Computing Riemann–Roch spaces via Puiseux expansions

S. Abelard, Elena Berardini, A. Couvreur and G. Lecerf

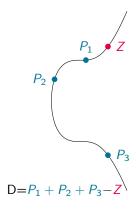
Laboratoire d'informatique de l'École polytechnique (LIX) CNRS, École polytechnique, Institut Polytechnique de Paris

Part of a project funded by the Agence de l'Innovation de Défense

AGC²T 4th June 2021

Riemann-Roch problem

Divisor on a curve C: $D = \sum_{P \in C} n_P P$



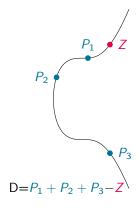
The **Riemann–Roch space** L(D) is the space of all functions $\frac{G}{H} \in \mathbb{K}(C)$ s. t.:

- ▶ if $n_P < 0$ then P must be a zero of G (of multiplicity $\ge -n_P$)
- ▶ if $n_P > 0$ then P can be a zero of H (of multiplicity $\leq n_P$)
- ► G/H has not other poles outside the points P with $n_P > 0$

Here: Z must be a zero of G, the P_i 's can be zeros of H

Riemann-Roch problem

Divisor on a curve
$$C$$
: $D = \sum_{P \in C} n_P P$



The **Riemann–Roch space** L(D) is the space of all functions $\frac{G}{H} \in \mathbb{K}(C)$ s. t.:

- if $n_P < 0$ then P must be a zero of G (of multiplicity $\ge -n_P$)
- If n_P > 0 then P can be a zero of H (of multiplicity ≤ n_P)
- ► G/H has not other poles outside the points P with $n_P > 0$

Here: Z must be a zero of G, the P_i 's can be zeros of H

Riemann–Roch theorem \rightsquigarrow dimension of L(D)

Riemann-Roch problem

emann-Roch problem

D>0 I
$$n_P \ge 0$$

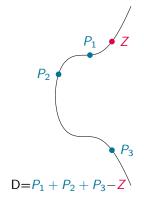
Divisor on a curve $C: D = \sum_{P \in C} n_P P$

D>0 I $n_P \ge 0$

D=0 I $n_P \ge 0$

O(P)

V(H) = $\sum_{P \in C} n_P P$



The **Riemann–Roch space** L(D) is the space of all functions $\frac{G}{H} \in \mathbb{K}(\mathcal{C})$ s. t.:

- ▶ if $n_P < 0$ then P must be a zero of G (of multiplicity $\geq -n_P$)
- ightharpoonup if $n_P > 0$ then P can be a zero of H (of multiplicity $\leq n_P$)
- ► *G/H* has not other poles outside the points P with $n_P > 0$

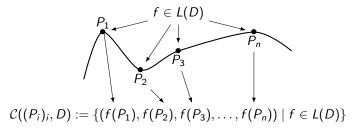
Here: Z must be a zero of G, the P_i 's can be zeros of H

Riemann–Roch theorem \rightsquigarrow dimension of L(D)

 \bigwedge no explicit method to compute a basis of L(D)

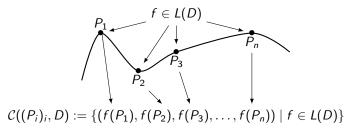
Some motivation

► Construction of algebraic geometry codes



Some motivation

Construction of algebraic geometry codes



(Some) Recent applications of AG codes:

- Locally Recoverable Codes¹
- ► Interactive Oracle Proofs²

¹A. Barg, I. Tamo and S. Vladuts, *Locally recoverable codes on algebraic curves*, 2017

²S. Bordage, J. Nardi, *Interactive Oracle Proofs of Proximity to Algebraic Geometry Codes*, 2021

Some motivation

- Construction of algebraic geometry codes
- Group operations on Jacobians of curves¹
- Symbolic integration²
- ► Diophantine equations³

¹K. Khuri-Makdisi, Asymptotically fast group operations on Jacobians of general curves. 2007

²J.H. Davenport, On the Integration of Algebraic Functions, 1981

³J. Coates, Construction of rational functions on a curve, 1970

Riemann-Roch problem: state of the art

Geometric methods:

(Brill-Noether theory ~1874)

- Goppa, Le Brigand-Risler (80's)
- Huang–lerardi (90's)
- Khuri-Makdisi (2007)
- Le Gluher-Spaenlehauer (2018)
- Abelard–Couvreur–Lecerf (2020)

Arithmetic methods:

(Ideals in function fields)

- Hensel–Landberg (1902)
- Coates (1970)
- Davenport (1981)
- Hess (2001)

