Computing Riemann–Roch spaces via Puiseux expansions

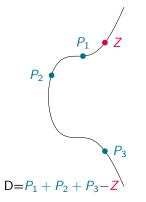
Elena Berardini

with S. Abelard (Thales), A. Couvreur (Inria), G. Lecerf (LIX)

Projet funded by the Agence de l'Innovation de Défense

Journées Nationales de Calcul Formel 1 mars 2022 Riemann-Roch spaces of curves

A divisor on a curve $\mathcal{C} \colon \textit{D} = \sum_{\textit{P} \in \mathcal{C}} \textit{n}_{\textit{P}}\textit{P}, ~\textit{n}_{\textit{P}} \in \mathbb{Z}$



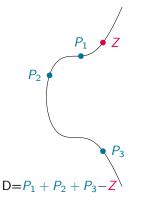
The **Riemann–Roch space** L(D) is the space of functions $\frac{G}{H} \in \mathbb{K}(C)$ such that:

- if n_P < 0 then P must be a zero of G (of multiplicity ≥ -n_P)
- If n_P > 0 then P can be a zero of H (of multiplicity ≤ n_P)
- ► G/H has no other poles outside the points P with n_P > 0

Here: Z must be a zero of G, the P_i can be zeros of H

Riemann-Roch spaces of curves

A divisor on a curve $\mathcal{C} \colon \textit{D} = \sum_{\textit{P} \in \mathcal{C}} \textit{n}_{\textit{P}}\textit{P}, ~\textit{n}_{\textit{P}} \in \mathbb{Z}$



The **Riemann–Roch space** L(D) is the space of functions $\frac{G}{H} \in \mathbb{K}(\mathcal{C})$ such that:

- if n_P < 0 then P must be a zero of G (of multiplicity ≥ -n_P)
- If n_P > 0 then P can be a zero of H (of multiplicity ≤ n_P)
- G/H has no other poles outside the points P with n_P > 0

Here: Z must be a zero of G, the P_i can be zeros of H

Riemann–Roch Theorem \rightsquigarrow dimension of $L(D) = \deg D + 1 - g$ where the degree of a divisor is deg $D = \sum_{P} n_P \deg(P)$

Let
$$\mathcal{C} = \mathbb{P}^1$$
, $P = [0:1]$ and $Q = [1:1]$. Let $D = P - Q$, then

 $f \in L(D) \iff \begin{cases} f \text{ has a zero of order at least 1 at } Q \\ f \text{ can have a pole of order at most 1 at } P \\ f \text{ has not other poles outside } P \end{cases}$

Let
$$\mathcal{C} = \mathbb{P}^1$$
, $P = [0:1]$ and $Q = [1:1]$. Let $D = P - Q$, then

 $f \in L(D) \iff \begin{cases} f \text{ has a zero of order at least 1 at } Q \\ f \text{ can have a pole of order at most 1 at } P \\ f \text{ has not other poles outside } P \end{cases}$

$$f = \frac{X-1}{X}$$
 is a solution

Let
$$\mathcal{C} = \mathbb{P}^1$$
, $P = [0:1]$ and $Q = [1:1]$. Let $D = P - Q$, then

 $f \in L(D) \iff \begin{cases} f \text{ has a zero of order at least 1 at } Q \\ f \text{ can have a pole of order at most 1 at } P \\ f \text{ has not other poles outside } P \end{cases}$

 $f = \frac{X-1}{X}$ is a solution

$$g = 0, \deg D = 0 \xrightarrow[Theorem]{Riemann-Roch} \dim L(D) = \deg D + 1 - g = 1$$

 $\rightarrow f$ generates the space of solutions

Let
$$\mathcal{C} = \mathbb{P}^1$$
, $P = [0:1]$ and $Q = [1:1]$. Let $D = P - Q$, then

