Computing Riemann-Roch spaces
 via Puiseux expansions

Elena Berardini
with S. Abelard (Thales), A. Couvreur (Inria), G. Lecerf (LIX)
Projet funded by the Agence de l'Innovation de Défense

Journées Nationales de Calcul Formel
1 mars 2022

Riemann-Roch spaces of curves

A divisor on a curve $\mathcal{C}: D=\sum_{P \in \mathcal{C}} n_{P} P, n_{P} \in \mathbb{Z}$

The Riemann-Roch space $L(D)$ is the space of functions $\frac{G}{H} \in \mathbb{K}(\mathcal{C})$ such that:

- if $n_{P}<0$ then P must be a zero of G (of multiplicity $\geqslant-n_{P}$)
- if $n_{P}>0$ then P can be a zero of H (of multiplicity $\leqslant n_{P}$)
- G / H has no other poles outside the points P with $n_{P}>0$

Here: Z must be a zero of G, the P_{i} can be zeros of H

Riemann-Roch spaces of curves

A divisor on a curve $\mathcal{C}: D=\sum_{P \in \mathcal{C}} n_{P} P, n_{P} \in \mathbb{Z}$

The Riemann-Roch space $L(D)$ is the space of functions $\frac{G}{H} \in \mathbb{K}(\mathcal{C})$ such that:

- if $n_{P}<0$ then P must be a zero of G (of multiplicity $\geqslant-n_{P}$)
- if $n_{P}>0$ then P can be a zero of H (of multiplicity $\leqslant n_{P}$)
- G / H has no other poles outside the points P with $n_{P}>0$

Here: Z must be a zero of G, the P_{i} can be zeros of H

Riemann-Roch Theorem \rightsquigarrow dimension of $L(D)=\operatorname{deg} D+1-g$ where the degree of a divisor is $\operatorname{deg} D=\sum_{P} n_{P} \operatorname{deg}(P)$

Toy example

Let $\mathcal{C}=\mathbb{P}^{1}, P=[0: 1]$ and $Q=[1: 1]$. Let $D=P-Q$, then

$$
f \in L(D) \Longleftrightarrow\left\{\begin{array}{l}
\mathrm{f} \text { has a zero of order at least } 1 \text { at } Q \\
\mathrm{f} \text { can have a pole of order at most } 1 \text { at } P \\
\mathrm{f} \text { has not other poles outside } P
\end{array}\right.
$$

Toy example

Let $\mathcal{C}=\mathbb{P}^{1}, P=[0: 1]$ and $Q=[1: 1]$. Let $D=P-Q$, then

$$
f \in L(D) \Longleftrightarrow\left\{\begin{array}{l}
\mathrm{f} \text { has a zero of order at least } 1 \text { at } Q \\
\mathrm{f} \text { can have a pole of order at most } 1 \text { at } P \\
\mathrm{f} \text { has not other poles outside } P
\end{array}\right.
$$

$$
f=\frac{x-1}{x} \text { is a solution }
$$

Toy example

Let $\mathcal{C}=\mathbb{P}^{1}, P=[0: 1]$ and $Q=[1: 1]$. Let $D=P-Q$, then

$$
f \in L(D) \Longleftrightarrow\left\{\begin{array}{l}
\mathrm{f} \text { has a zero of order at least } 1 \text { at } Q \\
\mathrm{f} \text { can have a pole of order at most } 1 \text { at } P \\
\mathrm{f} \text { has not other poles outside } P
\end{array}\right.
$$

$$
f=\frac{x-1}{x} \text { is a solution }
$$

$$
\begin{aligned}
g=0, \operatorname{deg} D & =0 \xrightarrow[\text { Theorem }]{\text { Riemann-Roch }} \operatorname{dim} L(D)=\operatorname{deg} D+1-g=1 \\
& \rightarrow f \text { generates the space of solutions }
\end{aligned}
$$

Toy example

Let $\mathcal{C}=\mathbb{P}^{1}, P=[0: 1]$ and $Q=[1: 1]$. Let $D=P-Q$, then

$$
\begin{aligned}
& f \in L(D) \Longleftrightarrow\left\{\begin{array}{l}
\mathrm{f} \text { has a zero of order at least } 1 \text { at } Q \\
\mathrm{f} \text { can have a pole of order at most } 1 \text { at } P \\
\mathrm{f} \text { has not other poles outside } P
\end{array}\right. \\
& \qquad f=\frac{x-1}{X} \text { is a solution } \\
& g=0, \operatorname{deg} D=0 \xrightarrow[\text { Riemann-Roch }]{\text { Theorem }} \operatorname{dim} L(D)=\operatorname{deg} D+1-g=1 \\
& \rightarrow f \text { generates the space of solutions }
\end{aligned}
$$

\triangle no explicit method to compute a basis of $L(D)$ How do we solve the problem in general?