Riemann-Roch problem: state of the art

Geometric methods:

(Brill-Noether theory \sim 1874)

- Goppa, Le Brigand–Risler (80's)
- Huang-lerardi (90's)
- Khuri-Makdisi (2007)
- Le Gluher-Spaenlehauer (2018)
- Abelard-Couvreur-Lecerf (2020)

Arithmetic methods:

(Ideals in function fields)

- Hensel–Landberg (1902)
- Coates (1970)
- Davenport (1981)
- Hess (2001)

Nodal/ordinary curves:

curves: Non-ordinary curves: Las Vegas algorithm computing L(D) in $\tilde{\mathcal{O}}((\delta^2 + \deg D_+)^{\frac{\omega+1}{2}})$ field operations⁴ Ano explicit complexity exponent

⁴here $2\leqslant\omega\leqslant3$ is a feasible exponent for linear algebra ($\omega=2.373$)

Today's menu⁵

Brill–Noether method \leadsto necessary and sufficient conditions on H and G such that $G/H \in L(D)$ Puiseux series \leadsto handling singular points on the curve C(Structured) Linear \leadsto computing H and G in practice

Main course

Las Vegas algorithm computing L(D) in $\tilde{\mathcal{O}}((\delta^2 + \deg D_+)^\omega)$ field operations.

⁵Sorry, Bouillabaisse is out of stock today!

Input

 $\mathcal{C}: F(X,Y,Z) = 0$ a plane projective curve, $D = D_+ - D_-$ a smooth divisor with D_+ and D_- effective.

Description of L(D): non-zero elements are of the form $\frac{G_i}{H}$ where

- ▶ H satisfies $(H) \geqslant D_+$
- H passes through all the singular points of C with ad hoc multiplicities
- ▶ deg $G_i = \deg H$, G_i coprime with F and $(G_i) \geqslant (H) D$

Input

 $\mathcal{C}: F(X,Y,Z) = 0$ a plane projective curve, $D = D_+ - D_-$ a smooth divisor with D_+ and D_- effective.

Description of L(D): non-zero elements are of the form $\frac{G_i}{H}$ where

- ▶ H satisfies $(H) \geqslant D_+$
- H passes through all the singular points of C with ad hoc multiplicities
- ▶ deg $G_i = \text{deg } H$, G_i coprime with F and $(G_i) \geqslant (H) D$

How do we handle singular points?

Input

 $\mathcal{C}: F(X,Y,Z) = 0$ a plane projective curve, $D = D_+ - D_-$ a smooth divisor with D_+ and D_- effective.

Description of L(D): non-zero elements are of the form $\frac{G_i}{H}$ where

- ▶ H satisfies $(H) \ge D_+$
- ▶ H satisfies $(H) \ge A$ (we say that "H is adjoint to the curve")
- ▶ deg $G_i = \deg H$, G_i coprime with F and $(G_i) \geqslant (H) D$

How do we handle singular points?

 \leadsto the adjunction divisor ${\mathcal A}$ "encodes" the singular points of ${\mathcal C}$ with their multiplicities

Input

$$\mathcal{C}: F(X,Y,Z)=0$$
 a plane projective curve, $D=D_+-D_-$ a smooth divisor with D_+ and D_- effective.

Description of L(D): non-zero elements are of the form $\frac{G_i}{H}$ where

- ▶ H satisfies $(H) \ge D_+$
- ightharpoonup H satisfies $(H) \geqslant A$
- ▶ deg $G_i = \deg H$, G_i coprime with F and $(G_i) \geqslant (H) D$

How do we handle singular points?

 \leadsto the adjunction divisor ${\cal A}$ "encodes" the singular points of ${\cal C}$ with their multiplicities

How do we handle divisors?

Input

$$\mathcal{C}: F(X,Y,Z)=0$$
 a plane projective curve, $D=D_+-D_-$ a smooth divisor with D_+ and D_- effective.

Description of L(D): non-zero elements are of the form $\frac{G_i}{H}$ where

- ▶ H satisfies $(H) \geqslant D_+$
- ightharpoonup H satisfies $(H) \geqslant A$
- ▶ deg $G_i = \deg H$, G_i coprime with F and $(G_i) \geqslant (H) D$

How do we handle singular points?

