Codes géométriques : mise en œuvre et applications

Elena Berardini

avec S. Abelard (Thales), A. Couvreur (Inria), G. Lecerf (LIX)

Journées de Théorie des Nombres et Cryptographie de Valenciennes 2&3 novembre 2021

I. Codes correcteurs et codes géométriques : une introduction

II. Quelques applications récentes des codes AG

III. Calcul effectif d'espaces de Riemann-Roch

Une méthode pour transmettre et stocker des données.

Caractéristiques : detection et correction des erreurs qui peuvent arriver lors de la transmission / le stockage

Une méthode pour transmettre et stocker des données.

Caractéristiques : detection et correction des erreurs qui peuvent arriver lors de la transmission / le stockage Un \mathbb{F}_q -sous espace vectoriel de \mathbb{F}_q^n (codes linéaires).

Trois paramètres :

▶ n, la longueur

k, la dimension

▶ **d**, la distance minimale

Taux de transmission: k/nDetecte jusqu'à d-1 erreurs Corrige jusqu'à $\lfloor \frac{d-1}{2} \rfloor$ erreurs

Une méthode pour transmettre et stocker des données.

Caractéristiques : detection et correction des erreurs qui peuvent arriver lors de la transmission / le stockage

Un \mathbb{F}_q -sous espace vectoriel de \mathbb{F}_q^n (codes linéaires).

Trois paramètres :

- ▶ n, la longueur
- ▶ **k**, la dimension
- ▶ **d**, la distance minimale

Taux de transmission: k/nDetecte jusqu'à d-1 erreurs Corrige jusqu'à $\lfloor \frac{d-1}{2} \rfloor$ erreurs

Une méthode pour transmettre et stocker des données.

Caractéristiques : detection et correction des erreurs qui peuvent arriver lors de la transmission / le stockage

BUT : encoder le plus grand nombre de données et detecter et corriger le plus grand nombre d'erreurs ! Un \mathbb{F}_q -sous espace vectoriel de \mathbb{F}_q^n (codes linéaires).

Trois paramètres :

- ▶ n, la longueur
- ▶ **k**, la dimension

▶ **d**, la distance minimale Taux de transmission: k/nDetecte jusqu'à d-1 erreurs Corrige jusqu'à $\lfloor \frac{d-1}{2} \rfloor$ erreurs

Une méthode pour transmettre et stocker des données.

Caractéristiques : detection et correction des erreurs qui peuvent arriver lors de la transmission / le stockage

BUT : encoder le plus grand nombre de données et detecter et corriger le plus grand nombre d'erreurs ! Un \mathbb{F}_q -sous espace vectoriel de \mathbb{F}_q^n (codes linéaires).

Trois paramètres :

- ▶ n, la longueur
- ▶ **k**, la dimension

• **d**, la distance minimale Taux de transmission: k/nDetecte jusqu'à d-1 erreurs Corrige jusqu'à $\lfloor \frac{d-1}{2} \rfloor$ erreurs BUT : avoir **k** et **d** les plus grands possible !

Une méthode pour transmettre et stocker des données.

Caractéristiques : detection et correction des erreurs qui peuvent arriver lors de la transmission / le stockage

BUT : encoder le plus grand nombre de données et detecter et corriger le plus grand nombre d'erreurs ! Un \mathbb{F}_q -sous espace vectoriel de \mathbb{F}_q^n (codes linéaires).

Trois paramètres :

- ▶ n, la longueur
- ▶ **k**, la dimension

• **d**, la distance minimale Taux de transmission: k/nDetecte jusqu'à d-1 erreurs Corrige jusqu'à $\lfloor \frac{d-1}{2} \rfloor$ erreurs BUT : avoir **k** et **d** les plus grands possible !

Borne de Singleton : $k + d \leq n + 1$ \rightsquigarrow compromis entre redondance et capacité de correction Codes d'évaluation : des codes de Reed-Solomon...

Codes d'évaluation : des codes de Reed-Solomon...

