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Riemann—Roch problem

Divisor on a curve C: D =3 p o npP

The Riemann—Roch space L(D) is the
space of all functions & € K(C) s. t.:
» if np < 0 then P must be a zero
of G (of multiplicity > —np)
» if np > 0 then P can be a zero of
H (of multiplicity < np)
» G/H has not other poles outside
the points P with np >0

Py

P>

P3
Here: Z must be a zero of G, the P;’s can be
zeros of H

D=P, + P, + P3—Z
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Riemann—Roch problem

The Riemann—Roch space L(D) is the
space of all functions & € K(C) s. t.:

» if np < 0 then P must be a zero
of G (of multiplicity > —np)

» if np > 0 then P can be a zero of
H (of multiplicity < np)

» G/H has not other poles outside
the points P with np >0

Py
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P3
Here: Z must be a zero of G, the P;’s can be
zeros of H

D=P, + P, + P3—Z

Riemann—Roch theorem ~~ dimension of L(D)
A\no explicit method to compute a basis of L(D)
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Some motivation

» Construction of algebraic geometry codes

fel(D)

Pl//l

C((Pi)i, D) == {(f(P1), f(P2),f(P3),...,f(Py)) | f € L(D)}
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Some motivation

» Construction of algebraic geometry codes
feLl(D)

Pl — i T
/ i

"\ \
C((Pi)i, D) == {(f(P1), f(P2), f(Ps),...,f(Pn)) | f € L(D)}

(Some) Recent applications of AG codes:

> Locally Recoverable Codes®
> Interactive Oracle Proofs®

1A. Barg, |I. Tamo and S. Vladuts, Locally recoverable codes on algebraic curves,

2017
2S. Bordage, J. Nardi, Interactive Oracle Proofs of Proximity to Algebraic
Geometry Codes, 2021
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Some motivation

» Construction of algebraic geometry codes
» Group operations on Jacobians of curves!
» Symbolic integration?

» Diophantine equations?

1K. Khuri-Makdisi, Asymptotically fast group operations on Jacobians of general
curves, 2007

2J.H. Davenport, On the Integration of Algebraic Functions, 1981
3J. Coates, Construction of rational functions on a curve, 1970
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Geometric methods:
(Brill-Noether theory ~1874)

e Goppa, Le Brigand—Risler (80's)
e Huang—lerardi (90's)

o Khuri-Makdisi (2007)

e Le Gluher-Spaenlehauer (2018)
o Abelard—Couvreur—Lecerf (2020)

Riemann-Roch problem: state of the art

Arithmetic methods:
(Ideals in function fields)
e Hensel-Landberg (1902)
e Coates (1970)

e Davenport (1981)

e Hess (2001)

4/15



Geometric methods:
(Brill-Noether theory ~1874)

e Goppa, Le Brigand-Risler (80's)
e Huang—lerardi (90's)

o Khuri-Makdisi (2007)

e Le Gluher-Spaenlehauer (2018)
o Abelard—Couvreur—Lecerf (2020)

Nodal/ordinary

Riemann-Roch problem: state of the art

Arithmetic methods:
(Ideals in function fields)
e Hensel-Landberg (1902)
e Coates (1970)

e Davenport (1981)

e Hess (2001)

Las Vegas algorithm computing L(D) in

curves: O((02 + deg D, )*2*") field operations*
Non-ordinary curves: A no explicit complexity exponent

X

“here 2 < w < 3 is a feasible exponent for linear algebra (w = 2.373)
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Today’s menu’

necessary and sufficient conditions on H

Brill-Noether method and G such that G/H ¢ L(D)
Puiseux series ~ handling singular points on the curve C

(Structured) Linear

algebra ~ computing H and G in practice

Main course

Take

Las Vegas algorithm computing L(D) in Away
O((62 + deg D )~) field operations.

5Sorry, Bouillabaisse is out of stock today!
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Brill-Noether in a nutshell

Input

C: F(X,Y,Z) =0 a plane projective curve,
D = D, — D_ a smooth divisor with Dy and D_ effective.

Description of L(D): non-zero elements are of the form % where

» H satisfies (H) > D,

» H passes through all the singular points of C with ad hoc
multiplicities
> deg G; = deg H, G; coprime with F and (G;) > (H) — D
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D = D, — D_ a smooth divisor with Dy and D_ effective.

Description of L(D): non-zero elements are of the form % where

):
> H satisfies (H) > D,
» H satisfies (H) > A (we say that “H is adjoint to the curve”)
> deg G; = deg H, G; coprime with F and (G;) > (H) — D

How do we handle singular points?

~- the adjunction divisor A "encodes" the singular points of C with their
multiplicities
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Brill-Noether in a nutshell

Input
C: F(X,Y,Z) =0 a plane projective curve,
D = D, — D_ a smooth divisor with Dy and D_ effective.

Description of L(D): non-zero elements are of the form % where

):

» H satisfies (H) > D,
> H satisfies (H) > A
> deg G; = deg H, G; coprime with F and (G;) > (H) — D

How do we handle singular points?

~- the adjunction divisor A "encodes" the singular points of C with their
multiplicities

How do we handle divisors?

series expansions of multi-set routines on divisors
. ~ .
representations ((P;);, m;) have negligible cost
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Sketch of the algorithm

Input: a plane curve C of degree § and a smooth divisor D

Step 1:
Step 2:
Step 3:
Step 4:

Output: a basis of L(D)
Compute the adjoint divisor A
Compute a common denominator H
Compute (H) — D

Compute numerators G; (similar to Step 2)
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Sketch of the algorithm

Input: a plane curve C of degree § and a smooth divisor D
Output: a basis of L(D)

Step 1:  Compute the adjoint divisor A
Step 2: Compute a common denominator H
Step 3: v « O((0% + deg D, )?)