 \leadsto the adjunction divisor ${\cal A}$ "encodes" the singular points of ${\cal C}$ with their multiplicities

How do we handle divisors?

series expansions of multi-set routines on divisors representations $((P_i)_i, m_i)$ have negligible cost

```
\frac{\text{Input:}}{\text{Output: a basis of } L(D)} a plane curve \mathcal C of degree \delta and a smooth divisor D
```

Step 1: Compute the adjoint divisor A

Step 2: Compute a common denominator *H*

Step 3: Compute (H) - D

Step 4: Compute numerators G_i (similar to Step 2)

```
\frac{\text{Input:}}{\text{Output: a basis of } L(D)} a plane curve \mathcal C of degree \delta and a smooth divisor D
```

Step 1: Compute the adjoint divisor A

Step 2: Compute a common denominator *H*

Step 3: Compute (H) - D

Step 4: Compute numerators G_i (similar to Step 2)

 $\frac{\text{Input:}}{\text{Output: a basis of } L(D)}$ a plane curve $\mathcal C$ of degree δ and a smooth divisor D

- **Step 1:** Compute the adjoint divisor A
- **Step 2:** Compute a common denominator *H*
- **Step 3:** Compute $(H) D \checkmark \leftarrow \tilde{O}((\delta^2 + \deg D_+)^2)$
- **Step 4:** Compute numerators G_i (similar to Step 2)

 $\frac{\text{Input:}}{\text{Output: a basis of } L(D)}$ a plane curve $\mathcal C$ of degree δ and a smooth divisor D

- **Step 1:** Compute the adjoint divisor A
- **Step 2:** Compute a common denominator *H*
- **Step 3:** $\checkmark \leftarrow \tilde{O}((\delta^2 + \deg D_+)^2)$
- **Step 4:** Compute numerators G_i (similar to Step 2)

Puiseux expansions

∧work only in characteristic 0 or "big" characteristic⁶

Let $F \in \mathbb{K}[x,y]$ be absolutely irreducible, monic in y and of degree d_y in y. The roots of $F \in \mathbb{K}((x))[y]$ in $\cup_{e\geqslant 1}\overline{\mathbb{K}}((x^{1/e}))$ are its Puiseux expansions $\varphi_0,\ldots,\varphi_{d_v-1}$, so that F writes

$$F = \prod_{i=1}^{d_y-1} (y - \varphi_i).$$

Here $\varphi_i = \sum_{i=n}^{\infty} \beta_{i,j} x^{j/e_i}$, where e_i is taken to be as small as possible.

Toy example:
$$F = y^2 - x^3 \rightsquigarrow F = (y - x^{3/2})(y + x^{3/2})$$

Let $\varphi_0 = \sum_{j=1}^\infty \beta_j x^{j/{\rm e}_0}$ and ζ a primitive e_0 -th root of unity. Then for $0 \leqslant k < e_0$

$$\sum_{j=n}^{\infty} \beta_j (\zeta^k x^{1/e_0})^j$$

are (pairwise distinct) Puiseux expansions of F. They are all equivalent...

⁶We will come back to this later...

Rational Puiseux expansions

For $k=0,\ldots,e_0-1$ the e_0 Puiseux series in $\overline{\mathbb{K}}((x^{1/e_0}))$

$$\varphi_k(x) = \sum_{j=n}^{\infty} \beta_j (\zeta^k(x)^{1/e_0})^j$$

are all represented by a rational Puiseux expansion:

Definition

A rational Puiseux expansion of an absolutely irreducible polynomial $G \in \mathbb{E}((x))[y]$ is a pair $(X(t), Y(t)) \in \mathbb{E}((t))^2$ such that

- $(X(t), Y(t)) = (\gamma t^e, \sum_{i=n}^{\infty} \beta_i t^i)$ with $\gamma \beta_n \neq 0$
- ightharpoonup G(X(t), Y(t)) = 0

Toy example:
$$F = y^2 - x^3 \rightsquigarrow F = (y - x^{3/2})(y + x^{3/2}) \rightsquigarrow (t^2, t^3)$$

Rational Puiseux expansions of F correspond bijectively to the places of the curve F(x, y) = 0

The adjoint condition

The local adjoint divisor is

$$\mathcal{A}_{P} = -\sum_{\mathcal{P}|P} \operatorname{val}_{\mathcal{P}} \left(\frac{dx}{F_{y}} \right) \mathcal{P}$$

Places \iff RPE (X(t), Y(t)) and t is a uniformizing parameter

$$ightsquigar ext{val}_{\mathcal{P}}\left(rac{dx}{F_y}
ight) = ext{val}_t\left(rac{et^{e^{-1}}}{F_y(X(t),Y(t),1)}
ight)$$

The adjoint condition

The local adjoint divisor is

$$\mathcal{A}_{P} = -\sum_{\mathcal{P}|P} \operatorname{val}_{\mathcal{P}} \left(\frac{dx}{F_{y}} \right) \mathcal{P}$$

Places \iff RPE (X(t), Y(t)) and t is a uniformizing parameter $\rightsquigarrow \operatorname{val}_{\mathcal{P}}\left(\frac{dx}{F_y}\right) = \operatorname{val}_t\left(\frac{et^{e^{-1}}}{F_y(X(t), Y(t), 1)}\right)$

Example

Consider $C: y^2 - x^3 = 0$ in the affine chart z = 1.