- ✓ Paramètres optimaux : k + d = n + 1 (codes MDS)
- ✓ Algorithme de décodage efficace (Berlekamp, 1968)
- ✓ Operations sur les données
- \underline{M} Incovenient : $n \leq q$

... aux codes géométriques

... aux codes géométriques

Longeur : $|\#C(\mathbb{F}_q) - (q+1)| \le g\lfloor 2\sqrt{q} \rfloor$

... aux codes géométriques

 $\mathsf{Longeur}: |\#C(\mathbb{F}_q) - (q+1)| \le g\lfloor 2\sqrt{q} \rfloor$

Proposition

Les paramètres [n, k, d] des codes géométriques satisfont

$$n+1-g\leq k+d\leq n+1.$$

 \rightsquigarrow les codes AG sont à distance g de l'optimalité

1981: Goppa introduit les codes AG sur les courbes algébriques

1981: Goppa introduit les codes AG sur les courbes algébriques

1982: Tsfasman, Vlăduț et Zink utilisent les codes AG pour dépasser la borne de Gilbert–Varshamov

1981: Goppa introduit les codes AG sur les courbes algébriques

1982: Tsfasman, Vlăduț et Zink utilisent les codes AG pour dépasser la borne de Gilbert–Varshamov

- *XXc:* des different familles de courbes sont étudiées afin d'obtenir des codes optimaux ou quasi-optimaux
 - \hookrightarrow seulement les courbes dont les espaces de Riemann–Roch sont déjà connus sont utilisées

1981: Goppa introduit les codes AG sur les courbes algébriques

1982: Tsfasman, Vlăduț et Zink utilisent les codes AG pour dépasser la borne de Gilbert–Varshamov

- *XXc:* des different familles de courbes sont étudiées afin d'obtenir des codes optimaux ou quasi-optimaux
 - \hookrightarrow seulement les courbes dont les espaces de Riemann–Roch sont déjà connus sont utilisées

XXIc: les codes AG sont utilisés dans des nouvelles applications en théorie de l'information

1981: Goppa introduit les codes AG sur les courbes algébriques

1982: Tsfasman, Vlăduț et Zink utilisent les codes AG pour dépasser la borne de Gilbert–Varshamov

- *XXc:* des different familles de courbes sont étudiées afin d'obtenir des codes optimaux ou quasi-optimaux
 - \hookrightarrow seulement les courbes dont les espaces de Riemann–Roch sont déjà connus sont utilisées
- *XXIc:* les codes AG sont utilisés dans des nouvelles applications en théorie de l'information ...allons voir comment !

- G, matrice d'un code [n, k, 2t + 1]
- \circ \mathcal{A} , algorithme de décodage
- S, a $k \times k$ matrice
- P, a $n \times n$ matrice

Calcule $\bar{G} = SGP$ PubKey = (\bar{G}, t) , SecKey= (G, P, S, A)

- G, matrice d'un code [n, k, 2t + 1]
- $\circ \mathcal{A}$, algorithme de décodage
- S, a $k \times k$ matrice
- P, a $n \times n$ matrice

Calcule $\bar{G} = SGP$ PubKey = (\bar{G}, t) , SecKey= (G, P, S, A)

- Divise son message en vecteurs *m_i* de longueur *k*
- Construit un vecteur *e* de longueur *n* et poids *t*

- G, matrice d'un code [n, k, 2t + 1]
- $\circ \mathcal{A}$, algorithme de décodage
- S, a $k \times k$ matrice
- P, a $n \times n$ matrice

Calcule $\bar{G} = SGP$ PubKey = (\bar{G}, t) , SecKey= (G, P, S, A)

- Divise son message en vecteurs *m_i* de longueur *k*
- Construit un vecteur *e* de longueur *n* et poids *t*

$$Calcule y_i = m_i \bar{G} + e$$

- G, matrice d'un code [n, k, 2t + 1]
- $\circ~\mathcal{A},$ algorithme de décodage
- S, a $k \times k$ matrice
- P, a $n \times n$ matrice

