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Riemann–Roch spaces of curves

A divisor on a curve C: D =
∑

P∈C nPP, nP ∈ Z

D=P1 + P2 + P3−Z

P2

P1 Z

P3

The Riemann–Roch space L(D) is the
space of functions G

H ∈ K(C) such that:

I if nP < 0 then P must be a zero
of G (of multiplicity > −nP)

I if nP > 0 then P can be a zero of
H (of multiplicity 6 nP)

I G/H has no other poles outside
the points P with nP > 0

Here: Z must be a zero of G , the Pi can be
zeros of H

Riemann–Roch Theorem  dimension of L(D) = degD + 1− g

where the degree of a divisor is degD =
∑

P nP deg(P)
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Toy example
Let C = P1, P = [0 : 1] and Q = [1 : 1]. Let D = P − Q, then

f ∈ L(D) ⇐⇒


f has a zero of order at least 1 at Q
f can have a pole of order at most 1 at P
f has not other poles outside P

f = X−1
X is a solution

g = 0, degD = 0 Riemann–Roch−−−−−−−−−→
Theorem

dim L(D) = degD + 1− g = 1

→ f generates the space of solutions

" no explicit method to compute a basis of L(D)
How do we solve the problem in general?
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Riemann–Roch spaces: for what?

I Construction of algebraic geometry codes from curves

f ∈ L(D)

C ((Pi )i ,D) := {(f (P1), f (P2), f (P3), . . . , f (Pn)) | f ∈ L(D)}

Riemann–Roch space

•
P3•

P2

•P1 •
Pn

I Arithmetic operations on Jacobians of curves
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1K. Khuri-Makdisi, Mathematics of Computations, 2007
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Riemann–Roch problem: state of the art
Geometric Method: Arithmetic Method:
(Brill–Noether theory∼1874) (Ideals in function fields)
• Goppa, Le Brigand–Risler (80’s)
• Huang–Ierardi (90’s)
• Khuri–Makdisi (2007)
• Le Gluher–Spaenlehauer (2018)
• Abelard–Couvreur–Lecerf (2020)

• Hensel–Landberg (1902)
• Coates (1970)
• Davenport (1981)
• Hess (2001)

Ordinary/nodal
curves:

Las Vegas algorithm computing L(D)
in sub–quadratic time

Non–ordinary
curves:

.
" no explicit complexity exponent
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Brill–Noether method
Notations:
I (H) =

∑
P∈C ordP(H)P – divisor of the zeros of H with multiplicity

I D > D ′  D − D ′ =
∑

nPP with nP > 0 ∀P (D − D ′ is effective)

Description of L(D) for C : F (X ,Y ,Z ) = 0 a plane projective curve.

The non–zero elements are of the form Gi

H where
I

I

I

How do we manage singular points?

X the adjoint divisor A "encodes" the singular points of C with their
multiplicities

How do we represent divisors?

series expansions of multi–set
representations ((Pi )i , ni )

 
operations on divisors with

negligible cost
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Sketch of the algorithm

Input

C : F (X ,Y ,Z ) = 0 a plane curve of degre δ, D a smooth divisor.

Step 1 : Compute the adjoint divisor A

Step 2 : Compute the common denominator H

Step 3 : Compute (H)− D

Step 4 : Compute the numerators Gi (similar to Step 2)

Output

A basis of the Riemann–Roch space L(D) in terms of H and the Gi .
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Warm up: adjoint divisor in the ordinary case
Definition

Let P ∈ Sing(C). The local adjoint divisor is

AP = −
∑
P|P

valP
(

dx

Fy (x , y , 1)

)
P.

Let P ∈ Sing(C) ordinary of multiplicity m, wlog P = (0 : 0 : 1). Then F
locally factorises as

F (x , y , 1) = u(x , y)
m∏
i=1

(y − ϕi (x))

with u ∈ K[[x , y ]] invertible, ϕi (x) ∈ xK[[x ]] and ϕ′i (0) 6= ϕ′j(0).