Riemann-Roch spaces: for what?

- Construction of algebraic geometry codes from curves

Riemann-Roch spaces: for what?

- Construction of algebraic geometry codes from curves

- Arithmetic operations on Jacobians of curves ${ }^{1}$

Riemann-Roch problem: state of the art

Geometric Method:
(Brill-Noether theory~1874)

- Goppa, Le Brigand-Risler (80's)
- Huang-lerardi (90's)
- Khuri-Makdisi (2007)
- Le Gluher-Spaenlehauer (2018)
- Abelard-Couvreur-Lecerf (2020)

Arithmetic Method:

(Ideals in function fields)

- Hensel-Landberg (1902)
- Coates (1970)
- Davenport (1981)
- Hess (2001)

Riemann-Roch problem: state of the art

Geometric Method:
(Brill-Noether theory~1874)

- Goppa, Le Brigand-Risler (80's)
- Huang-lerardi (90's)
- Khuri-Makdisi (2007)
- Le Gluher-Spaenlehauer (2018)
- Abelard-Couvreur-Lecerf (2020)

Arithmetic Method:

(Ideals in function fields)

- Hensel-Landberg (1902)
- Coates (1970)
- Davenport (1981)
- Hess (2001)

Ordinary/nodal curves:
Non-ordinary
curves:

Las Vegas algorithm computing $L(D)$
in sub-quadratic time
\triangle no explicit complexity exponent

Brill-Noether method

Notations:

- $(H)=\sum_{P \in \mathcal{C}} \operatorname{ord}_{P}(H) P$ - divisor of the zeros of H with multiplicity
- $D \geqslant D^{\prime} \rightsquigarrow D-D^{\prime}=\sum n_{P} P$ with $n_{P} \geqslant 0 \forall P\left(D-D^{\prime}\right.$ is effective $)$

Brill-Noether method

Notations:

- $(H)=\sum_{P \in \mathcal{C}} \operatorname{ord} P_{P}(H) P$ - divisor of the zeros of H with multiplicity
- $D \geqslant D^{\prime} \rightsquigarrow D-D^{\prime}=\sum n_{P} P$ with $n_{P} \geqslant 0 \forall P\left(D-D^{\prime}\right.$ is effective)

Description of $L(D)$ for $\mathcal{C}: F(X, Y, Z)=0$ a plane projective curve.
The non-zero elements are of the form $\frac{G_{i}}{H}$ where

- H satisfies $(H) \geqslant D$
- H vanishes at any singular point of \mathcal{C} with ad hoc multiplicity
- $\operatorname{deg} G_{i}=\operatorname{deg} H, G_{i}$ prime with F and $\left(G_{i}\right) \geqslant(H)-D$

Brill-Noether method

Notations:

- $(H)=\sum_{P \in \mathcal{C}} \operatorname{ord}_{P}(H) P$ - divisor of the zeros of H with multiplicity
- $D \geqslant D^{\prime} \rightsquigarrow D-D^{\prime}=\sum n_{P} P$ with $n_{P} \geqslant 0 \forall P\left(D-D^{\prime}\right.$ is effective)

Description of $L(D)$ for $\mathcal{C}: F(X, Y, Z)=0$ a plane projective curve.
The non-zero elements are of the form $\frac{G_{i}}{H}$ where

- H satisfies $(H) \geqslant D$
- H vanishes at any singular point of \mathcal{C} with ad hoc multiplicity
- $\operatorname{deg} G_{i}=\operatorname{deg} H, G_{i}$ prime with F and $\left(G_{i}\right) \geqslant(H)-D$

How do we manage singular points?