Calcule $\bar{G} = SGP$ PubKey = (\bar{G}, t) , SecKey= (G, P, S, A)

Reçoit y_i

- Divise son message en vecteurs *m_i* de longueur *k*
- Construit un vecteur *e* de longueur *n* et poids *t*

Calcule
$$y_i = m_i \bar{G} + e$$

• G, matrice d'un code [n, k, 2t + 1]Divise son message en 0 vecteurs m_i de longueur k \circ \mathcal{A} , algorithme de décodage • S. a $k \times k$ matrice Construit un vecteur e de longueur n et poids t• P, a $n \times n$ matrice Calcule $\overline{G} = SGP$ PubKey = (\overline{G}, t) . SecKey = (G, P, S, A)Calcule Reçoit y_i $v_i = m_i \overline{G} + e$ Calcule $v_i P^{-1} = (m_i \bar{G} + e) P^{-1}$ $= m_i SG + eP^{-1} = m_i SG + e'$ Utilise \mathcal{A} pour retrouver $m_i SG$ $m_i = m_i SG \times G^{-1}S^{-1}$

• G, matrice d'un code [n, k, 2t + 1]Divise son message en 0 vecteurs m_i de longueur k \circ \mathcal{A} , algorithme de décodage • S. a $k \times k$ matrice Construit un vecteur e de longueur n et poids t• P, a $n \times n$ matrice Calcule $\overline{G} = SGP$ PubKey = (\overline{G}, t) , SecKey = (G, P, S, A)Calcule Reçoit y_i $v_i = m_i \overline{G} + e$ Calcule $y_i P^{-1} = (m_i \bar{G} + e) P^{-1}$ $= m_i SG + eP^{-1} = m_i SG + e'$ Utilise \mathcal{A} pour retrouver $m_i SG$ $m_i = m_i SG \times G^{-1}S^{-1}$

Le cryptosystème McEliece pour la crypto post-quantique

- la sécurité se base sur la
 - difficulté calculatoire du décodage d'un code aléatoire
 - difficulté calculatoire de distinguer un code structuré d'un code aléatoire
- ✓ Post-quantum

⚠ Les codes AG classiques ne sont pas sûrs pour ce cryptosystème

 \checkmark Les sous-codes de codes AG sur un sous-corps sont prometteurs !

Prouver Puissant (e.g. un serveur)

Prouver Puissant (e.g. un serveur)

retourne le résultat y et une preuve de correction π

Applications : cryptomonnaies, blockchain...

Applications : cryptomonnaies, blockchain...

Quels codes peuvent être utilisés ? Les codes AG semblent être une bonne option $^{\rm 1}$

¹S. Bordage et J. Nardi, preprint, 2020

Espaces de Riemann-Roch : les codes AG et au-delà

Construction explicites de codes AG pour

- Cryptosystème de McEliece
- Calcul Vérifiable
- Autres applications (partage de secret, stockage distribué...)

→ besoin de calculer les espaces de Riemann-Roch de courbes

Espaces de Riemann-Roch : les codes AG et au-delà

Construction explicites de codes AG pour

- Cryptosystème de McEliece
- Calcul Vérifiable
- Autres applications (partage de secret, stockage distribué...)

 \rightsquigarrow besoin de calculer les espaces de Riemann-Roch de courbes

Cela est utile aussi pour...

