# Computing Riemann-Roch spaces via Puiseux expansions 

S. Abelard, Elena Berardini, A. Couvreur and G. Lecerf

Laboratoire d'informatique de l'École polytechnique (LIX) CNRS, École polytechnique, Institut Polytechnique de Paris

Part of a project funded by the Agence de I'Innovation de Défense

$$
\begin{gathered}
\mathrm{AGC}^{2} \mathrm{~T} \\
4^{\text {th }} \text { June } 2021
\end{gathered}
$$

## Riemann-Roch problem

Divisor on a curve $\mathcal{C}: D=\sum_{P \in \mathcal{C}} n_{P} P$


The Riemann-Roch space $L(D)$ is the space of all functions $\frac{G}{H} \in \mathbb{K}(\mathcal{C})$ s. t.:

- if $n_{P}<0$ then $P$ must be a zero of $G$ (of multiplicity $\geqslant-n_{P}$ )
- if $n_{P}>0$ then $P$ can be a zero of $H$ (of multiplicity $\leqslant n_{P}$ )
- $G / H$ has not other poles outside the points $P$ with $n_{P}>0$

Here: $Z$ must be a zero of $G$, the $P_{i}$ 's can be zeros of $H$

## Riemann-Roch problem

Divisor on a curve $\mathcal{C}: D=\sum_{P \in \mathcal{C}} n_{P} P$


The Riemann-Roch space $L(D)$ is the space of all functions $\frac{G}{H} \in \mathbb{K}(\mathcal{C})$ s. t.:

- if $n_{P}<0$ then $P$ must be a zero of $G$ (of multiplicity $\geqslant-n_{P}$ )
- if $n_{P}>0$ then $P$ can be a zero of $H$ (of multiplicity $\leqslant n_{P}$ )
- $G / H$ has not other poles outside the points $P$ with $n_{P}>0$

Here: $Z$ must be a zero of $G$, the $P_{i}$ 's can be zeros of $H$

Riemann-Roch theorem $\rightsquigarrow$ dimension of $L(D)$

## Riemann-Roch problem

Divisor on a curve $C: D=\sum_{P \in C} n_{P} P \longrightarrow \operatorname{deg}(D)=\sum n_{P} \operatorname{deg}(P)$ $\forall(H)=\sum \operatorname{ordp}_{p}(H) P$


The Riemann-Roch space $L(D)$ is the space of all functions $\frac{G}{H} \in \mathbb{K}(\mathcal{C})$ s. t.:

- if $n_{P}<0$ then $P$ must be a zero of $G$ (of multiplicity $\geqslant-n_{P}$ )
- if $n_{P}>0$ then $P$ can be a zero of $H$ (of multiplicity $\leqslant n_{P}$ )
- $G / H$ has not other poles outside the points $P$ with $n_{P}>0$

Here: $Z$ must be a zero of $G$, the $P_{i}$ 's can be zeros of $H$

Riemann-Roch theorem $\rightsquigarrow$ dimension of $L(D)$
$\triangle$ no explicit method to compute a basis of $L(D)$

## Some motivation

- Construction of algebraic geometry codes


$$
\mathcal{C}\left(\left(P_{i}\right)_{i}, D\right):=\left\{\left(f\left(P_{1}\right), f\left(P_{2}\right), f\left(P_{3}\right), \ldots, f\left(P_{n}\right)\right) \mid f \in L(D)\right\}
$$

## Some motivation

- Construction of algebraic geometry codes


$$
\mathcal{C}\left(\left(P_{i}\right)_{i}, D\right):=\left\{\left(f\left(P_{1}\right), f\left(P_{2}\right), f\left(P_{3}\right), \ldots, f\left(P_{n}\right)\right) \mid f \in L(D)\right\}
$$

(Some) Recent applications of AG codes:

- Locally Recoverable Codes ${ }^{1}$
- Interactive Oracle Proofs ${ }^{2}$

[^0]
## Some motivation

- Construction of algebraic geometry codes
- Group operations on Jacobians of curves ${ }^{1}$
- Symbolic integration ${ }^{2}$
- Diophantine equations ${ }^{3}$

[^1]
## Riemann-Roch problem: state of the art

Geometric methods:
(Brill-Noether theory ~1874)

- Goppa, Le Brigand-Risler (80's)
- Huang-lerardi (90's)
- Khuri-Makdisi (2007)
- Le Gluher-Spaenlehauer (2018)
- Abelard-Couvreur-Lecerf (2020)