Brill-Noether method

Notations:

- $(H)=\sum_{P \in \mathcal{C}} \operatorname{ord}_{P}(H) P$ - divisor of the zeros of H with multiplicity
- $D \geqslant D^{\prime} \rightsquigarrow D-D^{\prime}=\sum n_{P} P$ with $n_{P} \geqslant 0 \forall P\left(D-D^{\prime}\right.$ is effective)

Description of $L(D)$ for $\mathcal{C}: F(X, Y, Z)=0$ a plane projective curve.
The non-zero elements are of the form $\frac{G_{i}}{H}$ where

- H satisfies $(H) \geqslant D$
- H vanishes at any singular point of \mathcal{C} with ad hoc multiplicity
- $\operatorname{deg} G_{i}=\operatorname{deg} H, G_{i}$ prime with F and $\left(G_{i}\right) \geqslant(H)-D$

How do we manage singular points?

\checkmark the adjoint divisor \mathcal{A} "encodes" the singular points of \mathcal{C} with their multiplicities

Brill-Noether method

Notations:

- $(H)=\sum_{P \in \mathcal{C}} \operatorname{ord}_{P}(H) P$ - divisor of the zeros of H with multiplicity
- $D \geqslant D^{\prime} \rightsquigarrow D-D^{\prime}=\sum n_{P} P$ with $n_{P} \geqslant 0 \forall P\left(D-D^{\prime}\right.$ is effective)

Description of $L(D)$ for $\mathcal{C}: F(X, Y, Z)=0$ a plane projective curve.
The non-zero elements are of the form $\frac{G_{i}}{H}$ where

- H satisfies $(H) \geqslant D$
- H satisfies $(H) \geqslant \mathcal{A}$ (we say that " H is adjoint to the curve")
- $\operatorname{deg} G_{i}=\operatorname{deg} H, G_{i}$ prime with F and $\left(G_{i}\right) \geqslant(H)-D$

How do we manage singular points?
\checkmark the adjoint divisor \mathcal{A} "encodes" the singular points of \mathcal{C} with their multiplicities

Brill-Noether method

Notations:

- $(H)=\sum_{P \in \mathcal{C}} \operatorname{ord} P(H) P$ - divisor of the zeros of H with multiplicity
- $D \geqslant D^{\prime} \rightsquigarrow D-D^{\prime}=\sum n_{P} P$ with $n_{P} \geqslant 0 \forall P\left(D-D^{\prime}\right.$ is effective)

Description of $L(D)$ for $\mathcal{C}: F(X, Y, Z)=0$ a plane projective curve.
The non-zero elements are of the form $\frac{G_{i}}{H}$ where

- H satisfies $(H) \geqslant D$
- H satisfies $(H) \geqslant \mathcal{A}$
- $\operatorname{deg} G_{i}=\operatorname{deg} H, G_{i}$ prime with F and $\left(G_{i}\right) \geqslant(H)-D$

How do we manage singular points?

\checkmark the adjoint divisor \mathcal{A} "encodes" the singular points of \mathcal{C} with their multiplicities

How do we represent divisors?

Brill-Noether method

Notations:

- $(H)=\sum_{P \in \mathcal{C}} \operatorname{ord}_{P}(H) P$ - divisor of the zeros of H with multiplicity
- $D \geqslant D^{\prime} \rightsquigarrow D-D^{\prime}=\sum n_{P} P$ with $n_{P} \geqslant 0 \forall P\left(D-D^{\prime}\right.$ is effective $)$

Description of $L(D)$ for $\mathcal{C}: F(X, Y, Z)=0$ a plane projective curve.
The non-zero elements are of the form $\frac{G_{i}}{H}$ where

- H satisfies $(H) \geqslant D$
- H satisfies $(H) \geqslant \mathcal{A}$
- $\operatorname{deg} G_{i}=\operatorname{deg} H, G_{i}$ prime with F and $\left(G_{i}\right) \geqslant(H)-D$

How do we manage singular points?

\checkmark the adjoint divisor \mathcal{A} "encodes" the singular points of \mathcal{C} with their multiplicities

How do we represent divisors?
series expansions of multi-set \quad operations on divisors with representations $\left(\left(P_{i}\right)_{i}, n_{i}\right)$ negligible cost

Sketch of the algorithm

Input

$\mathcal{C}: F(X, Y, Z)=0$ a plane curve of degre δ, D a smooth divisor.