 $f \in L(D) \iff \begin{cases} f \text{ has a zero of order at least 1 at } Q \\ f \text{ can have a pole of order at most 1 at } P \\ f \text{ has not other poles outside } P \end{cases}$

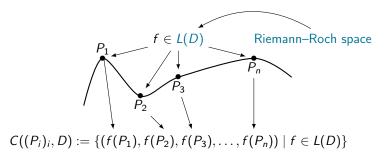
 $f = \frac{X-1}{X}$ is a solution

$$g = 0, \deg D = 0 \xrightarrow[Theorem]{Riemann-Roch} \dim L(D) = \deg D + 1 - g = 1$$

 $\rightarrow f$ generates the space of solutions

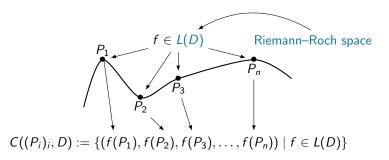
 \wedge no explicit method to compute a basis of L(D)How do we solve the problem in general? Riemann-Roch spaces: for what?

Construction of algebraic geometry codes from curves



Riemann-Roch spaces: for what?

Construction of algebraic geometry codes from curves



Arithmetic operations on Jacobians of curves¹

¹K. Khuri-Makdisi, Mathematics of Computations, 2007

Riemann-Roch problem: state of the art

Geometric Method:

(Brill–Noether theory \sim 1874)

- Goppa, Le Brigand–Risler (80's)
- Huang-lerardi (90's)
- Khuri–Makdisi (2007)
- Le Gluher-Spaenlehauer (2018)
- Abelard–Couvreur–Lecerf (2020)

Arithmetic Method:

(Ideals in function fields)

- Hensel-Landberg (1902)
- Coates (1970)
- Davenport (1981)
- Hess (2001)

Riemann-Roch problem: state of the art

Geometric Method:

(Brill–Noether theory \sim 1874)

- Goppa, Le Brigand-Risler (80's)
- Huang-lerardi (90's)
- Khuri–Makdisi (2007)
- Le Gluher-Spaenlehauer (2018)
- Abelard–Couvreur–Lecerf (2020)

Arithmetic Method:

(Ideals in function fields)

- Hensel-Landberg (1902)
- Coates (1970)
- Davenport (1981)
- Hess (2001)

Ordinary/nodal curves: Non–ordinary curves: Las Vegas algorithm computing L(D) in sub-quadratic time

🕂 no explicit complexity exponent

Notations:

• $(H) = \sum_{P \in C} \operatorname{ord}_P(H)P$ – divisor of the zeros of H with multiplicity

▶ $D \ge D' \rightsquigarrow D - D' = \sum n_P P$ with $n_P \ge 0 \forall P (D - D' \text{ is effective})$

Notations:

- $(H) = \sum_{P \in \mathcal{C}} \operatorname{ord}_P(H)P$ divisor of the zeros of H with multiplicity
- ▶ $D \ge D' \rightsquigarrow D D' = \sum n_P P$ with $n_P \ge 0 \forall P (D D' \text{ is effective})$

Description of L(D) for C : F(X, Y, Z) = 0 a plane projective curve.

The non-zero elements are of the form $\frac{G_i}{H}$ where

- H satisfies $(H) \ge D$
- ▶ H vanishes at any singular point of C with ad hoc multiplicity
- deg $G_i = \deg H$, G_i prime with F and $(G_i) \ge (H) D$

Notations:

- $(H) = \sum_{P \in \mathcal{C}} \operatorname{ord}_P(H)P$ divisor of the zeros of H with multiplicity
- ▶ $D \ge D' \rightsquigarrow D D' = \sum n_P P$ with $n_P \ge 0 \forall P (D D' \text{ is effective})$

Description of L(D) for C : F(X, Y, Z) = 0 a plane projective curve.