Step 4: Compute numerators G; (similar to Step 2)
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Puiseux expansions
Awork only in characteristic 0 or "big” characteristic®

Let F € K[x, y] be absolutely irreducible, monic in y and of degree d, in
y. The roots of F € K((x))[y] in Ues1K((x/¢)) are its Puiseux
expansions o, . .., ¢d,—1, SO that F writes

d,—1
F= H (v — i)
i=1
Here ¢; = Zj'in 5,-,jxj/e", where ¢; is taken to be as small as possible.
Toy example: F=y? —x3 ~ F = (y — x3/2)(y + x3/?)

Let po = Z,oi1 Bjxf/e° and ¢ a primitive eg-th root of unity. Then for
0<k<eg

iﬁj( “xt/ey
Jj=n

are (pairwise distinct) Puiseux expansions of F. They are all equivalent...

SWe will come back to this later...
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Rational Puiseux expansions

For k=0,...,ey — 1 the e Puiseux series in K((x/))

Zﬂ () )y

are all represented by a rational Puiseux expansion:
Definition

A rational Puiseux expansion of an absolutely irreducible polynomial
G € E((x))[y] is a pair (X(t), Y(t)) € E((t))? such that

> (X(t), Y(t) = (vt°, 352, B;tY) with v, # 0
> G(X(8), Y (1)) =0
Toy example: F =y? —x3 ~ F = (y — x3/2)(y + x3/2) ~ (£2,t3)
Rational Puiseux expansions of F correspond bijectively

to the places of the curve F(x,y) =0
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The adjoint condition

The local adjoint divisor is

AP = - ZValp (?) P
PIP Y

Places <= RPE (X(t), Y(t)) and t is a uniformizing parameter

wvalp () =vale (gt vmm)

10/15



The adjoint condition

The local adjoint divisor is

Ap = — Zvalp (c;’_x) P
y

PIP

Places <= RPE (X(t), Y(t)) and t is a uniformizing parameter

te—l

dx
~ valp (Fy) = val; (m)

Ezxample

Consider C : y?> — x3 = 0 in the affine chart z = 1.
(0,0) is the (only, non-ordinary) singular point.
Puiseux series : y = +x3/2

RPE: (X(t), Y(t)) = (t?,t3) ~ (unique) place P

dx 2t
Val’p (Fy) = Valt <2t3> = -2

10/15



The adjoint condition

The local adjoint divisor is
dx
AP = — Zvalp <Fy> P

Places <= RPE (X(t), Y(t)) and t is a uniformizing parameter

dx | _ ete?!
= valp (&) = vale gty
Computation:
Fast algorithms for Puiseux series expansions of germs of curves’

~~ A computed with an expected number of O(52) field operations

7A. Poteaux and M. Weimann, Computing Puiseux series: a fast divide and
conquer algorithm, 2021
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Finding a denominator in practice

Straightforward linear solving
Let d =degH.
Condition (H) > A+ D.

~~ linear system with deg A + deg D, equations

~~ Gaussian elimination costs

O((dd + 6% 4 deg D))
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Second method: structured linear algebra

ete!
vale(H(X(t), Y(t),1) > val, <Fy(x(t) Y(t) l))

~~ space of polynomials H(x, y) satisfying these conditions is a
K[x]-module

~~ computing a basis® costs O((62 + deg D )*)

8C.-P. Jeannerod, V. Neiger, E. Schost and G. Villard, Computing minimal
interpolation bases, 2017
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Second method: structured linear algebra

ete!
vale(H(X(t), Y(t),1) > val, <Fy(X(t) Y(t) 1))

~~ space of polynomials H(x, y) satisfying these conditions is a
K[x]-module
~~ computing a basis® costs O((62 + deg D )*)
Same complexity exponent but...
Benefits:
» bases with smaller representation size in general
» better complexity bound for algebraically closed fields
» possibility of future improvements

8C.-P. Jeannerod, V. Neiger, E. Schost and G. Villard, Computing minimal

interpolation bases, 2017
12/15



Sketch of the algorithm

Input: a plane curve C of degree § and a smooth divisor D

Step 1:
Step 2:
Step 3:
Step 4:

Output: a basis of L(D)
Compute the adjoint divisor A v« O(63)
Compute H v+ O((6? + deg D, )¥)
Compute (H) — D v + O((62 + deg D, )?)

Compute numerators G; (similar to Step 2)
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Sketch of the algorithm
Input: a plane curve C of degree § and a smooth divisor D
Output: a basis of L(D)
Step 1: Compute the adjoint divisor A v+ O(53)
Step 2: Compute H v + O((6% 4 deg D, )*)
Step 3: Compute (H) — D v <« O((6% + deg D,)?)

Step 41 Compute numerators G; v < O((6? 4 deg D, )*)
Return: a basis of L(D) in terms of H and the G;!

Main complexity bound

Las Vegas algorithm computing L(D) in O((6? + deg D)) field

operations®.

9S. Abelard, E. Berardini, A. Couvreur et G. Lecerf, preprint coming soon!
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What’s next?

. Computing Riemann—Roch spaces of non-ordinary curves in “small”

positive characteristic (in progress with G. Lecerf)

Improving the complexity in the non-ordinary case
(~ sub-quadratic?)

Implementation including fast structured linear algebra

. Computing Riemann-Roch spaces of surfaces

WOMAN AT WORK
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Thank you for your attention!

Questions?
berardini®@lix.polytechnique.fr
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