- Operations arithmétiques sur les Jacobiennes de courbes²
- Integration symbolique³

²K. Khuri-Makdisi, Mathematics of Computations, 2007

³J.H. Davenport, Intern. Symp. on Symbolic et Algebraic Manipulation, 1979

Espaces de Riemann-Roch

Diviseurs sur une courbe C: $D = \sum_{P \in C} n_P P$

L'espace de Riemann–Roch L(D) est l'espace de toutes les fonctions de la forme $\frac{G}{H} \in \mathbb{K}(\mathcal{C})$ telles que :

- si n_P < 0 alors P doit être un zéro de G (de multiplicité ≥ −n_P)
- si n_P > 0 alors P peut être un zéro of H (de multiplicité ≤ n_P)
- G/H n'a pas d'autres pôles en dehors des points P avec n_P > 0

lci : Z doit être un zéro de G, les P_i peuvent être des zéros de H

Espaces de Riemann-Roch

Diviseurs sur une courbe C: $D = \sum_{P \in C} n_P P$

L'espace de Riemann–Roch L(D) est l'espace de toutes les fonctions de la forme $\frac{G}{H} \in \mathbb{K}(\mathcal{C})$ telles que :

- si n_P < 0 alors P doit être un zéro de G (de multiplicité ≥ −n_P)
- si n_P > 0 alors P peut être un zéro of H (de multiplicité ≤ n_P)
- G/H n'a pas d'autres pôles en dehors des points P avec n_P > 0

Ici : Z doit être un zéro de G, les P_i peuvent être des zéros de H

Théorème de Riemann-Roch \rightsquigarrow dimension de $L(D) = \deg D + 1 - g$ où le degré d'un diviseur est deg $D = \sum_{P} n_{P}$ Exemple jouet

Soit $\mathcal{C} = \mathbb{P}^1$, P = [0:1] et Q = [1:1]. Soit D = P - Q, alors

 $f \in L(D) \iff \begin{cases} f \text{ a un zéro d'ordre au moins 1 en } Q \\ f \text{ peut avoir un pôle d'ordre au plus 1 en } P \\ f \text{ n'a pas d'autres pôles en dehors de } P \end{cases}$

Exemple jouet

Soit
$$\mathcal{C} = \mathbb{P}^1$$
, $P = [0:1]$ et $Q = [1:1]$. Soit $D = P - Q$, alors

 $f \in L(D) \iff \begin{cases} f \text{ a un zéro d'ordre au moins 1 en } Q \\ f \text{ peut avoir un pôle d'ordre au plus 1 en } P \\ f \text{ n'a pas d'autres pôles en dehors de } P \end{cases}$

 $f = \frac{X-1}{X}$ est une solution

$$g = 0, \deg D = 0 \xrightarrow{\text{Théorème de}}_{ ext{Riemann-Roch}} \dim L(D) = \deg D + 1 - g = 1$$

 $\rightarrow f$ engendre l'espace des solutions

Exemple jouet

Soit
$$\mathcal{C} = \mathbb{P}^1$$
, $P = [0:1]$ et $Q = [1:1]$. Soit $D = P - Q$, alors

 $f \in L(D) \iff \begin{cases} f \text{ a un zéro d'ordre au moins 1 en } Q \\ f \text{ peut avoir un pôle d'ordre au plus 1 en } P \\ f \text{ n'a pas d'autres pôles en dehors de } P \end{cases}$

 $f = \frac{X-1}{X}$ est une solution

$$g = 0, \deg D = 0 \xrightarrow{\text{Théorème de}}_{\text{Riemann-Roch}} \dim L(D) = \deg D + 1 - g = 1$$

 $\rightarrow f$ engendre l'espace des solutions

 \underline{M} on n'a pas une méthode explicite pour calculer une base de L(D)Comment résoudre le problème en général?

Problème de Riemann-Roch : état de l'art

Méthode géométrique :

(Théorie de Brill–Noether \sim 1874)

- Goppa, Le Brigand-Risler (80's)
- Huang-lerardi (90's)
- Khuri-Makdisi (2007)
- Le Gluher-Spaenlehauer (2018)
- Abelard–Couvreur–Lecerf (2020)

Méthode arithmétique :

(Idéaux dans de corps de fonctions)

- Hensel-Landberg (1902)
- Coates (1970)
- Davenport (1981)
- Hess (2001)

Problème de Riemann-Roch : état de l'art

Méthode géométrique :