The non-zero elements are of the form $\frac{G_i}{H}$ where

- H satisfies $(H) \ge D$
- ► H vanishes at any singular point of C with ad hoc multiplicity
- deg $G_i = \deg H$, G_i prime with F and $(G_i) \ge (H) D$

How do we manage singular points?

Notations:

- $(H) = \sum_{P \in \mathcal{C}} \operatorname{ord}_P(H)P$ divisor of the zeros of H with multiplicity
- ▶ $D \ge D' \rightsquigarrow D D' = \sum n_P P$ with $n_P \ge 0 \forall P (D D' \text{ is effective})$

Description of L(D) for C : F(X, Y, Z) = 0 a plane projective curve.

The non-zero elements are of the form $\frac{G_i}{H}$ where

- H satisfies $(H) \ge D$
- ► H vanishes at any singular point of C with ad hoc multiplicity
- deg G_i = deg H, G_i prime with F and $(G_i) \ge (H) D$

How do we manage singular points?

 \checkmark the adjoint divisor $\mathcal A$ "encodes" the singular points of $\mathcal C$ with their multiplicities

Notations:

- $(H) = \sum_{P \in \mathcal{C}} \operatorname{ord}_P(H)P$ divisor of the zeros of H with multiplicity
- ▶ $D \ge D' \rightsquigarrow D D' = \sum n_P P$ with $n_P \ge 0 \forall P (D D' \text{ is effective})$

Description of L(D) for C : F(X, Y, Z) = 0 a plane projective curve.

The non-zero elements are of the form $\frac{G_i}{H}$ where

- H satisfies $(H) \ge D$
- H satisfies $(H) \ge A$ (we say that "H is adjoint to the curve")
- deg $G_i = \deg H$, G_i prime with F and $(G_i) \ge (H) D$

How do we manage singular points?

 \checkmark the adjoint divisor $\mathcal A$ "encodes" the singular points of $\mathcal C$ with their multiplicities

Notations:

- $(H) = \sum_{P \in \mathcal{C}} \operatorname{ord}_P(H)P$ divisor of the zeros of H with multiplicity
- ▶ $D \ge D' \rightsquigarrow D D' = \sum n_P P$ with $n_P \ge 0 \forall P (D D' \text{ is effective})$

Description of L(D) for C : F(X, Y, Z) = 0 a plane projective curve.

The non-zero elements are of the form $\frac{G_i}{H}$ where

- H satisfies $(H) \ge D$
- $H \text{ satisfies}(H) \ge A$
- deg G_i = deg H, G_i prime with F and $(G_i) \ge (H) D$

How do we manage singular points?

 \checkmark the adjoint divisor $\mathcal A$ "encodes" the singular points of $\mathcal C$ with their multiplicities

How do we represent divisors?

Notations:

- $(H) = \sum_{P \in \mathcal{C}} \operatorname{ord}_P(H)P$ divisor of the zeros of H with multiplicity
- ▶ $D \ge D' \rightsquigarrow D D' = \sum n_P P$ with $n_P \ge 0 \forall P (D D' \text{ is effective})$

Description of L(D) for C : F(X, Y, Z) = 0 a plane projective curve.

The non-zero elements are of the form $\frac{G_i}{H}$ where

- H satisfies $(H) \ge D$
- $H \text{ satisfies}(H) \ge A$
- deg G_i = deg H, G_i prime with F and $(G_i) \ge (H) D$

How do we manage singular points?

 \checkmark the adjoint divisor $\mathcal A$ "encodes" the singular points of $\mathcal C$ with their multiplicities

How do we represent divisors?

series expansions of multi-set representations $((P_i)_i, n_i)$ $\stackrel{\longrightarrow}{\longrightarrow} \quad \begin{array}{l} \text{operations on divisors with} \\ \text{negligible cost} \end{array}$

Input

C: F(X, Y, Z) = 0 a plane curve of degre δ , D a smooth divisor.

