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Riemann—Roch spaces of curves

A divisor on a curve C: D = Zpec npP, np € 7Z

The Riemann—Roch space L(D) is the
space of functions & € K(C) such that:

» if np < 0 then P must be a zero
of G (of multiplicity > —np)

» if np > 0 then P can be a zero of
H (of multiplicity < np)

» G/H has no other poles outside
the points P with np > 0

Here: Z must be a zero of G, the P; can be

D=P; + P+ Ps—Z zeros of H
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A divisor on a curve C: D = ZPeC npP, np € 7Z

The Riemann—Roch space L(D) is the
space of functions & € K(C) such that:

» if np < 0 then P must be a zero
of G (of multiplicity > —np)

» if np > 0 then P can be a zero of
H (of multiplicity < np)

» G/H has no other poles outside
the points P with np > 0

Here: Z must be a zero of G, the P; can be

D=P; + P+ Ps—Z zeros of H

Riemann—Roch Theorem ~- dimension of L(D) =degD +1— g
where the degree of a divisor is deg D = )", np deg(P)
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Toy example
LetC=P, P=[0:1]and Q=[1:1]. Let D =P — @, then

f has a zero of order at least 1 at @
f € L(D) <= ( f can have a pole of order at most 1 at P
f has not other poles outside P
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Toy example
LetC=P, P=[0:1]and Q=[1:1]. Let D =P — @, then

f has a zero of order at least 1 at @
f € L(D) <= ( f can have a pole of order at most 1 at P
f has not other poles outside P

f= % is a solution

g =0,deg D = 0 emennRoch, i |(D) =degD+1—g=1

Theorem

— f generates the space of solutions

A\ no explicit method to compute a basis of L(D)
How do we solve the problem in general?
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Riemann—Roch spaces: for what?

» Construction of algebraic geometry codes from curves

T

felL(D) Riemann—-Roch space

Pl — i T
e

\\

C((P)i, D) = {(f(P1), f(P2), £(P3),....f(Pa)) [ f € L(D)}
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Riemann—Roch spaces: for what?

» Construction of algebraic geometry codes from curves

C((Pi)i, D) := {(f(P1), f(P2),f(Ps),...,f(Pn)) | f € L(D)}

» Arithmetic operations on Jacobians of curves!

1K. Khuri-Makdisi, Mathematics of Computations, 2007
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Geometric Method:
(Brill-Noether theory~1874)

e Goppa, Le Brigand-Risler (80's)
e Huang-lerardi (90's)

o Khuri—Makdisi (2007)

e Le Gluher-Spaenlehauer (2018)
o Abelard—Couvreur—Lecerf (2020)

Riemann—Roch problem: state of the art

Arithmetic Method:
(Ideals in function fields)
e Hensel-Landberg (1902)
e Coates (1970)

e Davenport (1981)

e Hess (2001)
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Riemann—Roch problem: state of the art

Geometric Method:
(Brill-Noether theory~1874)

e Goppa, Le Brigand-Risler (80's)
e Huang-lerardi (90's)

o Khuri-Makdisi (2007)

e Le Gluher-Spaenlehauer (2018)
o Abelard—Couvreur—Lecerf (2020)

Arithmetic Method:
(Ideals in function fields)
e Hensel-Landberg (1902)
e Coates (1970)

e Davenport (1981)

e Hess (2001)

Ordinary/nodal Las Vegas algorithm computing L(D)
curves: in sub—quadratic time

Non—ordinary

curves: /\ no explicit complexity exponent

X
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Brill-Noether method

Notations:
> (H) = > pccordp(H)P - divisor of the zeros of H with multiplicity
» D>D"~ D—D" =3 npP with np > 0VYP (D — D' is effective)
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» D>D ~ D—D'"=> npP with np > 0VP (D — D' is effective)

Description of L(D) for C : F(X,Y,Z) =0 a plane projective curve.
The non—zero elements are of the form " where
> H satisfies (H) >

» H satisties (H) > .A (we say that “H is adjoint to the curve”)
» deg G; = deg H, G; prime with F and (G;) > (H) —
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v/ the adjoint divisor A "encodes" the singular points of C with their
multiplicities
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Brill-Noether method

Notations:
> (H) = > pccordp(H)P - divisor of the zeros of H with multiplicity
» D>D ~ D—D'"=> npP with np > 0VP (D — D' is effective)

Description of L(D) for C : F(X,Y,Z) =0 a plane projective curve.
The non—zero elements are of the form " where

» H satisfies (H) > D

» H satisfies(H) > A

» deg G; = deg H, G; prime with F and (G;) > (H) — D

How do we manage singular points?

the adjoint divisor A "encodes" the singular points of C with their
multiplicities

How do we represent divisors?

series expansions of multi—set ., Operations on divisors with
representations ((P;);, n;) negligible cost
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Sketch of the algorithm

Input
C: F(X,Y,Z) =0 a plane curve of degre §, D a smooth divisor.