(0,0) is the (only, non-ordinary) singular point.

Puiseux series : $y = \pm x^{3/2}$

RPE:
$$(X(t), Y(t)) = (t^2, t^3) \rightsquigarrow (unique) place \mathcal{P}$$

$$\operatorname{val}_{\mathcal{P}}\left(\frac{dx}{F_{y}}\right) = \operatorname{val}_{t}\left(\frac{2t}{2t^{3}}\right) = -2$$

The adjoint condition

The local adjoint divisor is

$$\mathcal{A}_{P} = -\sum_{\mathcal{P}|P} \operatorname{val}_{\mathcal{P}} \left(\frac{dx}{F_{y}} \right) \mathcal{P}$$

Places \iff RPE (X(t), Y(t)) and t is a uniformizing parameter $\rightsquigarrow \operatorname{val}_{\mathcal{P}}\left(\frac{dx}{F_{v}}\right) = \operatorname{val}_{t}\left(\frac{et^{e-1}}{F_{v}(X(t), Y(t), 1)}\right)$

Computation:

Fast algorithms for Puiseux series expansions of germs of curves 7 $\rightsquigarrow \mathcal{A}$ computed with an expected number of $\tilde{O}(\delta^3)$ field operations

⁷A. Poteaux and M. Weimann, *Computing Puiseux series: a fast divide and conquer algorithm*, 2021

Let $d = \deg H$.

Condition
$$(H) \geqslant A + D_+$$

- \rightsquigarrow linear system with deg $\mathcal{A} + \text{deg } \mathcal{D}_+$ equations
- → Gaussian elimination costs

$$\tilde{O}((d\delta + \delta^2 + \deg D_+)^{\omega})$$

Let $d = \deg H$.

Condition
$$(H) \geqslant A + D_+$$

- \rightsquigarrow linear system with deg $\mathcal{A} + \text{deg } \mathcal{D}_+$ equations
- → Gaussian elimination costs

$$\tilde{O}((d\delta + \delta^2 + \deg D_+)^{\omega})$$

How big is d?

Let $d = \deg H$.

Condition
$$(H) \geqslant A + D_+$$

- \rightsquigarrow linear system with deg $\mathcal{A} + \text{deg } \mathcal{D}_+$ equations
- → Gaussian elimination costs

$$\tilde{O}((d\delta + \delta^2 + \deg D_+)^{\omega})$$

How big is d?

We proved that
$$d = \left\lceil \frac{(\delta-1)(\delta-2) + \deg D_+}{\delta} \right
ceil$$
 is enough

Let $d = \deg H$.

Condition
$$(H) \geqslant A + D_+$$

- \rightsquigarrow linear system with deg $\mathcal{A} + \text{deg } \mathcal{D}_+$ equations
- → Gaussian elimination costs

$$\tilde{O}((d\delta + \delta^2 + \deg D_+)^{\omega})$$

How big is d?

We proved that
$$d=\left\lceil \frac{(\delta-1)(\delta-2)+\deg D_+}{\delta} \right\rceil$$
 is enough
$$\rightsquigarrow \tilde{O}((\delta^2+\deg D_+)^\omega) \text{ field operations}$$

Second method: structured linear algebra

$$\operatorname{val}_t(H(X(t),Y(t),1)\geqslant \operatorname{val}_t\left(rac{et^{e-1}}{F_y(X(t),Y(t),1)}
ight)$$

 \leadsto space of polynomials H(x,y) satisfying these conditions is a $\mathbb{K}[x]$ -module

 \rightsquigarrow computing a basis⁸ costs $\tilde{O}((\delta^2 + \deg D_+)^{\omega})$

⁸C.-P. Jeannerod, V. Neiger, É. Schost and G. Villard, *Computing minimal interpolation bases*, 2017

Second method: structured linear algebra

$$\operatorname{val}_t(H(X(t),Y(t),1) \geqslant \operatorname{val}_t\left(\frac{et^{e-1}}{F_y(X(t),Y(t),1)}\right)$$

 \leadsto space of polynomials H(x,y) satisfying these conditions is a $\mathbb{K}[x]$ -module

 \leadsto computing a basis $\tilde{O}((\delta^2 + \deg D_+)^\omega)$

Same complexity exponent but...