- **Step 1** : Compute the adjoint divisor \mathcal{A}
- Step 2 : Compute the common denominator H
- **Step 3 :** Compute (H) D
- **Step 4 :** Compute the numerators *G_i* (similar to Step 2)

Output

Input

C: F(X, Y, Z) = 0 a plane curve of degre δ , D a smooth divisor.

- **Step 1** : Compute the adjoint divisor \mathcal{A}
- **Step 2**: Compute the common denominator *H*
- **Step 3**: Compute $(H) D \checkmark \leftarrow \tilde{O}(\delta^2 + \deg D)$
- **Step 4 :** Compute the numerators *G_i* (similar to Step 2)

Output

Input

C: F(X, Y, Z) = 0 a plane curve of degre δ , D a smooth divisor.

- **Step 1** : Compute the adjoint divisor \mathcal{A}
- **Step 2**: Compute the common denominator *H*
- **Step 3**: Compute $(H) D \checkmark \leftarrow \tilde{O}(\delta^2 + \deg D)$
- **Step 4 :** Compute the numerators *G_i* (similar to Step 2)

Output

Definition

Let $P \in \operatorname{Sing}(\mathcal{C})$. The local adjoint divisor is

$$\mathcal{A}_{\mathcal{P}} = -\sum_{\mathcal{P}|\mathcal{P}} \operatorname{val}_{\mathcal{P}} \left(rac{dx}{F_y(x,y,1)}
ight) \mathcal{P}.$$

Definition

Let $P \in \text{Sing}(\mathcal{C})$. The local adjoint divisor is

$$\mathcal{A}_{\mathcal{P}} = -\sum_{\mathcal{P}|\mathcal{P}} \operatorname{val}_{\mathcal{P}} \left(rac{dx}{F_y(x,y,1)}
ight) \mathcal{P}.$$

Let $P \in \text{Sing}(C)$ ordinary of multiplicity *m*, wlog P = (0:0:1). Then *F* locally factorises as

$$F(x, y, 1) = u(x, y) \prod_{i=1}^{m} (y - \varphi_i(x))$$

with $u \in \overline{\mathbb{K}}[[x, y]]$ invertible, $\varphi_i(x) \in x\overline{\mathbb{K}}[[x]]$ and $\varphi'_i(0) \neq \varphi'_j(0)$.

Definition

Let $P \in \operatorname{Sing}(\mathcal{C})$. The local adjoint divisor is

$$\mathcal{A}_{\mathcal{P}} = -\sum_{\mathcal{P}|\mathcal{P}} \operatorname{val}_{\mathcal{P}} \left(rac{dx}{F_y(x,y,1)}
ight) \mathcal{P}.$$

Let $P \in \text{Sing}(\mathcal{C})$ ordinary of multiplicity *m*, wlog P = (0:0:1). Then *F* locally factorises as

$$F(x,y,1) = u(x,y) \prod_{i=1}^{m} (y - \varphi_i(x))$$

with $u \in \overline{\mathbb{K}}[[x, y]]$ invertible, $\varphi_i(x) \in x\overline{\mathbb{K}}[[x]]$ and $\varphi'_i(0) \neq \varphi'_j(0)$.

 $\begin{array}{ccc} \text{Germ of the curve} & \text{place } \mathcal{P}_i \text{ in the} \\ \text{parametrized by } \varphi_i(x) & \longleftrightarrow & \text{functions field } \overline{\mathbb{K}}(\mathcal{C}) \end{array}$

Definition

Let $P \in \operatorname{Sing}(\mathcal{C})$. The local adjoint divisor is

$$\mathcal{A}_{\mathcal{P}} = -\sum_{\mathcal{P}|\mathcal{P}} \operatorname{val}_{\mathcal{P}} \left(rac{dx}{F_y(x,y,1)}
ight) \mathcal{P}.$$

Let $P \in \text{Sing}(C)$ ordinary of multiplicity *m*, wlog P = (0:0:1). Then *F* locally factorises as

$$F(x,y,1) = u(x,y)\prod_{i=1}^{m}(y-\varphi_i(x))$$

with $u \in \overline{\mathbb{K}}[[x, y]]$ invertible, $\varphi_i(x) \in x\overline{\mathbb{K}}[[x]]$ and $\varphi'_i(0) \neq \varphi'_j(0)$.