Step 1: Compute the adjoint divisor \mathcal{A}
Step 2 : Compute the common denominator H
Step 3 : Compute (H) - D
Step 4: Compute the numerators G_{i} (similar to Step 2)

Output

A basis of the Riemann-Roch space $L(D)$ in terms of H and the G_{i}.

Sketch of the algorithm

Input
$\mathcal{C}: F(X, Y, Z)=0$ a plane curve of degre δ, D a smooth divisor.

Step 1: Compute the adjoint divisor \mathcal{A}
Step 2 : Compute the common denominator H
Step 3: Compute $(H)-D \checkmark \leftarrow \tilde{O}\left(\delta^{2}+\operatorname{deg} D\right)$
Step 4: Compute the numerators G_{i} (similar to Step 2)

Output

A basis of the Riemann-Roch space $L(D)$ in terms of H and the G_{i}.

Sketch of the algorithm

Input
$\mathcal{C}: F(X, Y, Z)=0$ a plane curve of degre δ, D a smooth divisor.

Step 1: Compute the adjoint divisor \mathcal{A}
Step 2 : Compute the common denominator H
Step 3: Compute $(H)-D \checkmark \leftarrow \tilde{O}\left(\delta^{2}+\operatorname{deg} D\right)$
Step 4: Compute the numerators G_{i} (similar to Step 2)

Output

A basis of the Riemann-Roch space $L(D)$ in terms of H and the G_{i}.

Warm up: adjoint divisor in the ordinary case

Definition

Let $P \in \operatorname{Sing}(\mathcal{C})$. The local adjoint divisor is

$$
\mathcal{A}_{P}=-\sum_{\mathcal{P} \mid P} \operatorname{val}_{\mathcal{P}}\left(\frac{d x}{F_{y}(x, y, 1)}\right) \mathcal{P}
$$

Warm up: adjoint divisor in the ordinary case

Definition

Let $P \in \operatorname{Sing}(\mathcal{C})$. The local adjoint divisor is

$$
\mathcal{A}_{P}=-\sum_{\mathcal{P} \mid \mathcal{P}} \operatorname{val}_{\mathcal{P}}\left(\frac{d x}{F_{y}(x, y, 1)}\right) \mathcal{P} .
$$

Let $P \in \operatorname{Sing}(\mathcal{C})$ ordinary of multiplicity m, wlog $P=(0: 0: 1)$. Then F locally factorises as

$$
F(x, y, 1)=u(x, y) \prod_{i=1}^{m}\left(y-\varphi_{i}(x)\right)
$$

with $u \in \overline{\mathbb{K}}[[x, y]]$ invertible, $\varphi_{i}(x) \in x \overline{\mathbb{K}}[[x]]$ and $\varphi_{i}^{\prime}(0) \neq \varphi_{j}^{\prime}(0)$.

Warm up: adjoint divisor in the ordinary case

Definition

Let $P \in \operatorname{Sing}(\mathcal{C})$. The local adjoint divisor is

$$
\mathcal{A}_{P}=-\sum_{\mathcal{P} \mid \mathcal{P}} \operatorname{val}_{\mathcal{P}}\left(\frac{d x}{F_{y}(x, y, 1)}\right) \mathcal{P} .
$$

Let $P \in \operatorname{Sing}(\mathcal{C})$ ordinary of multiplicity m, wlog $P=(0: 0: 1)$. Then F locally factorises as

$$
F(x, y, 1)=u(x, y) \prod_{i=1}^{m}\left(y-\varphi_{i}(x)\right)
$$

with $u \in \overline{\mathbb{K}}[[x, y]]$ invertible, $\varphi_{i}(x) \in x \overline{\mathbb{K}}[[x]]$ and $\varphi_{i}^{\prime}(0) \neq \varphi_{j}^{\prime}(0)$.