Arithmetic methods: (Ideals in function fields)

- Hensel-Landberg (1902)
- Coates (1970)
- Davenport (1981)
- Hess (2001)


## Riemann-Roch problem: state of the art

## Geometric methods:

(Brill-Noether theory ~1874)

- Goppa, Le Brigand-Risler (80's)
- Huang-lerardi (90's)
- Khuri-Makdisi (2007)
- Le Gluher-Spaenlehauer (2018)
- Abelard-Couvreur-Lecerf (2020)


## Arithmetic methods:

(Ideals in function fields)

- Hensel-Landberg (1902)
- Coates (1970)
- Davenport (1981)
- Hess (2001)

Nodal/ordinary
curves:
Non-ordinary curves:
Las Vegas algorithm computing $L(D)$ in $\tilde{\mathcal{O}}\left(\left(\delta^{2}+\operatorname{deg} D_{+}\right)^{\frac{\omega+1}{2}}\right)$ field operations ${ }^{4}$ ©no explicit complexity exponent

${ }^{4}$ here $2 \leqslant \omega \leqslant 3$ is a feasible exponent for linear algebra $(\omega=2.373)$

Brill-Noether method

Puiseux series $\rightsquigarrow$
(Structured) Linear algebra
necessary and sufficient conditions on $H$ and $G$ such that $G / H \in L(D)$
handling singular points on the curve $\mathcal{C}$
computing $H$ and $G$ in practice

## Main course

Las Vegas algorithm computing $L(D)$ in $\tilde{\mathcal{O}}\left(\left(\delta^{2}+\operatorname{deg} D_{+}\right)^{\omega}\right)$ field operations.

## Brill-Noether in a nutshell

## Input

$\mathcal{C}: F(X, Y, Z)=0$ a plane projective curve,
$D=D_{+}-D_{-}$a smooth divisor with $D_{+}$and $D_{-}$effective.
Description of $L(D)$ : non-zero elements are of the form $\frac{G_{i}}{H}$ where

- $H$ satisfies $(H) \geqslant D_{+}$
- $H$ passes through all the singular points of $\mathcal{C}$ with ad hoc multiplicities
- $\operatorname{deg} G_{i}=\operatorname{deg} H, G_{i}$ coprime with $F$ and $\left(G_{i}\right) \geqslant(H)-D$


## Brill-Noether in a nutshell

## Input

$\mathcal{C}: F(X, Y, Z)=0$ a plane projective curve,
$D=D_{+}-D_{-}$a smooth divisor with $D_{+}$and $D_{-}$effective.
Description of $L(D)$ : non-zero elements are of the form $\frac{G_{i}}{H}$ where

- $H$ satisfies $(H) \geqslant D_{+}$
- $H$ passes through all the singular points of $\mathcal{C}$ with ad hoc multiplicities
- $\operatorname{deg} G_{i}=\operatorname{deg} H, G_{i}$ coprime with $F$ and $\left(G_{i}\right) \geqslant(H)-D$

How do we handle singular points?

## Brill-Noether in a nutshell

## Input

$\mathcal{C}: F(X, Y, Z)=0$ a plane projective curve,
$D=D_{+}-D_{-}$a smooth divisor with $D_{+}$and $D_{-}$effective.
Description of $L(D)$ : non-zero elements are of the form $\frac{G_{i}}{H}$ where

- $H$ satisfies $(H) \geqslant D_{+}$
- $H$ satisfies $(H) \geqslant \mathcal{A}$ (we say that " $H$ is adjoint to the curve")
- $\operatorname{deg} G_{i}=\operatorname{deg} H, G_{i}$ coprime with $F$ and $\left(G_{i}\right) \geqslant(H)-D$

How do we handle singular points?
$\rightsquigarrow$ the adjunction divisor $\mathcal{A}$ "encodes" the singular points of $\mathcal{C}$ with their multiplicities

## Brill-Noether in a nutshell

## Input

$\mathcal{C}: F(X, Y, Z)=0$ a plane projective curve,
$D=D_{+}-D_{-}$a smooth divisor with $D_{+}$and $D_{-}$effective.
Description of $L(D)$ : non-zero elements are of the form $\frac{G_{i}}{H}$ where

- $H$ satisfies $(H) \geqslant D_{+}$
- $H$ satisfies $(H) \geqslant \mathcal{A}$
- $\operatorname{deg} G_{i}=\operatorname{deg} H, G_{i}$ coprime with $F$ and $\left(G_{i}\right) \geqslant(H)-D$

How do we handle singular points?
$\rightsquigarrow$ the adjunction divisor $\mathcal{A}$ "encodes" the singular points of $\mathcal{C}$ with their multiplicities

How do we handle divisors?