 $\begin{array}{rcl} \text{Germ of the curve} & \qquad & \text{place } \mathcal{P}_i \text{ in the} \\ \text{parametrized by } \varphi_i(x) & & \qquad & \text{functions field } \overline{\mathbb{K}}(\mathcal{C}) \end{array}$

The local adjoint divisor becomes

$$\mathcal{A}_{P} = (m-1) \sum_{i=1}^{m} \mathcal{P}_{i}.$$

Let $F \in \mathbb{K}[x, y]$ be absolutely irreducible, monic in y and of degree d in y. $F \in \mathbb{K}((x))[y]$ has d distinct roots in $\overline{\mathbb{K}}\langle\langle x \rangle\rangle$, $\varphi_1, \ldots, \varphi_d$, and writes as

$$F = \prod_{i=1}^{d} (y - \varphi_i) = \prod_{i=1}^{d} \left(y - \sum_{j=n}^{\infty} \beta_{i,j} x^{j/e_i} \right).$$

Let $F \in \mathbb{K}[x, y]$ be absolutely irreducible, monic in y and of degree d in y. $F \in \mathbb{K}((x))[y]$ has d distinct roots in $\overline{\mathbb{K}}\langle\langle x \rangle\rangle$, $\varphi_1, \ldots, \varphi_d$, and writes as

$$F = \prod_{i=1}^{d} (y - \varphi_i) = \prod_{i=1}^{d} \left(y - \sum_{j=n}^{\infty} \beta_{i,j} x^{j/e_i} \right)$$

We fix φ of degree e, ζ a primitive e-th root of unity. For $0 \le k < e$ we can construct other e Puiseux series by replacing $x^{1/e}$ with $\zeta^k x^{1/e}$.

Let $F \in \mathbb{K}[x, y]$ be absolutely irreducible, monic in y and of degree d in y. $F \in \mathbb{K}((x))[y]$ has d distinct roots in $\overline{\mathbb{K}}\langle\langle x \rangle\rangle$, $\varphi_1, \ldots, \varphi_d$, and writes as

$$F = \prod_{i=1}^{d} (y - \varphi_i) = \prod_{i=1}^{d} \left(y - \sum_{j=n}^{\infty} \beta_{i,j} x^{j/e_i} \right)$$

We fix φ of degree e, ζ a primitive *e*-th root of unity. For $0 \leq k < e$ we can construct other *e* Puiseux series by replacing $x^{1/e}$ with $\zeta^k x^{1/e}$. They are all equivalent and represented by...

Definition

A Rational Puiseux Expansion (RPE) is a pair $(X(t), Y(t)) = \left(\gamma t^{e}, \sum_{j=n}^{\infty} \beta_{j} t^{j}\right)$ such that F(X(t), Y(t)) = 0.

Let $F \in \mathbb{K}[x, y]$ be absolutely irreducible, monic in y and of degree d in y. $F \in \mathbb{K}((x))[y]$ has d distinct roots in $\overline{\mathbb{K}}\langle\langle x \rangle\rangle$, $\varphi_1, \ldots, \varphi_d$, and writes as

$$F = \prod_{i=1}^{d} (y - \varphi_i) = \prod_{i=1}^{d} \left(y - \sum_{j=n}^{\infty} \beta_{i,j} x^{j/e_i} \right)$$

We fix φ of degree e, ζ a primitive *e*-th root of unity. For $0 \leq k < e$ we can construct other *e* Puiseux series by replacing $x^{1/e}$ with $\zeta^k x^{1/e}$. They are all equivalent and represented by...