(Théorie de Brill–Noether \sim 1874)

- Goppa, Le Brigand-Risler (80's)
- Huang-lerardi (90's)
- Khuri-Makdisi (2007)
- Le Gluher-Spaenlehauer (2018)
- Abelard–Couvreur–Lecerf (2020)

Méthode arithmétique :

(Idéaux dans de corps de fonctions)

- Hensel-Landberg (1902)
- Coates (1970)
- Davenport (1981)
- Hess (2001)

Courbes ordinaires/nodales : Courbes non–ordinaire : Algorithme Las Vegas qui calcule L(D) en $\tilde{O}((\delta^2 + \deg D)^{\frac{\omega+1}{2}})$ operations⁴ Aucun exposant de complexité explicite

 $^{^42\}leqslant\omega\leqslant$ 3 est un exposant faisable pour l'algèbre linéaire ($\omega=$ 2.373)

Méthode Brill-Noether \rightsquigarrow conditions NS sur H et G t.q. $G/H \in L(D)$

Méthode Brill-Noether \rightsquigarrow conditions NS sur H et G t.q. $G/H \in L(D)$ Notations :

•
$$(H) = \sum_{P \in \mathcal{C}} \operatorname{ord}_P(H) P$$
 (zéros de H avec multiplicité)

•
$$D \ge D' \rightsquigarrow D - D' = \sum n_P P$$
 avec $n_P \ge 0$ pour tout P

Méthode Brill–Noether \rightsquigarrow conditions NS sur H et G t.q. $G/H \in L(D)$ Notations :

•
$$(H) = \sum_{P \in \mathcal{C}} \operatorname{ord}_P(H) P$$
 (zéros de H avec multiplicité)

•
$$D \ge D' \rightsquigarrow D - D' = \sum n_P P$$
 avec $n_P \ge 0$ pour tout P

Description de L(D) pour C : F(X, Y, Z) = 0 courbe plane projective.

Les éléments non-nuls sont de la forme $\frac{G_i}{H}$ où

- H satisfait $(H) \ge D$
- ▶ H passe à travers tout point singulier de C avec multiplicité ad hoc
- ▶ deg G_i = deg H, G_i copremier avec F et $(G_i) \ge (H) D$

Méthode Brill–Noether \rightsquigarrow conditions NS sur H et G t.q. $G/H \in L(D)$ Notations :

•
$$(H) = \sum_{P \in \mathcal{C}} \operatorname{ord}_P(H) P$$
 (zéros de H avec multiplicité)

•
$$D \ge D' \rightsquigarrow D - D' = \sum n_P P$$
 avec $n_P \ge 0$ pour tout P

Description de L(D) pour C : F(X, Y, Z) = 0 courbe plane projective.

Les éléments non-nuls sont de la forme $\frac{G_i}{H}$ où

- H satisfait $(H) \ge D$
- H passe à travers tout point singulier de C avec multiplicité ad hoc
- ▶ deg G_i = deg H, G_i copremier avec F et $(G_i) \ge (H) D$

Comment gérer les points singuliers ?

Méthode Brill–Noether \rightsquigarrow conditions NS sur H et G t.q. $G/H \in L(D)$ Notations :

•
$$(H) = \sum_{P \in \mathcal{C}} \operatorname{ord}_P(H)P$$
 (zéros de H avec multiplicité)
• $D \ge D' \Longrightarrow D = D' = \sum n_2 P$ avec $n_2 \ge 0$ pour tout P

•
$$D \ge D' \rightsquigarrow D - D' = \sum n_P P$$
 avec $n_P \ge 0$ pour tout P

Description de L(D) pour C : F(X, Y, Z) = 0 courbe plane projective.

Les éléments non-nuls sont de la forme $\frac{G_i}{H}$ où

- H satisfait (H) ≥ D
- H satisfait (H) ≥ A (on dira que "H est adjoint à la courbe")
- deg $G_i = \deg H$, G_i copremier avec F et $(G_i) \ge (H) D$

Comment gérer les points singuliers ?