## Brill-Noether in a nutshell

## Input

$\mathcal{C}: F(X, Y, Z)=0$ a plane projective curve,
$D=D_{+}-D_{-}$a smooth divisor with $D_{+}$and $D_{-}$effective.
Description of $L(D)$ : non-zero elements are of the form $\frac{G_{i}}{H}$ where

- $H$ satisfies $(H) \geqslant D_{+}$
- $H$ satisfies $(H) \geqslant \mathcal{A}$
- $\operatorname{deg} G_{i}=\operatorname{deg} H, G_{i}$ coprime with $F$ and $\left(G_{i}\right) \geqslant(H)-D$

How do we handle singular points?
$\rightsquigarrow$ the adjunction divisor $\mathcal{A}$ "encodes" the singular points of $\mathcal{C}$ with their multiplicities

How do we handle divisors?
series expansions of multi-set representations $\left(\left(P_{i}\right)_{i}, m_{i}\right)$
routines on divisors have negligible cost

## Sketch of the algorithm

Input: a plane curve $\mathcal{C}$ of degree $\delta$ and a smooth divisor $D$ Output: a basis of $L(D)$

Step 1: Compute the adjoint divisor $\mathcal{A}$
Step 2: Compute a common denominator $H$
Step 3: Compute (H) - D
Step 4: Compute numerators $G_{i}$ (similar to Step 2)

## Sketch of the algorithm

Input: a plane curve $\mathcal{C}$ of degree $\delta$ and a smooth divisor $D$ Output: a basis of $L(D)$

Step 1: Compute the adjoint divisor $\mathcal{A}$
Step 2: Compute a common denominator $H$
Step 3: Compute (H) - D
Step 4: Compute numerators $G_{i}$ (similar to Step 2)

## Sketch of the algorithm

Input: a plane curve $\mathcal{C}$ of degree $\delta$ and a smooth divisor $D$ Output: a basis of $L(D)$

Step 1: Compute the adjoint divisor $\mathcal{A}$
Step 2: Compute a common denominator $H$
Step 3: Compute $(H)-D \checkmark \leftarrow \tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D_{+}\right)^{2}\right)$
Step 4: Compute numerators $G_{i}$ (similar to Step 2)

## Sketch of the algorithm

Input: a plane curve $\mathcal{C}$ of degree $\delta$ and a smooth divisor $D$ Output: a basis of $L(D)$

Step 1: Compute the adjoint divisor $\mathcal{A}$
Step 2: Compute a common denominator $H$
Step 3: $\quad \checkmark \leftarrow \tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D_{+}\right)^{2}\right)$
Step 4: Compute numerators $G_{i}$ (similar to Step 2)

## Puiseux expansions

© work only in characteristic 0 or "big" characteristic ${ }^{6}$
Let $F \in \mathbb{K}[x, y]$ be absolutely irreducible, monic in $y$ and of degree $d_{y}$ in $y$. The roots of $F \in \mathbb{K}((x))[y]$ in $\cup_{e \geqslant 1} \overline{\mathbb{K}}\left(\left(x^{1 / e}\right)\right)$ are its Puiseux expansions $\varphi_{0}, \ldots, \varphi_{d_{y}-1}$, so that $F$ writes

$$
F=\prod_{i=1}^{d_{y}-1}\left(y-\varphi_{i}\right) .
$$

Here $\varphi_{i}=\sum_{j=n}^{\infty} \beta_{i, j} X^{j / e_{i}}$, where $e_{i}$ is taken to be as small as possible.
Toy example: $F=y^{2}-x^{3} \rightsquigarrow F=\left(y-x^{3 / 2}\right)\left(y+x^{3 / 2}\right)$
Let $\varphi_{0}=\sum_{j=1}^{\infty} \beta_{j} x^{j / e_{0}}$ and $\zeta$ a primitive $e_{0}$-th root of unity. Then for $0 \leqslant k<e_{0}$

$$
\sum_{j=n}^{\infty} \beta_{j}\left(\zeta^{k} x^{1 / e_{o}}\right)^{j}
$$

are (pairwise distinct) Puiseux expansions of $F$. They are all equivalent...
${ }^{6}$ We will come back to this later...