Germ of the curve
parametrized by ϕi (x)

←→ place Pi in the
functions field K(C)

The local adjoint divisor becomes

AP = (m − 1)
m∑
i=1

Pi .

8 / 16



Warm up: adjoint divisor in the ordinary case
Definition

Let P ∈ Sing(C). The local adjoint divisor is

AP = −
∑
P|P

valP
(

dx

Fy (x , y , 1)

)
P.

Let P ∈ Sing(C) ordinary of multiplicity m, wlog P = (0 : 0 : 1). Then F
locally factorises as

F (x , y , 1) = u(x , y)
m∏
i=1

(y − ϕi (x))

with u ∈ K[[x , y ]] invertible, ϕi (x) ∈ xK[[x ]] and ϕ′i (0) 6= ϕ′j(0).

Germ of the curve
parametrized by ϕi (x)

←→ place Pi in the
functions field K(C)

The local adjoint divisor becomes

AP = (m − 1)
m∑
i=1

Pi .

8 / 16



Warm up: adjoint divisor in the ordinary case
Definition

Let P ∈ Sing(C). The local adjoint divisor is

AP = −
∑
P|P

valP
(

dx

Fy (x , y , 1)

)
P.

Let P ∈ Sing(C) ordinary of multiplicity m, wlog P = (0 : 0 : 1). Then F
locally factorises as

F (x , y , 1) = u(x , y)
m∏
i=1

(y − ϕi (x))

with u ∈ K[[x , y ]] invertible, ϕi (x) ∈ xK[[x ]] and ϕ′i (0) 6= ϕ′j(0).

Germ of the curve
parametrized by ϕi (x)

←→ place Pi in the
functions field K(C)

The local adjoint divisor becomes

AP = (m − 1)
m∑
i=1

Pi .

8 / 16



Warm up: adjoint divisor in the ordinary case
Definition

Let P ∈ Sing(C). The local adjoint divisor is

AP = −
∑
P|P

valP
(

dx

Fy (x , y , 1)

)
P.

Let P ∈ Sing(C) ordinary of multiplicity m, wlog P = (0 : 0 : 1). Then F
locally factorises as

F (x , y , 1) = u(x , y)
m∏
i=1

(y − ϕi (x))

with u ∈ K[[x , y ]] invertible, ϕi (x) ∈ xK[[x ]] and ϕ′i (0) 6= ϕ′j(0).

Germ of the curve
parametrized by ϕi (x)

←→ place Pi in the
functions field K(C)

The local adjoint divisor becomes

AP = (m − 1)
m∑
i=1

Pi .
8 / 16



Adjoint condition via Puiseux series
Let F ∈ K[x , y ] be absolutely irreducible, monic in y and of degree d in
y . F ∈ K((x))[y ] has d distinct roots in K〈〈x〉〉, ϕ1, . . . , ϕd , and writes
as

F =
d∏

i=1

(y − ϕi ) =
d∏

i=1

y −
∞∑
j=n

βi,jx
j/ei

 .

We fix ϕ of degree e, ζ a primitive e-th root of unity. For 0 6 k < e we
can construct other e Puiseux series by replacing x1/e with ζkx1/e . They
are all equivalent and represented by...

Definition

A Rational Puiseux Expansion (RPE) is a pair
(X (t),Y (t)) =

(
γte ,

∑∞
j=n βj t

j
)
such that F (X (t),Y (t)) = 0.

Rational Puiseux
Expansion of F (x , y , 1) ←→ places of K(C) in

the chart z = 1

" the RPE are often defined over an extension of K.
It is an algorithmic question to take the minimal extension of the field.

9 / 16



Adjoint condition via Puiseux series
Let F ∈ K[x , y ] be absolutely irreducible, monic in y and of degree d in
y . F ∈ K((x))[y ] has d distinct roots in K〈〈x〉〉, ϕ1, . . . , ϕd , and writes
as

F =
d∏

i=1

(y − ϕi ) =
d∏

i=1

y −
∞∑
j=n

βi,jx
j/ei

 .