Step 1 : Compute the adjoint divisor A
Step 2 : Compute the common denominator H
Step 3: Compute (H) — D

Step 4 : Compute the numerators G; (similar to Step 2)

Output

A basis of the Riemann—Roch space L(D) in terms of H and the G;.
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Warm up: adjoint divisor in the ordinary case
Definition
Let P € Sing(C). The local adjoint divisor is

dx
Ap = — Zvalp <—Fy(x,y, 1)> P
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Warm up: adjoint divisor in the ordinary case
Definition
Let P € Sing(C). The local adjoint divisor is

dx
Ap = —Zvalp <—Fy(x,y, 1)> P

Let P € Sing(C) ordinary of multiplicity m, wlog P =(0:0:1). Then F
locally factorises as

m

F(X7.)/71) = U(XL)/) H(.y - SDI'(X))

i=1
with u € K[[x, y]] invertible, p;(x) € xK[[x]] and ©(0) # ©%(0).
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Warm up: adjoint divisor in the ordinary case
Definition
Let P € Sing(C). The local adjoint divisor is

dx
Ao == 3 (0P

)

Let P € Sing(C) ordinary of multiplicity m, wlog P =(0:0:1). Then F
locally factorises as
m

F(X7.y7 1) = U(X,_y) H(y - QD,(X))
i=1
with u € K[[x, y]] invertible, @;(x) € xK[[x]] and ©}(0) # ¢}(0).
Germ of the curve PN place P; in the
parametrized by ©;(x) functions field K(C)

The local adjoint divisor becomes

m

Ap = (m— 1)27’;.

=1 8/16



Adjoint condition via Puiseux series
Let F € K[x, y] be absolutely irreducible, monic in y and of degree d in
y. F € K((x))[y] has d distinct roots in K({x)), ¢1,...,@d, and writes

* d d oo
F=TTo e =TI (v~ S
i=1 i=1 Jj=n
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Adjoint condition via Puiseux series
Let F € K[x, y] be absolutely irreducible, monic in y and of degree d in

y. F € K((x))[y] has d distinct roots in K({x)), ©1,- .., ¢4, and writes

as
d d

F=Tlov-en=1I1» Zﬁ,,,xl/e’

i=1 i=1

We fix ¢ of degree e, ¢ a primitive e-th root of unity. For 0 < k < e we
can construct other e Puiseux series by replacing x/¢ with ¢kx1/e.
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We fix ¢ of degree e, ¢ a primitive e-th root of unity. For 0 < k < e we
can construct other e Puiseux series by replacing x1/¢ with ¢kx1/¢. They
are all equivalent and represented by...

Definition

A Rational Puiseux Expansion (RPE) is a pair
(X(2), Y(£) = (e, 5572, B;t1) such that F(X(£), Y (£)) =
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Adjoint condition via Puiseux series
Let F € K[x, y] be absolutely irreducible, monic in y and of degree d in
y. F € K((x))[y] has d distinct roots in K({x)), ¢1,...,@d, and writes

as
d d

F=Tlov-en=1I1» Zﬁ,,,xl/e’

i=1 i=1

We fix ¢ of degree e, ¢ a primitive e-th root of unity. For 0 < k < e we
can construct other e Puiseux series by replacing x1/¢ with ¢kx1/¢. They
are all equivalent and represented by...

Definition

A Rational Puiseux Expansion (RPE) is a pair
(X(2). Y(8) = (ve£, 5552, B89 such that F(X(1), ¥ (1)) =

Rational Puiseux PN places of K(C) in
Expansion of F(x,y,1) the chart z =1

A\ the RPE are often defined over an extension of K.
It is an algorithmic question to take the minimal extension of the field.
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The adjoint divisor

Let P € Sing(C) erdirary, wlog P = (0:0:1). Then F locally factorises

as
m

F(X’y’l) - U(X’y) H(y_ (p,-(X))

i=1

with u € K[[x, y]] invertible and ¢; Puiseux series of F € K[[x]][y].
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The adjoint divisor
Let P € Sing(C) exdirary, wlog P = (0:0:1). Then F locally factorises

as
m

F(X’y’l) = U(X’Y) H(y - QO,'(X))

i=1

with u € K[[x, y]] invertible and ¢; Puiseux series of F € K[[x]][y].