## Rational Puiseux expansions

For $k=0, \ldots, e_{0}-1$ the $e_{0}$ Puiseux series in $\overline{\mathbb{K}}\left(\left(x^{1 / e_{0}}\right)\right)$

$$
\varphi_{k}(x)=\sum_{j=n}^{\infty} \beta_{j}\left(\zeta^{k}(x)^{1 / e_{0}}\right)^{j}
$$

are all represented by a rational Puiseux expansion:

## Definition

A rational Puiseux expansion of an absolutely irreducible polynomial $G \in \mathbb{E}((x))[y]$ is a pair $(X(t), Y(t)) \in \mathbb{E}((t))^{2}$ such that

- $(X(t), Y(t))=\left(\gamma t^{e}, \sum_{j=n}^{\infty} \beta_{j} t^{j}\right)$ with $\gamma \beta_{n} \neq 0$
- $G(X(t), Y(t))=0$

Toy example: $F=y^{2}-x^{3} \rightsquigarrow F=\left(y-x^{3 / 2}\right)\left(y+x^{3 / 2}\right) \rightsquigarrow\left(t^{2}, t^{3}\right)$
Rational Puiseux expansions of $F$ correspond bijectively to the places of the curve $F(x, y)=0$

## The adjoint condition

The local adjoint divisor is

$$
\mathcal{A}_{P}=-\sum_{\mathcal{P} \mid \mathcal{P}} \operatorname{val}_{\mathcal{P}}\left(\frac{d x}{F_{y}}\right) \mathcal{P}
$$

Places $\Longleftrightarrow \operatorname{RPE}(X(t), Y(t))$ and $t$ is a uniformizing parameter

$$
\rightsquigarrow \operatorname{val}_{\mathcal{P}}\left(\frac{d x}{F_{y}}\right)=\operatorname{val}_{t}\left(\frac{e e^{e-1}}{F_{y}(X(t), Y(t), 1)}\right)
$$

## The adjoint condition

The local adjoint divisor is

$$
\mathcal{A}_{P}=-\sum_{\mathcal{P} \mid \mathcal{P}} \operatorname{val}_{\mathcal{P}}\left(\frac{d x}{F_{y}}\right) \mathcal{P}
$$

Places $\Longleftrightarrow$ RPE $(X(t), Y(t))$ and $t$ is a uniformizing parameter

$$
\rightsquigarrow \operatorname{val}_{\mathcal{P}}\left(\frac{d x}{F_{y}}\right)=\operatorname{val}_{t}\left(\frac{e e^{e-1}}{F_{y}(X(t), Y(t), 1)}\right)
$$

## Example

Consider $\mathcal{C}: y^{2}-x^{3}=0$ in the affine chart $z=1$. $(0,0)$ is the (only, non-ordinary) singular point.
Puiseux series : $y= \pm x^{3 / 2}$
$R P E:(X(t), Y(t))=\left(t^{2}, t^{3}\right) \rightsquigarrow$ (unique) place $\mathcal{P}$

$$
\operatorname{val}_{\mathcal{P}}\left(\frac{d x}{F_{y}}\right)=\operatorname{val}_{t}\left(\frac{2 t}{2 t^{3}}\right)=-2
$$

## The adjoint condition

The local adjoint divisor is

$$
\mathcal{A}_{P}=-\sum_{\mathcal{P} \mid P} \operatorname{val}_{\mathcal{P}}\left(\frac{d x}{F_{y}}\right) \mathcal{P}
$$

Places $\Longleftrightarrow$ RPE $(X(t), Y(t))$ and $t$ is a uniformizing parameter

$$
\rightsquigarrow \operatorname{val}_{\mathcal{P}}\left(\frac{d x}{F_{y}}\right)=\operatorname{val}_{t}\left(\frac{e e^{e-1}}{F_{y}(X(t), Y(t), 1)}\right)
$$

Computation:
Fast algorithms for Puiseux series expansions of germs of curves ${ }^{7}$ $\rightsquigarrow \mathcal{A}$ computed with an expected number of $\tilde{O}\left(\delta^{3}\right)$ field operations

[^2]Finding a denominator in practice
Straightforward linear solving
Let $d=\operatorname{deg} H$.