Definition

A Rational Puiseux Expansion (RPE) is a pair $(X(t), Y(t)) = \left(\gamma t^e, \sum_{j=n}^{\infty} \beta_j t^j\right)$ such that F(X(t), Y(t)) = 0.

Rational Puiseux $(\mathcal{L}, y, 1)$ $(\mathcal{L}, y, 1)$ places of $\overline{\mathbb{K}}(\mathcal{C})$ in the chart z = 1

Let $F \in \mathbb{K}[x, y]$ be absolutely irreducible, monic in y and of degree d in y. $F \in \mathbb{K}((x))[y]$ has d distinct roots in $\overline{\mathbb{K}}\langle\langle x \rangle\rangle$, $\varphi_1, \ldots, \varphi_d$, and writes as

$$F = \prod_{i=1}^{d} (y - \varphi_i) = \prod_{i=1}^{d} \left(y - \sum_{j=n}^{\infty} \beta_{i,j} x^{j/e_i} \right)$$

We fix φ of degree e, ζ a primitive *e*-th root of unity. For $0 \leq k < e$ we can construct other *e* Puiseux series by replacing $x^{1/e}$ with $\zeta^k x^{1/e}$. They are all equivalent and represented by...

Definition

A Rational Puiseux Expansion (RPE) is a pair

$$(X(t), Y(t)) = \left(\gamma t^e, \sum_{j=n}^{\infty} \beta_j t^j\right)$$
 such that $F(X(t), Y(t)) = 0$

 $\begin{array}{ccc} \text{Rational Puiseux} & & \text{places of } \overline{\mathbb{K}}(\mathcal{C}) \text{ in} \\ \text{Expansion of } F(x,y,1) & & \text{the chart } z=1 \end{array}$

 \bigwedge the RPE are often defined over an extension of \mathbb{K} . It is an algorithmic question to take the minimal extension of the field.

Let $P \in \text{Sing}(\mathcal{C})$ ordinary, wlog P = (0:0:1). Then F locally factorises as ${}_m$

$$F(x,y,1) = u(x,y)\prod_{i=1}^{m} (y - \varphi_i(x))$$

with $u \in \mathbb{K}[[x, y]]$ invertible and φ_i Puiseux series of $F \in \overline{\mathbb{K}}[[x]][y]$.

Let $P \in \text{Sing}(\mathcal{C})$ ordinary, wlog P = (0:0:1). Then F locally factorises as

$$F(x,y,1) = u(x,y) \prod_{i=1}^{m} (y - \varphi_i(x))$$

with $u \in \mathbb{K}[[x, y]]$ invertible and φ_i Puiseux series of $F \in \overline{\mathbb{K}}[[x]][y]$.

$$\{\varphi_1, \ldots, \varphi_m\} \qquad \rightsquigarrow \qquad \begin{array}{c} \mathsf{RPEs/places} \left(X_i(t), Y_i(t)\right) \\ i \in \{1, \ldots, s\}, \ s \leqslant m \end{array}$$

Let $P \in \text{Sing}(\mathcal{C})$ ordinary, wlog P = (0:0:1). Then F locally factorises as

$$F(x,y,1) = u(x,y) \prod_{i=1}^{m} (y - \varphi_i(x))$$

with $u \in \mathbb{K}[[x, y]]$ invertible and φ_i Puiseux series of $F \in \overline{\mathbb{K}}[[x]][y]$.

$$\{\varphi_1, \dots, \varphi_m\} \qquad \rightsquigarrow \qquad \begin{array}{c} \mathsf{RPEs/places} \left(X_i(t), Y_i(t)\right) \\ i \in \{1, \dots, s\}, \ s \leqslant m \end{array}$$

The local adjoint divisor becomes

$$\mathcal{A}_{\mathcal{P}} = -\sum_{\mathcal{P}|\mathcal{P}} \operatorname{val}_t \left(rac{et^{e-1}}{F_y(X(t),Y(t),1)}
ight) \mathcal{P}.$$