RPEs/places (Xi(t), Yi(t))

{p1,- -, 0m} ie{l,...,s},s<m

The local adjoint divisor becomes

ete !
Ap == vl (Fy(X(r), Y(t), 1)) P

In practice: algorithm for computing Puiseux series®

~ A computed with O(63) operations

2A. Poteaux et M. Weimann, Annales Herni Lebesgue, 2021
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Sketch of the algorithm

Input
C: F(X,Y,Z) =0 a plane curve of degree §, D a smooth divisor .
Step 1: Compute the adjoint divisor A v + O(5%)
Step 2 : Compute the common denominator H
Step 3: Compute (H) — D v « O(62 + deg D)
Step 4 : Compute the numerators G; (similar to Step 2)

Output

A basis of the Riemann—Roch space L(D) in terms of H and the G;.
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Find a denomainator in practice

Classical linear algebra
Let d .= degH.

Condition (H) > A+ D
~ linear system with deg A 4 deg D ~ 62 + deg D equations

~~ Gauss elimination costs

O((dd + 6% + deg D)) operations in K
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Find a denomainator in practice

Classical linear algebra
Let d .= degH.

Condition (H) > A+ D
~ linear system with deg.A + deg D ~ 42 + deg D equations

~~ Gauss elimination costs

O((dd + 6% + deg D)) operations in K
How big is d?

We showed that d = [w—‘ is enough

~~ denominator computed with O((62 + deg D)*) operations in K

12/16



Second method: structured linear algebra

Condition (H) > A

= val (H(X(8), Y(8), 1) > vale (Fy(X(etgi_Y(f)y 5)

(similar equations for the condition (H) > D)

The space of polynomials H(x, y, 1) that satisfy these conditions is a
K[x]-module

~~ Computing a basis? costs O((62 4 deg D)*) operations

3C.-P. Jeannerod, V. Neiger, E. Schost et G. Villard, J. Symbolic Comput. 2017
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Second method: structured linear algebra

Condition (H) > A

= val (H(X(8), Y(8), 1) > vale (Fy(X(etgi_Y(f)y 5)

(similar equations for the condition (H) > D)

The space of polynomials H(x, y, 1) that satisfy these conditions is a
K[x]-module

~~ Computing a basis? costs O((62 4 deg D)*) operations

Same complexity exponent but...
Advantages:
> better complexity exponent on algebraically closed fields

» potential improvement in the futur

3C.-P. Jeannerod, V. Neiger, E. Schost et G. Villard, J. Symbolic Comput. 2017
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Sketch of the algorithm

Input
C: F(X,Y,Z) =0 a plane curve of degree 6, D a smooth divisor .
Step 1: Compute the adjoint divisor A v «+ O(63)
Step 2: Compute the common denominator H v« O((62 + deg D)*)
Step 3: Compute (H) — D v « O(0? + deg D)
Step 4 : Compute the numerators G; (similar to Step 2)

Output

A basis of the Riemann—Roch space L(D) in terms of H and the G;.
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Sketch of the algorithm
Input
C: F(X,Y,Z) =0 a plane curve of degree 6, D a smooth divisor .
Step 1: Compute the adjoint divisor A v « O(63)
Step 2 : Compute the common denominator H v < O((6? + deg D)~)
Step 3: Compute (H) — D v < O(6% + deg D)

Step 4 : Compute the numerators G; v+ O((6? + deg D)*)

Output

A basis of the Riemann—Roch space L(D) in terms of H and the G;.

Theorem (Abelard, B., Couvreur, Lecerf — preprint 2021)

The previous algorithm computes L(D) with O((52 + deg D))
operations in K.
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What to take away?

necessary and sufficient conditions on G

1. Brill-Noether method and H such that G/H & L(D)

management of non—ordinary singular

2. Puiseux series .
points of the curve

3. Linear Algebra ~ Computing H and G in practice
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What to take away?

necessary and sufficient conditions on G

1. Brill-Noether method and H such that G/H & L(D)

management of non—ordinary singular

2. Puiseux series .
points of the curve

3. Linear Algebra ~ Computing H and G in practice
Main result

Toke
Las Vegas algorithm computing L(D) AwayY

with O((6? + deg D)*) operations.
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Future questions

© Computing Riemann—Roch spaces of non—ordinary
curves in positive “small” characteristic

< Implementing the algorithm

< Improving the complexity exponent
in the non—ordinary case (sub—quadratic?)

WOMAN AT WORK
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Merci de votre attention !

Questions? e.berardini@tue.nl
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