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Riemann–Roch problem
Divisor on a curve C: D =

P
P2C nPP

D=P1 + P2 + P3�Z

P2

P1 Z

P3

The Riemann–Roch space L(D) is the
space of all functions G

H
2 K(C) s. t.:

I if nP < 0 then P must be a zero
of G (of multiplicity > �nP)

I if nP > 0 then P can be a zero of
H (of multiplicity 6 nP)

I G/H has not other poles outside
the points P with nP > 0

Here: Z must be a zero of G , the Pi ’s can be
zeros of H

Riemann–Roch theorem  dimension of L(D)

"no explicit method to compute a basis of L(D)
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p
DZO ' f np ? O

→ deg (D) =
E np deg(P)

L (H) = ZordpCH)P



Some motivation

I Construction of algebraic geometry codes

f 2 L(D)

C((Pi )i ,D) := {(f (P1), f (P2), f (P3), . . . , f (Pn)) | f 2 L(D)}

•
P3

•
P2

•
P1

•
Pn
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(Some) Recent applications of AG codes:
I Locally Recoverable Codes

1

I Interactive Oracle Proofs
2

1A. Barg, I. Tamo and S. Vladuts, Locally recoverable codes on algebraic curves,
2017

2S. Bordage, J. Nardi, Interactive Oracle Proofs of Proximity to Algebraic

Geometry Codes, 2021
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Some motivation

I Construction of algebraic geometry codes

I Group operations on Jacobians of curves1

I Symbolic integration2

I Diophantine equations3

1K. Khuri-Makdisi, Asymptotically fast group operations on Jacobians of general

curves, 2007
2J.H. Davenport, On the Integration of Algebraic Functions, 1981
3J. Coates, Construction of rational functions on a curve, 1970
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Riemann-Roch problem: state of the art
Geometric methods: Arithmetic methods:
(Brill–Noether theory ⇠1874) (Ideals in function fields)
• Goppa, Le Brigand–Risler (80’s)
• Huang–Ierardi (90’s)
• Khuri-Makdisi (2007)
• Le Gluher–Spaenlehauer (2018)
• Abelard–Couvreur–Lecerf (2020)

• Hensel–Landberg (1902)
• Coates (1970)
• Davenport (1981)
• Hess (2001)

Nodal/ordinary
curves:

Las Vegas algorithm computing L(D) in
Õ((�2 + degD+)

!+1
2 ) field operations

Non-ordinary curves: "no explicit complexity exponent
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• Davenport (1981)
• Hess (2001)

Nodal/ordinary
curves:

Las Vegas algorithm computing L(D) in
Õ((�2 + degD+)

!+1
2 ) field operations4

Non-ordinary curves: "no explicit complexity exponent

4here 2 6 ! 6 3 is a feasible exponent for linear algebra (! = 2.373)
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Today’s menu5

Brill–Noether method  necessary and sufficient conditions on H
and G such that G/H 2 L(D)

Puiseux series  handling singular points on the curve C

(Structured) Linear
algebra  computing H and G in practice

Main course
Las Vegas algorithm computing L(D) in
Õ((�2 + degD+)!) field operations.

5Sorry, Bouillabaisse is out of stock today!
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Brill–Noether in a nutshell
Input

C : F (X ,Y ,Z ) = 0 a plane projective curve,
D = D+ � D� a smooth divisor with D+ and D� effective.

Description of L(D): non-zero elements are of the form Gi

H
where

I H satisfies (H) > D+

I H passes through all the singular points of C with ad hoc
multiplicities

I degGi = degH, Gi coprime with F and (Gi ) > (H)� D

How do we handle singular points?

 the adjunction divisor A "encodes" the singular points of C with their
multiplicities

How do we handle divisors?

series expansions of multi-set
representations ((Pi )i ,mi )

 routines on divisors
have negligible cost
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Sketch of the algorithm

Input: a plane curve C of degree � and a smooth divisor D
Output: a basis of L(D)

Step 1: Compute the adjoint divisor A

Step 2: Compute a common denominator H

Step 3: Compute (H)� D

Step 4: Compute numerators Gi (similar to Step 2)
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Puiseux expansions
"work only in characteristic 0 or “big” characteristic6

Let F 2 K[x , y ] be absolutely irreducible, monic in y and of degree dy in
y . The roots of F 2 K((x))[y ] in [e>1K((x1/e)) are its Puiseux
expansions '0, . . . ,'dy�1, so that F writes

F =

dy�1Y

i=1

(y � 'i ).