Germ of the curve parametrized by $\varphi_{i}(x)$
place \mathcal{P}_{i} in the functions field $\overline{\mathbb{K}}(\mathcal{C})$

Warm up: adjoint divisor in the ordinary case

Definition

Let $P \in \operatorname{Sing}(\mathcal{C})$. The local adjoint divisor is

$$
\mathcal{A}_{P}=-\sum_{\mathcal{P} \mid P} \operatorname{val}_{\mathcal{P}}\left(\frac{d x}{F_{y}(x, y, 1)}\right) \mathcal{P} .
$$

Let $P \in \operatorname{Sing}(\mathcal{C})$ ordinary of multiplicity m, wlog $P=(0: 0: 1)$. Then F locally factorises as

$$
F(x, y, 1)=u(x, y) \prod_{i=1}^{m}\left(y-\varphi_{i}(x)\right)
$$

with $u \in \overline{\mathbb{K}}[[x, y]]$ invertible, $\varphi_{i}(x) \in x \overline{\mathbb{K}}[[x]]$ and $\varphi_{i}^{\prime}(0) \neq \varphi_{j}^{\prime}(0)$.

Germ of the curve parametrized by $\varphi_{i}(x) \longleftrightarrow$ functions field $\overline{\mathbb{K}}(\mathcal{C})$

The local adjoint divisor becomes

$$
\mathcal{A}_{P}=(m-1) \sum_{i=1}^{m} \mathcal{P}_{i} .
$$

Adjoint condition via Puiseux series

Let $F \in \mathbb{K}[x, y]$ be absolutely irreducible, monic in y and of degree d in y. $F \in \mathbb{K}((x))[y]$ has d distinct roots in $\overline{\mathbb{K}}\langle\langle x\rangle\rangle, \varphi_{1}, \ldots, \varphi_{d}$, and writes as

$$
F=\prod_{i=1}^{d}\left(y-\varphi_{i}\right)=\prod_{i=1}^{d}\left(y-\sum_{j=n}^{\infty} \beta_{i, j} X^{j / e_{i}}\right) .
$$

Adjoint condition via Puiseux series

Let $F \in \mathbb{K}[x, y]$ be absolutely irreducible, monic in y and of degree d in y. $F \in \mathbb{K}((x))[y]$ has d distinct roots in $\overline{\mathbb{K}}\langle\langle x\rangle\rangle, \varphi_{1}, \ldots, \varphi_{d}$, and writes as

$$
F=\prod_{i=1}^{d}\left(y-\varphi_{i}\right)=\prod_{i=1}^{d}\left(y-\sum_{j=n}^{\infty} \beta_{i, j} j^{j / e_{i}}\right) .
$$

We fix φ of degree e, ζ a primitive e-th root of unity. For $0 \leqslant k<e$ we can construct other e Puiseux series by replacing $x^{1 / e}$ with $\zeta^{k} x^{1 / e}$.

Adjoint condition via Puiseux series

Let $F \in \mathbb{K}[x, y]$ be absolutely irreducible, monic in y and of degree d in y. $F \in \mathbb{K}((x))[y]$ has d distinct roots in $\overline{\mathbb{K}}\langle\langle x\rangle\rangle, \varphi_{1}, \ldots, \varphi_{d}$, and writes as

$$
F=\prod_{i=1}^{d}\left(y-\varphi_{i}\right)=\prod_{i=1}^{d}\left(y-\sum_{j=n}^{\infty} \beta_{i, j} x^{j / e_{i}}\right) .
$$

We fix φ of degree e, ζ a primitive e-th root of unity. For $0 \leqslant k<e$ we can construct other e Puiseux series by replacing $x^{1 / e}$ with $\zeta^{k} x^{1 / e}$. They are all equivalent and represented by...

Definition

A Rational Puiseux Expansion (RPE) is a pair $(X(t), Y(t))=\left(\gamma t^{e}, \sum_{j=n}^{\infty} \beta_{j} t^{j}\right)$ such that $F(X(t), Y(t))=0$.

Adjoint condition via Puiseux series

Let $F \in \mathbb{K}[x, y]$ be absolutely irreducible, monic in y and of degree d in y. $F \in \mathbb{K}((x))[y]$ has d distinct roots in $\overline{\mathbb{K}}\langle\langle x\rangle\rangle, \varphi_{1}, \ldots, \varphi_{d}$, and writes as

$$
F=\prod_{i=1}^{d}\left(y-\varphi_{i}\right)=\prod_{i=1}^{d}\left(y-\sum_{j=n}^{\infty} \beta_{i, j} x^{j / e_{i}}\right) .
$$

We fix φ of degree e, ζ a primitive e-th root of unity. For $0 \leqslant k<e$ we can construct other e Puiseux series by replacing $x^{1 / e}$ with $\zeta^{k} x^{1 / e}$. They are all equivalent and represented by...