 \rightsquigarrow le diviseur d'adjonction \mathcal{A} "contient" les points singuliers de \mathcal{C} avec leurs multiplicités

Méthode Brill–Noether \rightsquigarrow conditions NS sur H et G t.q. $G/H \in L(D)$ Notations :

•
$$(H) = \sum_{P \in \mathcal{C}} \operatorname{ord}_P(H)P$$
 (zéros de H avec multiplicité)
• $D \ge D' \Longrightarrow D = D' = \sum n_2 P$ avec $n_2 \ge 0$ pour tout P

•
$$D \ge D' \rightsquigarrow D - D' = \sum n_P P$$
 avec $n_P \ge 0$ pour tout P

Description de L(D) pour C : F(X, Y, Z) = 0 courbe plane projective.

Les éléments non-nuls sont de la forme $\frac{G_i}{H}$ où

- \blacktriangleright H satisfait (H) \ge D
- \blacktriangleright H satisfait(H) $\geq A$
- deg $G_i = \deg H$, G_i copremier avec F et $(G_i) \ge (H) D$

Comment gérer les points singuliers ?

 \rightsquigarrow le diviseur d'adjonction \mathcal{A} "contient" les points singuliers de \mathcal{C} avec leurs multiplicités

Comment gérer les diviseurs?

Méthode Brill–Noether \rightsquigarrow conditions NS sur H et G t.q. $G/H \in L(D)$ Notations :

•
$$(H) = \sum_{P \in \mathcal{C}} \operatorname{ord}_P(H)P$$
 (zéros de H avec multiplicité)
• $D \ge D' \Longrightarrow D = D' = \sum n_2 P$ avec $n_2 \ge 0$ pour tout P

•
$$D \ge D' \rightsquigarrow D - D' = \sum n_P P$$
 avec $n_P \ge 0$ pour tout P

Description de L(D) pour C : F(X, Y, Z) = 0 courbe plane projective.

Les éléments non-nuls sont de la forme $\frac{G_i}{H}$ où

- \blacktriangleright H satisfait (H) \ge D
- \blacktriangleright H satisfait(H) $\geq A$
- deg $G_i = \deg H$, G_i copremier avec F et $(G_i) \ge (H) D$

Comment gérer les points singuliers ?

 \rightsquigarrow le diviseur d'adjonction \mathcal{A} "contient" les points singuliers de \mathcal{C} avec leurs multiplicités

Comment gérer les diviseurs?

expansions en séries de opérations sur les diviseurs $\sim \rightarrow$ representations multi-set $((P_i)_i, m_i)$ ont coût négligeable

Input

C: F(X, Y, Z) = 0 une courbe plane projective, D un diviseur lisse.

- Étape 1 : Calcule le diviseur d'adjonction A
- Étape 2 : Calcule le dénominateur commun H
- Étape 3 : Calcule (H) D
- **Étape 4 :** Calcule des numérateurs G_i (proche de l'étape 2)

Output

Input

C: F(X, Y, Z) = 0 une courbe plane projective, D un diviseur lisse.

- Étape 1 : Calcule le diviseur d'adjonction A
- Étape 2 : Calcule le dénominateur commun H
- **Étape 3** : Calcule $(H) D \checkmark \leftarrow \tilde{O}((\delta^2 + \deg D)^2)$
- **Étape 4 :** Calcule des numérateurs G_i (proche de l'étape 2)

Output

Input

C: F(X, Y, Z) = 0 une courbe plane projective, D un diviseur lisse.