$$
\text { Condition }(H) \geqslant \mathcal{A}+D_{+}
$$

$\rightsquigarrow$ linear system with $\operatorname{deg} \mathcal{A}+\operatorname{deg} D_{+}$equations
$\rightsquigarrow$ Gaussian elimination costs

$$
\tilde{O}\left(\left(d \delta+\delta^{2}+\operatorname{deg} D_{+}\right)^{\omega}\right)
$$

Finding a denominator in practice
Straightforward linear solving
Let $d=\operatorname{deg} H$.

$$
\text { Condition }(H) \geqslant \mathcal{A}+D_{+}
$$

$\rightsquigarrow$ linear system with $\operatorname{deg} \mathcal{A}+\operatorname{deg} D_{+}$equations
$\rightsquigarrow$ Gaussian elimination costs

$$
\tilde{O}\left(\left(d \delta+\delta^{2}+\operatorname{deg} D_{+}\right)^{\omega}\right)
$$

How big is $d$ ?

## Finding a denominator in practice

Straightforward linear solving
Let $d=\operatorname{deg} H$.

$$
\text { Condition }(H) \geqslant \mathcal{A}+D_{+}
$$

$\rightsquigarrow$ linear system with $\operatorname{deg} \mathcal{A}+\operatorname{deg} D_{+}$equations
$\rightsquigarrow$ Gaussian elimination costs

$$
\tilde{O}\left(\left(d \delta+\delta^{2}+\operatorname{deg} D_{+}\right)^{\omega}\right)
$$

How big is $d$ ?
We proved that $d=\left\lceil\frac{(\delta-1)(\delta-2)+\operatorname{deg} D_{+}}{\delta}\right\rceil$ is enough

## Finding a denominator in practice

Straightforward linear solving
Let $d=\operatorname{deg} H$.

$$
\text { Condition }(H) \geqslant \mathcal{A}+D_{+}
$$

$\rightsquigarrow$ linear system with $\operatorname{deg} \mathcal{A}+\operatorname{deg} D_{+}$equations
$\rightsquigarrow$ Gaussian elimination costs

$$
\tilde{O}\left(\left(d \delta+\delta^{2}+\operatorname{deg} D_{+}\right)^{\omega}\right)
$$

How big is $d$ ?
We proved that $d=\left\lceil\frac{(\delta-1)(\delta-2)+\operatorname{deg} D_{+}}{\delta}\right\rceil$ is enough
$\rightsquigarrow \tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D_{+}\right)^{\omega}\right)$ field operations

## Second method: structured linear algebra

$$
\operatorname{val}_{t}\left(H(X(t), Y(t), 1) \geqslant \operatorname{val}_{t}\left(\frac{e t^{e-1}}{F_{y}(X(t), Y(t), 1)}\right)\right.
$$

$\rightsquigarrow$ space of polynomials $H(x, y)$ satisfying these conditions is a $\mathbb{K}[x]$-module
$\rightsquigarrow$ computing a basis ${ }^{8}$ costs $\tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D_{+}\right)^{\omega}\right)$

[^3]
## Second method: structured linear algebra

$$
\operatorname{val}_{t}\left(H(X(t), Y(t), 1) \geqslant \operatorname{val}_{t}\left(\frac{e t^{e-1}}{F_{y}(X(t), Y(t), 1)}\right)\right.
$$

$\rightsquigarrow$ space of polynomials $H(x, y)$ satisfying these conditions is a $\mathbb{K}[x]$-module
$\rightsquigarrow$ computing a basis ${ }^{8}$ costs $\tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D_{+}\right)^{\omega}\right)$
Same complexity exponent but...

## Benefits:

- bases with smaller representation size in general
- better complexity bound for algebraically closed fields
- possibility of future improvements

[^4]
## Sketch of the algorithm

Input: a plane curve $\mathcal{C}$ of degree $\delta$ and a smooth divisor $D$ Output: a basis of $L(D)$

Step 1: Compute the adjoint divisor $\mathcal{A} \checkmark \leftarrow \tilde{O}\left(\delta^{3}\right)$
Step 2: Compute $H \checkmark \leftarrow \tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D_{+}\right)^{\omega}\right)$
Step 3: Compute $(H)-D \checkmark \leftarrow \tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D_{+}\right)^{2}\right)$
Step 4: Compute numerators $G_{i}$ (similar to Step 2)

## Sketch of the algorithm

Input: a plane curve $\mathcal{C}$ of degree $\delta$ and a smooth divisor $D$ Output: a basis of $L(D)$