We fix ϕ of degree e, ζ a primitive e-th root of unity. For 0 6 k < e we
can construct other e Puiseux series by replacing x1/e with ζkx1/e .

They
are all equivalent and represented by...

Definition

A Rational Puiseux Expansion (RPE) is a pair
(X (t),Y (t)) =

(
γte ,

∑∞
j=n βj t

j
)
such that F (X (t),Y (t)) = 0.

Rational Puiseux
Expansion of F (x , y , 1) ←→ places of K(C) in

the chart z = 1

" the RPE are often defined over an extension of K.
It is an algorithmic question to take the minimal extension of the field.

9 / 16



Adjoint condition via Puiseux series
Let F ∈ K[x , y ] be absolutely irreducible, monic in y and of degree d in
y . F ∈ K((x))[y ] has d distinct roots in K〈〈x〉〉, ϕ1, . . . , ϕd , and writes
as

F =
d∏

i=1

(y − ϕi ) =
d∏

i=1

y −
∞∑
j=n

βi,jx
j/ei

 .

We fix ϕ of degree e, ζ a primitive e-th root of unity. For 0 6 k < e we
can construct other e Puiseux series by replacing x1/e with ζkx1/e . They
are all equivalent and represented by...

Definition

A Rational Puiseux Expansion (RPE) is a pair
(X (t),Y (t)) =

(
γte ,

∑∞
j=n βj t

j
)
such that F (X (t),Y (t)) = 0.

Rational Puiseux
Expansion of F (x , y , 1) ←→ places of K(C) in

the chart z = 1

" the RPE are often defined over an extension of K.
It is an algorithmic question to take the minimal extension of the field.

9 / 16



Adjoint condition via Puiseux series
Let F ∈ K[x , y ] be absolutely irreducible, monic in y and of degree d in
y . F ∈ K((x))[y ] has d distinct roots in K〈〈x〉〉, ϕ1, . . . , ϕd , and writes
as

F =
d∏

i=1

(y − ϕi ) =
d∏

i=1

y −
∞∑
j=n

βi,jx
j/ei

 .

We fix ϕ of degree e, ζ a primitive e-th root of unity. For 0 6 k < e we
can construct other e Puiseux series by replacing x1/e with ζkx1/e . They
are all equivalent and represented by...

Definition

A Rational Puiseux Expansion (RPE) is a pair
(X (t),Y (t)) =

(
γte ,

∑∞
j=n βj t

j
)
such that F (X (t),Y (t)) = 0.

Rational Puiseux
Expansion of F (x , y , 1) ←→ places of K(C) in

the chart z = 1

" the RPE are often defined over an extension of K.
It is an algorithmic question to take the minimal extension of the field.

9 / 16



Adjoint condition via Puiseux series
Let F ∈ K[x , y ] be absolutely irreducible, monic in y and of degree d in
y . F ∈ K((x))[y ] has d distinct roots in K〈〈x〉〉, ϕ1, . . . , ϕd , and writes
as

F =
d∏

i=1

(y − ϕi ) =
d∏

i=1

y −
∞∑
j=n

βi,jx
j/ei

 .

We fix ϕ of degree e, ζ a primitive e-th root of unity. For 0 6 k < e we
can construct other e Puiseux series by replacing x1/e with ζkx1/e . They
are all equivalent and represented by...

Definition

A Rational Puiseux Expansion (RPE) is a pair
(X (t),Y (t)) =

(
γte ,

∑∞
j=n βj t

j
)
such that F (X (t),Y (t)) = 0.

Rational Puiseux
Expansion of F (x , y , 1) ←→ places of K(C) in

the chart z = 1

" the RPE are often defined over an extension of K.
It is an algorithmic question to take the minimal extension of the field.