Definition

A Rational Puiseux Expansion (RPE) is a pair $(X(t), Y(t))=\left(\gamma t^{e}, \sum_{j=n}^{\infty} \beta_{j} t^{j}\right)$ such that $F(X(t), Y(t))=0$.

Rational Puiseux
Expansion of $F(x, y, 1)$
places of $\overline{\mathbb{K}}(\mathcal{C})$ in
the chart $z=1$

Adjoint condition via Puiseux series

Let $F \in \mathbb{K}[x, y]$ be absolutely irreducible, monic in y and of degree d in y. $F \in \mathbb{K}((x))[y]$ has d distinct roots in $\overline{\mathbb{K}}\langle\langle x\rangle\rangle, \varphi_{1}, \ldots, \varphi_{d}$, and writes as

$$
F=\prod_{i=1}^{d}\left(y-\varphi_{i}\right)=\prod_{i=1}^{d}\left(y-\sum_{j=n}^{\infty} \beta_{i, j} x^{j / e_{i}}\right) .
$$

We fix φ of degree e, ζ a primitive e-th root of unity. For $0 \leqslant k<e$ we can construct other e Puiseux series by replacing $x^{1 / e}$ with $\zeta^{k} x^{1 / e}$. They are all equivalent and represented by...

Definition

A Rational Puiseux Expansion (RPE) is a pair $(X(t), Y(t))=\left(\gamma t^{e}, \sum_{j=n}^{\infty} \beta_{j} t^{j}\right)$ such that $F(X(t), Y(t))=0$.

Rational Puiseux
Expansion of $F(x, y, 1)$
places of $\overline{\mathbb{K}}(\mathcal{C})$ in the chart $z=1$
\triangle the RPE are often defined over an extension of \mathbb{K}.
It is an algorithmic question to take the minimal extension of the field.

The adjoint divisor

Let $P \in \operatorname{Sing}(\mathcal{C})$ wlog $P=(0: 0: 1)$. Then F locally factorises as

$$
F(x, y, 1)=u(x, y) \prod_{i=1}^{m}\left(y-\varphi_{i}(x)\right)
$$

with $u \in \mathbb{K}[[x, y]]$ invertible and φ_{i} Puiseux series of $F \in \overline{\mathbb{K}}[[x]][y]$.

The adjoint divisor

Let $P \in \operatorname{Sing}(\mathcal{C})$ wlog $P=(0: 0: 1)$. Then F locally factorises as

$$
F(x, y, 1)=u(x, y) \prod_{i=1}^{m}\left(y-\varphi_{i}(x)\right)
$$

with $u \in \mathbb{K}[[x, y]]$ invertible and φ_{i} Puiseux series of $F \in \overline{\mathbb{K}}[[x]][y]$.

$$
\left\{\varphi_{1}, \ldots, \varphi_{m}\right\} \quad \rightsquigarrow \quad \begin{gathered}
\text { RPEs } / \text { places }\left(X_{i}(t), Y_{i}(t)\right) \\
i \in\{1, \ldots, s\}, s \leqslant m
\end{gathered}
$$

The adjoint divisor

Let $P \in \operatorname{Sing}(\mathcal{C})$ wlog $P=(0: 0: 1)$. Then F locally factorises as

$$
F(x, y, 1)=u(x, y) \prod_{i=1}^{m}\left(y-\varphi_{i}(x)\right)
$$

with $u \in \mathbb{K}[[x, y]]$ invertible and φ_{i} Puiseux series of $F \in \overline{\mathbb{K}}[[x]][y]$.

$$
\left\{\varphi_{1}, \ldots, \varphi_{m}\right\} \quad \rightsquigarrow \quad \begin{gathered}
\text { RPEs } / \text { places }\left(X_{i}(t), Y_{i}(t)\right) \\
i \in\{1, \ldots, s\}, s \leqslant m
\end{gathered}
$$

The local adjoint divisor becomes

$$
\mathcal{A}_{P}=-\sum_{\mathcal{P} \mid P} \operatorname{val}_{t}\left(\frac{e t^{e-1}}{F_{y}(X(t), Y(t), 1)}\right) \mathcal{P}
$$