Let $P \in \text{Sing}(\mathcal{C})$ ordinary, wlog P = (0:0:1). Then F locally factorises as

$$F(x,y,1) = u(x,y) \prod_{i=1}^{m} (y - \varphi_i(x))$$

with $u \in \mathbb{K}[[x, y]]$ invertible and φ_i Puiseux series of $F \in \overline{\mathbb{K}}[[x]][y]$.

$$\{\varphi_1, \dots, \varphi_m\} \qquad \rightsquigarrow \qquad \begin{array}{c} \mathsf{RPEs/places} \left(X_i(t), Y_i(t)\right) \\ i \in \{1, \dots, s\}, s \leq m \end{array}$$

The local adjoint divisor becomes

$$\mathcal{A}_{\mathcal{P}} = -\sum_{\mathcal{P}|\mathcal{P}} \operatorname{val}_t \left(\frac{et^{e-1}}{F_y(X(t), Y(t), 1)} \right) \mathcal{P}.$$

In practice: algorithm for computing Puiseux series² $\rightsquigarrow \mathcal{A}$ computed with $\tilde{O}(\delta^3)$ operations

²A. Poteaux et M. Weimann, Annales Herni Lebesgue, 2021

Input

C: F(X, Y, Z) = 0 a plane curve of degree δ , D a smooth divisor.

- **Step 1** : Compute the adjoint divisor $\mathcal{A} \checkmark \leftarrow \tilde{O}(\delta^3)$
- **Step 2**: Compute the common denominator *H*
- **Step 3**: Compute $(H) D \checkmark \leftarrow \tilde{O}(\delta^2 + \deg D)$
- **Step 4 :** Compute the numerators G_i (similar to Step 2)

Output

Input

C: F(X, Y, Z) = 0 a plane curve of degree δ , D a smooth divisor.

- **Step 1** : Compute the adjoint divisor $\mathcal{A} \checkmark \leftarrow \tilde{O}(\delta^3)$
- **Step 2**: Compute the common denominator *H*
- **Step 3**: Compute $(H) D \checkmark \leftarrow \tilde{O}(\delta^2 + \deg D)$
- **Step 4 :** Compute the numerators G_i (similar to Step 2)

Output

Find a denominator in practice Classical linear algebra

Let $d := \deg H$.

Condition $(H) \ge A + D$

 \rightsquigarrow linear system with $\deg \mathcal{A} + \deg D \sim \delta^2 + \deg D$ equations

 \rightsquigarrow Gauss elimination costs

 $ilde{O}((d\delta+\delta^2+\deg D)^\omega)$ operations in ${\mathbb K}$

Find a denominator in practice Classical linear algebra

Let $d := \deg H$.

Condition $(H) \ge A + D$

 \rightsquigarrow linear system with $\deg \mathcal{A} + \deg D \sim \delta^2 + \deg D$ equations

 \rightsquigarrow Gauss elimination costs

$$ilde{O}((d\delta+\delta^2+\deg D)^\omega)$$
 operations in ${\mathbb K}$

How big is d?

We showed that $d = \left\lceil rac{(\delta-1)(\delta-2) + \deg D}{\delta}
ight
ceil$ is enough

 \rightsquigarrow denominator computed with $ilde{O}((\delta^2 + \deg D)^\omega)$ operations in $\mathbb K$

Second method: structured linear algebra

Condition $(H) \ge A$

$$\rightsquigarrow \operatorname{val}_t(H(X(t),Y(t),1) \geqslant \operatorname{val}_t\left(\frac{et^{e-1}}{F_y(X(t),Y(t),1)}\right)$$

(similar equations for the condition $(H) \ge D$)

The space of polynomials H(x, y, 1) that satisfy these conditions is a $\mathbb{K}[x]$ -module

