Mathematics of Computations, 2007
 ${ }^{4}$ J.H. Davenport, Intern. Symp. on Symbolic et Algebraic Manipulation, 1979

[^1]: ${ }^{5}$ A. Poteaux and M. Weimann, Annales Herni Lebesgue, 2021

[^2]: ${ }^{6} 2 \leqslant \omega \leqslant 3$ is a feasible exponent for linear algebra $(\omega=2.373)$

[^3]: ${ }^{6} 2 \leqslant \omega \leqslant 3$ is a feasible exponent for linear algebra $(\omega=2.373)$

[^4]: ${ }^{7}$ C.-P. Jeannerod, V. Neiger, É. Schost and G. Villard, J. Symbolic Comput. 2017

[^5]: ${ }^{7}$ C.-P. Jeannerod, V. Neiger, É. Schost and G. Villard, J. Symbolic Comput. 2017