Step 1: Compute the adjoint divisor $\mathcal{A} \checkmark \leftarrow \tilde{O}\left(\delta^{3}\right)$
Step 2: Compute $H \checkmark \leftarrow \tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D_{+}\right)^{\omega}\right)$
Step 3: Compute $(H)-D \checkmark \leftarrow \tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D_{+}\right)^{2}\right)$
Step 4: Compute numerators $G_{i}$ (similar to Step 2)

## Sketch of the algorithm

Input: a plane curve $\mathcal{C}$ of degree $\delta$ and a smooth divisor $D$ Output: a basis of $L(D)$

Step 1: Compute the adjoint divisor $\mathcal{A} \checkmark \leftarrow \tilde{O}\left(\delta^{3}\right)$
Step 2: Compute $H \checkmark \leftarrow \tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D_{+}\right)^{\omega}\right)$
Step 3: Compute $(H)-D \checkmark \leftarrow \tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D_{+}\right)^{2}\right)$
Step 4: Compute numerators $G_{i} \checkmark \leftarrow \tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D_{+}\right)^{\omega}\right)$

## Sketch of the algorithm

Input: a plane curve $\mathcal{C}$ of degree $\delta$ and a smooth divisor $D$ Output: a basis of $L(D)$

Step 1: Compute the adjoint divisor $\mathcal{A} \checkmark \leftarrow \tilde{O}\left(\delta^{3}\right)$
Step 2: Compute $H \checkmark \leftarrow \tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D_{+}\right)^{\omega}\right)$
Step 3: Compute $(H)-D \checkmark \leftarrow \tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D_{+}\right)^{2}\right)$
Step 4: Compute numerators $G_{i} \checkmark \leftarrow \tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D_{+}\right)^{\omega}\right)$
Return: a basis of $L(D)$ in terms of $H$ and the $G_{i}$ !

## Sketch of the algorithm

Input: a plane curve $\mathcal{C}$ of degree $\delta$ and a smooth divisor $D$ Output: a basis of $L(D)$

Step 1: Compute the adjoint divisor $\mathcal{A} \checkmark \leftarrow \tilde{O}\left(\delta^{3}\right)$
Step 2: Compute $H \checkmark \leftarrow \tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D_{+}\right)^{\omega}\right)$
Step 3: Compute $(H)-D \checkmark \leftarrow \tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D_{+}\right)^{2}\right)$
Step 4: Compute numerators $G_{i} \checkmark \leftarrow \tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D_{+}\right)^{\omega}\right)$

Return: a basis of $L(D)$ in terms of $H$ and the $G_{i}$ !

## Main complexity bound

Las Vegas algorithm computing $L(D)$ in $\tilde{\mathcal{O}}\left(\left(\delta^{2}+\operatorname{deg} D_{+}\right)^{\omega}\right)$ field operations ${ }^{9}$.

[^5]
## What's next?

1. Computing Riemann-Roch spaces of non-ordinary curves in "small" positive characteristic (in progress with G . Lecerf)
2. Improving the complexity in the non-ordinary case ( $\rightsquigarrow$ sub-quadratic?)
3. Implementation including fast structured linear algebra
4. Computing Riemann-Roch spaces of surfaces


## Thank you for your attention!




[^0]:    ${ }^{1}$ A. Barg, I. Tamo and S. Vladuts, Locally recoverable codes on algebraic curves, 2017
    ${ }^{2}$ S. Bordage, J. Nardi, Interactive Oracle Proofs of Proximity to Algebraic Geometry Codes, 2021

[^1]:    ${ }^{1}$ K. Khuri-Makdisi, Asymptotically fast group operations on Jacobians of general curves, 2007
    ${ }^{2}$ J.H. Davenport, On the Integration of Algebraic Functions, 1981
    ${ }^{3}$ J. Coates, Construction of rational functions on a curve, 1970

[^2]:    ${ }^{7}$ A. Poteaux and M. Weimann, Computing Puiseux series: a fast divide and conquer algorithm, 2021

[^3]:    ${ }^{8}$ C.-P. Jeannerod, V. Neiger, É. Schost and G. Villard, Computing minimal interpolation bases, 2017

[^4]:    ${ }^{8}$ C.-P. Jeannerod, V. Neiger, É. Schost and G. Villard, Computing minimal interpolation bases, 2017

[^5]:    ${ }^{9}$ S. Abelard, E. Berardini, A. Couvreur et G. Lecerf, preprint coming soon!