 \rightsquigarrow Computing a basis³ costs $ilde{O}((\delta^2 + \deg D)^\omega)$ operations

³C.-P. Jeannerod, V. Neiger, É. Schost et G. Villard, J. Symbolic Comput. 2017

Second method: structured linear algebra

Condition $(H) \ge A$

$$\rightsquigarrow \operatorname{val}_t(H(X(t),Y(t),1) \geqslant \operatorname{val}_t\left(\frac{et^{e-1}}{F_y(X(t),Y(t),1)}\right)$$

(similar equations for the condition $(H) \ge D$)

The space of polynomials H(x, y, 1) that satisfy these conditions is a $\mathbb{K}[x]$ -module

 \rightsquigarrow Computing a basis ^3 costs $\tilde{O}((\delta^2 + \deg D)^\omega)$ operations

Same complexity exponent but...

Advantages:

- better complexity exponent on algebraically closed fields
- potential improvement in the futur

³C.-P. Jeannerod, V. Neiger, É. Schost et G. Villard, J. Symbolic Comput. 2017

Input

C: F(X, Y, Z) = 0 a plane curve of degree δ , D a smooth divisor .

- **Step 1** : Compute the adjoint divisor $\mathcal{A} \checkmark \leftarrow \tilde{O}(\delta^3)$
- **Step 2** : Compute the common denominator $H \checkmark \leftarrow \tilde{O}((\delta^2 + \deg D)^{\omega})$
- **Step 3**: Compute $(H) D \checkmark \leftarrow \tilde{O}(\delta^2 + \deg D)$
- **Step 4** : Compute the numerators *G_i* (similar to Step 2)

Output

Input

C: F(X, Y, Z) = 0 a plane curve of degree δ , D a smooth divisor.

- **Step 1** : Compute the adjoint divisor $\mathcal{A} \checkmark \leftarrow \tilde{O}(\delta^3)$
- **Step 2**: Compute the common denominator $H \checkmark \leftarrow \tilde{O}((\delta^2 + \deg D)^{\omega})$
- **Step 3**: Compute $(H) D \checkmark \leftarrow \tilde{O}(\delta^2 + \deg D)$
- **Step 4** : Compute the numerators $G_i \checkmark \leftarrow \tilde{O}((\delta^2 + \deg D)^\omega)$

Output

A basis of the Riemann–Roch space L(D) in terms of H and the G_i .

Theorem (Abelard, B., Couvreur, Lecerf – preprint 2021)

The previous algorithm computes L(D) with $\tilde{\mathcal{O}}((\delta^2 + \deg D)^{\omega})$ operations in \mathbb{K} .

What to take away?

1. Brill–Noether method	$\sim \rightarrow$	necessary and sufficient conditions on G and H such that $G/H \in L(D)$
2. Puiseux series	\rightsquigarrow	management of <i>non–ordinary</i> singular points of the curve
3. Linear Algebra	\rightsquigarrow	Computing H and G in practice

What to take away?

- 1. Brill-Noether method
- 2. Puiseux series

3. Linear Algebra

necessary and sufficient conditions on Gand H such that $G/H \in L(D)$

management of *non–ordinary* singular points of the curve

 \rightsquigarrow Computing *H* and *G* in practice

Main result

Las Vegas algorithm computing L(D)with $\tilde{O}((\delta^2 + \deg D)^{\omega})$ operations.

 $\sim \rightarrow$

Future questions

- Computing Riemann–Roch spaces of non–ordinary curves in positive "small" characteristic
- Implementing the algorithm
- Improving the complexity exponent in the non-ordinary case (sub-quadratic?)

Future questions

- Computing Riemann–Roch spaces of non–ordinary curves in positive "small" characteristic
- Implementing the algorithm
- Improving the complexity exponent in the non-ordinary case (sub-quadratic?)

Merci de votre attention !

Questions? e.berardini@tue.nl