- **Étape 1 :** Calcul le diviseur d'adjonction \mathcal{A}
- Étape 2 : Calcule le dénominateur commun H
- **Étape 3** : Calcule $(H) D \checkmark \leftarrow \tilde{O}((\delta^2 + \deg D)^2)$
- **Étape 4 :** Calcule des numérateurs G_i (proche de l'étape 2)

Output

La condition d'adjonction via les séries de Puiseux

Soit $F \in \mathbb{K}[x, y]$ absolument irréductible, monic en y et de degré d en y. Les racines de $F \in \mathbb{K}((x))[y]$ en $\bigcup_{e \ge 1} \overline{\mathbb{K}}((x^{1/e}))$ sont ses series de Puiseux $\varphi_0, \ldots, \varphi_{d-1}$, et F s'écrit

$$F = \prod_{i=1}^{d-1} (y - \varphi_i) = \prod_{i=1}^{d-1} (y - \sum_{j=n}^{\infty} \beta_{i,j} x^{j/e_i}).$$

Exemple : $F = y^2 - x^3 \rightsquigarrow F = (y - x^{3/2})(y + x^{3/2})$

La condition d'adjonction via les séries de Puiseux

Soit $F \in \mathbb{K}[x, y]$ absolument irréductible, monic en y et de degré d en y. Les racines de $F \in \mathbb{K}((x))[y]$ en $\bigcup_{e \ge 1} \overline{\mathbb{K}}((x^{1/e}))$ sont ses series de Puiseux $\varphi_0, \dots, \varphi_{d-1}$, et F s'écrit

$$F = \prod_{i=1}^{d-1} (y - \varphi_i) = \prod_{i=1}^{d-1} (y - \sum_{j=n}^{\infty} \beta_{i,j} x^{j/e_i}).$$

Exemple : $F = y^2 - x^3 \rightsquigarrow F = (y - x^{3/2})(y + x^{3/2})$

On fixe une φ de degré *e*. Soit ζ une racine primitive *e*-ème de l'unité. Pour $0 \leq k < e$ on peut construire autres *e* séries de Puiseux en remplaçant $x^{1/e}$ par $\zeta^k x^{1/e}$. Elles sont toutes équivalentes et représentées par une seule

Expansion de Puiseux Rationnelle : un couple $(X(t), Y(t)) = (\gamma t^e, \sum_{j=n}^{\infty} \beta_j t^j)$

Expansions de Puiseux \iff places de la courbeRationnelles de FF(x,y) = 0

Example (continue): $\rightsquigarrow (X(t), Y(t)) = (t^2, t^3)$

Le diviseur d'adjonction

Le diviseur d'adjonction est

$$\mathcal{A} = \sum_{P \in \operatorname{Sing}(\mathcal{C})} - \sum_{\mathcal{P}|P} \operatorname{val}_{\mathcal{P}} \left(\frac{dx}{F_y} \right) \mathcal{P}$$

$$\xrightarrow[\text{expansions de Puiseux rationnelles}]{} \operatorname{val}_{\mathcal{P}}\left(\frac{dx}{F_{y}}\right) = \operatorname{val}_{t}\left(\frac{et^{e-1}}{F_{y}(X(t),Y(t),1)}\right)$$

.....

Le diviseur d'adjonction

Le diviseur d'adjonction est

$$\mathcal{A} = \sum_{P \in \operatorname{Sing}(\mathcal{C})} - \sum_{\mathcal{P}|P} \operatorname{val}_{\mathcal{P}} \left(\frac{dx}{F_y} \right) \mathcal{P}$$

$$\xrightarrow[\text{expansions de Puiseux rationnelles}]{} \operatorname{val}_{\mathcal{P}}\left(\frac{dx}{F_{y}}\right) = \operatorname{val}_{t}\left(\frac{et^{e-1}}{F_{y}(X(t),Y(t),1)}\right)$$

Exemple

On considère $C: y^2 - x^3 = 0$. L'unique point singulier (non-ordinaire) est (0,0).

$$(X(t), Y(t)) = (t^2, t^3) \rightsquigarrow \operatorname{val}_{\mathcal{P}}\left(\frac{dx}{F_y}\right) = \operatorname{val}_t\left(\frac{2t}{2t^3}\right) = -2$$

Calcul : algorithme pour les séries de Puiseux de germes de courbes⁵ $\rightsquigarrow \mathcal{A}$ calculé avec $\tilde{O}(\delta^3)$ opérations

⁵A. Poteaux et M. Weimann, Annales Herni Lebesgue, 2021

Input

C: F(X, Y, Z) = 0 une courbe plane projective, D un diviseur lisse.