The adjoint divisor

Let $P \in \operatorname{Sing}(\mathcal{C})$ wlog $P=(0: 0: 1)$. Then F locally factorises as

$$
F(x, y, 1)=u(x, y) \prod_{i=1}^{m}\left(y-\varphi_{i}(x)\right)
$$

with $u \in \mathbb{K}[[x, y]]$ invertible and φ_{i} Puiseux series of $F \in \overline{\mathbb{K}}[[x]][y]$.

$$
\begin{array}{cc}
\left\{\varphi_{1}, \ldots, \varphi_{m}\right\}
\end{array} \rightsquigarrow \quad \text { RPEs } / \text { places }\left(X_{i}(t), Y_{i}(t)\right)
$$

The local adjoint divisor becomes

$$
\mathcal{A}_{P}=-\sum_{\mathcal{P} \mid P} \operatorname{val}_{t}\left(\frac{e t^{e-1}}{F_{y}(X(t), Y(t), 1)}\right) \mathcal{P}
$$

In practice: algorithm for computing Puiseux series ${ }^{2}$
$\rightsquigarrow \mathcal{A}$ computed with $\tilde{O}\left(\delta^{3}\right)$ operations
${ }^{2}$ A. Poteaux et M. Weimann, Annales Herni Lebesgue, 2021

Sketch of the algorithm

Input
$\mathcal{C}: F(X, Y, Z)=0$ a plane curve of degree δ, D a smooth divisor .
Step 1: Compute the adjoint divisor $\mathcal{A} \checkmark \leftarrow \tilde{O}\left(\delta^{3}\right)$
Step 2 : Compute the common denominator H
Step 3: Compute $(H)-D \checkmark \leftarrow \tilde{O}\left(\delta^{2}+\operatorname{deg} D\right)$
Step 4: Compute the numerators G_{i} (similar to Step 2)

Output

A basis of the Riemann-Roch space $L(D)$ in terms of H and the G_{i}.

Sketch of the algorithm

Input
$\mathcal{C}: F(X, Y, Z)=0$ a plane curve of degree δ, D a smooth divisor .
Step 1: Compute the adjoint divisor $\mathcal{A} \checkmark \leftarrow \tilde{O}\left(\delta^{3}\right)$
Step 2 : Compute the common denominator H
Step 3: Compute $(H)-D \checkmark \leftarrow \tilde{O}\left(\delta^{2}+\operatorname{deg} D\right)$
Step 4: Compute the numerators G_{i} (similar to Step 2)

Output

A basis of the Riemann-Roch space $L(D)$ in terms of H and the G_{i}.

Find a denominator in practice

Classical linear algebra

Let $d:=\operatorname{deg} H$.

$$
\text { Condition }(H) \geqslant \mathcal{A}+D
$$

\rightsquigarrow linear system with $\operatorname{deg} \mathcal{A}+\operatorname{deg} D \sim \delta^{2}+\operatorname{deg} D$ equations
\rightsquigarrow Gauss elimination costs

$$
\tilde{O}\left(\left(d \delta+\delta^{2}+\operatorname{deg} D\right)^{\omega}\right) \text { operations in } \mathbb{K}
$$

Find a denominator in practice

Classical linear algebra

Let $d:=\operatorname{deg} H$.

$$
\text { Condition }(H) \geqslant \mathcal{A}+D
$$

\rightsquigarrow linear system with $\operatorname{deg} \mathcal{A}+\operatorname{deg} D \sim \delta^{2}+\operatorname{deg} D$ equations
\rightsquigarrow Gauss elimination costs

$$
\tilde{O}\left(\left(d \delta+\delta^{2}+\operatorname{deg} D\right)^{\omega}\right) \text { operations in } \mathbb{K}
$$

How big is d ?