Here 'i =
P1

j=n
�i,jx j/ei , where ei is taken to be as small as possible.

Toy example: F = y2
� x3  F = (y � x3/2)(y + x3/2)

Let '0 =
P1

j=1 �jx j/e0 and ⇣ a primitive e0-th root of unity. Then for
0 6 k < e0

1X

j=n

�j(⇣
kx1/e0)j

are (pairwise distinct) Puiseux expansions of F . They are all equivalent...

6We will come back to this later...
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Rational Puiseux expansions
For k = 0, . . . , e0 � 1 the e0 Puiseux series in K((x1/e0))

'k(x) =
1X

j=n

�j(⇣
k(x)1/e0)j

are all represented by a rational Puiseux expansion:

Definition

A rational Puiseux expansion of an absolutely irreducible polynomial
G 2 E((x))[y ] is a pair (X (t),Y (t)) 2 E((t))2 such that
I (X (t),Y (t)) = (�te ,

P1
j=n

�j t j) with ��n 6= 0
I G (X (t),Y (t)) = 0

Toy example: F = y2
� x3  F = (y � x3/2)(y + x3/2) (t2, t3)

Rational Puiseux expansions of F correspond bijectively
to the places of the curve F (x , y) = 0

9 / 15



The adjoint condition

The local adjoint divisor is

AP = �
X

P|P

valP
✓
dx

Fy

◆
P

Places () RPE (X (t),Y (t)) and t is a uniformizing parameter

 valP
⇣

dx

Fy

⌘
= valt

⇣
et

e�1

Fy (X (t),Y (t),1)

⌘
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Example

Consider C : y2
� x3 = 0 in the affine chart z = 1.

(0, 0) is the (only, non-ordinary) singular point.
Puiseux series : y = ±x3/2

RPE: (X (t),Y (t)) = (t2, t3) (unique) place P

valP
✓
dx

Fy

◆
= valt

✓
2t
2t3

◆
= �2
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Computation:

Fast algorithms for Puiseux series expansions of germs of curves7

 A computed with an expected number of Õ(�3) field operations

7A. Poteaux and M. Weimann, Computing Puiseux series: a fast divide and

conquer algorithm, 2021
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Finding a denominator in practice
Straightforward linear solving

Let d = degH.

Condition (H) > A+ D+

 linear system with degA+ degD+ equations

 Gaussian elimination costs

Õ((d� + �2 + degD+)
!)

How big is d?

We proved that d =
l
(��1)(��2)+degD+

�

m
is enough

 Õ((�2 + degD+)!) field operations
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Second method: structured linear algebra

valt(H(X (t),Y (t), 1) > valt
✓

ete�1

Fy (X (t),Y (t), 1)

◆

 space of polynomials H(x , y) satisfying these conditions is a
K[x ]-module

 computing a basis8 costs Õ((�2 + degD+)!)

Same complexity exponent but...
Benefits:
I bases with smaller representation size in general
I better complexity bound for algebraically closed fields
I possibility of future improvements

8C.-P. Jeannerod, V. Neiger, É. Schost and G. Villard, Computing minimal

interpolation bases, 2017
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Sketch of the algorithm

Input: a plane curve C of degree � and a smooth divisor D
Output: a basis of L(D)

Step 1: Compute the adjoint divisor A X  Õ(�3)

Step 2: Compute H X  Õ((�2 + degD+)!)

Step 3: Compute (H)� D X  Õ((�2 + degD+)2)

Step 4: Compute numerators Gi (similar to Step 2)
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Sketch of the algorithm

Input: a plane curve C of degree � and a smooth divisor D
Output: a basis of L(D)

Step 1: Compute the adjoint divisor A X  Õ(�3)

Step 2: Compute H X  Õ((�2 + degD+)!)

Step 3: Compute (H)� D X  Õ((�2 + degD+)2)

Step 4: Compute numerators Gi X  Õ((�2 + degD+)!)

Return: a basis of L(D) in terms of H and the Gi !

Main complexity bound

Las Vegas algorithm computing L(D) in Õ((�2 + degD+)!) field
operations9.

9S. Abelard, E. Berardini, A. Couvreur et G. Lecerf, preprint coming soon!
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What’s next?

1. Computing Riemann–Roch spaces of non-ordinary curves in “small”
positive characteristic (in progress with G. Lecerf)

2. Improving the complexity in the non-ordinary case
( sub-quadratic?)

3. Implementation including fast structured linear algebra

4. Computing Riemann-Roch spaces of surfaces

14 / 15



Thank you for your attention!
Questions?

berardini@lix.polytechnique.fr
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