9 / 16



The adjoint divisor
Let P ∈ Sing(C) ordinary, wlog P = (0 : 0 : 1). Then F locally factorises
as

F (x , y , 1) = u(x , y)
m∏
i=1

(y − ϕi (x))

with u ∈ K[[x , y ]] invertible and ϕi Puiseux series of F ∈ K[[x ]][y ].

{ϕ1, . . . , ϕm}  
RPEs/places (Xi (t),Yi (t))

i ∈ {1, . . . , s}, s 6 m

The local adjoint divisor becomes

AP = −
∑
P|P

valt
(

ete−1

Fy (X (t),Y (t), 1)

)
P.

In practice: algorithm for computing Puiseux series

 A computed with Õ(δ3) operations
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2A. Poteaux et M. Weimann, Annales Herni Lebesgue, 2021
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Sketch of the algorithm

Input

C : F (X ,Y ,Z ) = 0 a plane curve of degree δ, D a smooth divisor .

Step 1 : Compute the adjoint divisor A X ← Õ(δ3)

Step 2 : Compute the common denominator H

Step 3 : Compute (H)− D X ← Õ(δ2 + degD)

Step 4 : Compute the numerators Gi (similar to Step 2)

Output

A basis of the Riemann–Roch space L(D) in terms of H and the Gi .
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Find a denominator in practice
Classical linear algebra

Let d := degH.

Condition (H) > A+ D

 linear system with degA+ degD ∼ δ2 + degD equations

 Gauss elimination costs

Õ((dδ + δ2 + degD)ω) operations in K

How big is d?

We showed that d =
⌈
(δ−1)(δ−2)+degD

δ

⌉
is enough

 denominator computed with Õ((δ2 + degD)ω) operations in K

12 / 16



Find a denominator in practice
Classical linear algebra

Let d := degH.

Condition (H) > A+ D

 linear system with degA+ degD ∼ δ2 + degD equations

 Gauss elimination costs
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Second method: structured linear algebra

Condition (H) > A

 valt(H(X (t),Y (t), 1) > valt
(

ete−1

Fy (X (t),Y (t), 1)

)
(similar equations for the condition (H) > D )

The space of polynomials H(x , y , 1) that satisfy these conditions is a
K[x ]–module

 Computing a basis3 costs Õ((δ2 + degD)ω) operations

Same complexity exponent but...

Advantages:
I better complexity exponent on algebraically closed fields
I potential improvement in the futur

3C.-P. Jeannerod, V. Neiger, É. Schost et G. Villard, J. Symbolic Comput. 2017
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Sketch of the algorithm
Input

C : F (X ,Y ,Z ) = 0 a plane curve of degree δ, D a smooth divisor .

Step 1 : Compute the adjoint divisor A X ← Õ(δ3)

Step 2 : Compute the common denominator H X ← Õ((δ2 + degD)ω)

Step 3 : Compute (H)− D X ← Õ(δ2 + degD)

Step 4 : Compute the numerators Gi (similar to Step 2)

Output

A basis of the Riemann–Roch space L(D) in terms of H and the Gi .

Theorem (Abelard, B., Couvreur, Lecerf – preprint 2021)

The previous algorithm computes L(D) with Õ((δ2 + degD)ω)
operations in K.
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What to take away?

1. Brill–Noether method  
necessary and sufficient conditions on G

and H such that G/H ∈ L(D)

2. Puiseux series  
management of non–ordinary singular

points of the curve

3. Linear Algebra  Computing H and G in practice

Main result
Las Vegas algorithm computing L(D)
with Õ((δ2 + degD)ω) operations.
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Future questions

.
� Computing Riemann–Roch spaces of non–ordinary

curves in positive “small” characteristic

� Implementing the algorithm

� Improving the complexity exponent
in the non–ordinary case (sub–quadratic?)

Merci de votre attention !
Questions? e.berardini@tue.nl
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