We showed that $d=\left\lceil\frac{(\delta-1)(\delta-2)+\operatorname{deg} D}{\delta}\right\rceil$ is enough
\rightsquigarrow denominator computed with $\tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D\right)^{\omega}\right)$ operations in \mathbb{K}

Second method: structured linear algebra

$$
\begin{gathered}
\text { Condition }(H) \geqslant \mathcal{A} \\
\rightsquigarrow \operatorname{val}_{t}\left(H(X(t), Y(t), 1) \geqslant \operatorname{val}_{t}\left(\frac{e t^{e-1}}{F_{y}(X(t), Y(t), 1)}\right)\right.
\end{gathered}
$$

(similar equations for the condition $(H) \geqslant D$)
The space of polynomials $H(x, y, 1)$ that satisfy these conditions is a $\mathbb{K}[x]$-module
\rightsquigarrow Computing a basis ${ }^{3}$ costs $\tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D\right)^{\omega}\right)$ operations

Second method: structured linear algebra

$$
\begin{gathered}
\text { Condition }(H) \geqslant \mathcal{A} \\
\rightsquigarrow \operatorname{val}_{t}\left(H(X(t), Y(t), 1) \geqslant \operatorname{val}_{t}\left(\frac{e t^{e-1}}{F_{y}(X(t), Y(t), 1)}\right)\right.
\end{gathered}
$$

(similar equations for the condition $(H) \geqslant D$)
The space of polynomials $H(x, y, 1)$ that satisfy these conditions is a $\mathbb{K}[x]$-module
\rightsquigarrow Computing a basis ${ }^{3}$ costs $\tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D\right)^{\omega}\right)$ operations
Same complexity exponent but...
Advantages:

- better complexity exponent on algebraically closed fields
- potential improvement in the futur

Sketch of the algorithm

Input

$\mathcal{C}: F(X, Y, Z)=0$ a plane curve of degree δ, D a smooth divisor .
Step 1: Compute the adjoint divisor $\mathcal{A} \checkmark \leftarrow \tilde{O}\left(\delta^{3}\right)$
Step 2 : Compute the common denominator $H \checkmark \leftarrow \tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D\right)^{\omega}\right)$
Step 3: Compute $(H)-D \checkmark \leftarrow \tilde{O}\left(\delta^{2}+\operatorname{deg} D\right)$
Step 4: Compute the numerators G_{i} (similar to Step 2)

[^0]
Sketch of the algorithm

Input

$\mathcal{C}: F(X, Y, Z)=0$ a plane curve of degree δ, D a smooth divisor .
Step 1: Compute the adjoint divisor $\mathcal{A} \checkmark \leftarrow \tilde{O}\left(\delta^{3}\right)$
Step 2: Compute the common denominator $H \checkmark \leftarrow \tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D\right)^{\omega}\right)$
Step 3 : Compute $(H)-D \checkmark \leftarrow \tilde{O}\left(\delta^{2}+\operatorname{deg} D\right)$
Step 4 : Compute the numerators $G_{i} \checkmark \leftarrow \tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D\right)^{\omega}\right)$

Output

A basis of the Riemann-Roch space $L(D)$ in terms of H and the G_{i}.

Theorem (Abelard, B., Couvreur, Lecerf - preprint 2021)

The previous algorithm computes $L(D)$ with $\tilde{\mathcal{O}}\left(\left(\delta^{2}+\operatorname{deg} D\right)^{\omega}\right)$ operations in \mathbb{K}.

1. Brill-Noether method
2. Puiseux series
3. Linear Algebra
necessary and sufficient conditions on G and H such that $G / H \in L(D)$
management of non-ordinary singular points of the curve

Computing H and G in practice

What to take away?

1. Brill-Noether method
2. Puiseux series
3. Linear Algebra
necessary and sufficient conditions on G and H such that $G / H \in L(D)$
management of non-ordinary singular points of the curve
$\rightsquigarrow \quad$ Computing H and G in practice

Main result
Las Vegas algorithm computing $L(D)$ with $\tilde{\mathcal{O}}\left(\left(\delta^{2}+\operatorname{deg} D\right)^{\omega}\right)$ operations.

Future questions

\diamond Computing Riemann-Roch spaces of non-ordinary curves in positive "small" characteristic
\diamond Implementing the algorithm
\diamond Improving the complexity exponent in the non-ordinary case (sub-quadratic?)

Future questions

\diamond Computing Riemann-Roch spaces of non-ordinary curves in positive "small" characteristic
\diamond Implementing the algorithm
\diamond Improving the complexity exponent in the non-ordinary case (sub-quadratic?)

Merci de votre attention !
Questions? e.berardini@tue.nl

[^0]: Output
 A basis of the Riemann-Roch space $L(D)$ in terms of H and the G_{i}.