Benefits:

- bases with smaller representation size in general
- better complexity bound for algebraically closed fields
- possibility of future improvements

⁸C.-P. Jeannerod, V. Neiger, É. Schost and G. Villard, *Computing minimal interpolation bases*, 2017

 $\frac{\text{Input:}}{\text{Output: a basis of } L(D)}$ a plane curve $\mathcal C$ of degree δ and a smooth divisor D

- **Step 1:** Compute the adjoint divisor $\mathcal{A} \checkmark \leftarrow \tilde{O}(\delta^3)$
- **Step 2:** Compute $H \checkmark \leftarrow \tilde{O}((\delta^2 + \deg D_+)^{\omega})$
- **Step 3:** Compute $(H) D \checkmark \leftarrow \tilde{O}((\delta^2 + \deg D_+)^2)$
- **Step 4:** Compute numerators G_i (similar to Step 2)

Input: a plane curve C of degree δ and a smooth divisor DOutput: a basis of L(D)

- **Step 1:** Compute the adjoint divisor $\mathcal{A} \checkmark \leftarrow \tilde{O}(\delta^3)$
- **Step 2:** Compute $H \checkmark \leftarrow \tilde{O}((\delta^2 + \deg D_+)^{\omega})$
- **Step 3:** Compute $(H) D \checkmark \leftarrow \tilde{O}((\delta^2 + \deg D_+)^2)$
- **Step 4:** Compute numerators G_i (similar to Step 2)

 $\frac{\text{Input:}}{\text{Output: a basis of } L(D)}$

- **Step 1:** Compute the adjoint divisor $\mathcal{A} \checkmark \leftarrow \tilde{O}(\delta^3)$
- **Step 2:** Compute $H \checkmark \leftarrow \tilde{O}((\delta^2 + \deg D_+)^{\omega})$
- **Step 3:** Compute $(H) D \checkmark \leftarrow \tilde{O}((\delta^2 + \deg D_+)^2)$
- **Step 4:** Compute numerators $G_i \checkmark \leftarrow \tilde{O}((\delta^2 + \deg D_+)^{\omega})$

 $\frac{\text{Input:}}{\text{Output: a basis of } L(D)}$ a plane curve $\mathcal C$ of degree δ and a smooth divisor D

- **Step 1:** Compute the adjoint divisor $\mathcal{A} \checkmark \leftarrow \tilde{O}(\delta^3)$
- **Step 2:** Compute $H \checkmark \leftarrow \tilde{O}((\delta^2 + \deg D_+)^{\omega})$
- **Step 3:** Compute $(H) D \checkmark \leftarrow \tilde{O}((\delta^2 + \deg D_+)^2)$
- **Step 4:** Compute numerators $G_i \checkmark \leftarrow \tilde{O}((\delta^2 + \deg D_+)^{\omega})$

Return: a basis of L(D) in terms of H and the G_i !

Input: a plane curve C of degree δ and a smooth divisor DOutput: a basis of L(D)

- **Step 1:** Compute the adjoint divisor $\mathcal{A} \checkmark \leftarrow \tilde{O}(\delta^3)$
- **Step 2:** Compute $H \checkmark \leftarrow \tilde{O}((\delta^2 + \deg D_+)^{\omega})$
- **Step 3:** Compute $(H) D \checkmark \leftarrow \tilde{O}((\delta^2 + \deg D_+)^2)$
- **Step 4:** Compute numerators $G_i \checkmark \leftarrow \tilde{O}((\delta^2 + \deg D_+)^{\omega})$

Return: a basis of L(D) in terms of H and the G_i !

Main complexity bound

Las Vegas algorithm computing L(D) in $\tilde{\mathcal{O}}((\delta^2 + \deg D_+)^{\omega})$ field operations⁹.

⁹S. Abelard, E. Berardini, A. Couvreur et G. Lecerf, preprint coming soon!

What's next?

- Computing Riemann–Roch spaces of non-ordinary curves in "small" positive characteristic (in progress with G. Lecerf)
- ②. Improving the complexity in the non-ordinary case (→ sub-quadratic?)
- 3. Implementation including fast structured linear algebra
- 4. Computing Riemann-Roch spaces of surfaces

Thank you for your attention!

Questions? berardini@lix.polytechnique.fr

AGC²T ...on Maps ..(EILLE)?