- Étape 1 : Calcule le diviseur d'adjonction $\mathcal{A} \checkmark \leftarrow ilde{O}(\delta^3)$
- Étape 2 : Calcule le dénominateur commun H
- **Étape 3** : Calcule $(H) D \checkmark \leftarrow \tilde{O}((\delta^2 + \deg D)^2)$
- Étape 4 : Calcule les numérateurs G_i (proche de l'étape 2)

Output

Input

C: F(X, Y, Z) = 0 une courbe plane projective, D un diviseur lisse.

Étape 1 : Calcule le diviseur d'adjonction $\mathcal{A} \checkmark \leftarrow \widetilde{\mathcal{O}}(a)$	δ^3)
--	------------	---

Étape 2 : Calcule le dénominateur commun H

Étape 3 : Calcule $(H) - D \checkmark \leftarrow \tilde{O}((\delta^2 + \deg D)^2)$

Étape 4 : Calcule les numérateurs G_i (proche de l'étape 2)

Output

Trouver un dénominateur en pratique Algèbre linéaire classique

Soit $d = \deg H$.

Condition $(H) \ge A + D$

 \rightsquigarrow système linéaire avec deg A + deg D ∼ δ^2 + deg D équations \rightsquigarrow l'élimination de Gauss coûte

$$ilde{O}((d\delta + \delta^2 + \deg D)^\omega)$$
 opérations⁶

 $^{^62\}leqslant\omega\leqslant$ 3 est un exposant faisable pour l'algèbre linéaire ($\omega=$ 2.373)

Trouver un dénominateur en pratique Algèbre linéaire classique

Soit $d = \deg H$.

Condition $(H) \ge A + D$

→ système linéaire avec deg A + deg $D \sim \delta^2$ + deg D équations → l'élimination de Gauss coûte

$$ilde{O}((d\delta + \delta^2 + \deg D)^\omega)$$
 opérations⁶

Quelle taille a d?

On montre que $d = \left\lceil \frac{(\delta-1)(\delta-2) + \deg D}{\delta} \right\rceil$ est suffisant $\rightsquigarrow \tilde{O}((\delta^2 + \deg D)^{\omega})$ opérations

 $^{^62\}leqslant\omega\leqslant$ 3 est un exposant faisable pour l'algèbre linéaire ($\omega=$ 2.373)

Deuxième méthode : algèbre linéaire structurée

$$\operatorname{val}_t(H(X(t), Y(t), 1) \geqslant \operatorname{val}_t\left(rac{et^{e-1}}{F_y(X(t), Y(t), 1)}
ight)$$

 \rightsquigarrow l'espace de polynômes H(x,y) qui satisfont ces conditions est un $\mathbb{K}[x]\text{-module}$

 \rightsquigarrow calculer une base⁷ coûte $ilde{O}((\delta^2 + \deg D)^\omega)$ opérations⁸

 $^{^7\}text{C.-P.}$ Jeannerod, V. Neiger, É. Schost et G. Villard, Journal of Symbolic Computation, 2017

 $^{^{8}2\}leqslant\omega\leqslant$ 3 est un exposant faisable pour l'algèbre linéaire ($\omega=$ 2.373)

Deuxième méthode : algèbre linéaire structurée

$$\operatorname{val}_t(H(X(t), Y(t), 1) \geqslant \operatorname{val}_t\left(rac{et^{e-1}}{F_y(X(t), Y(t), 1)}
ight)$$

 \rightsquigarrow l'espace de polynômes H(x,y) qui satisfont ces conditions est un $\mathbb{K}[x]\text{-module}$

 \rightsquigarrow calculer une base 7 coûte $\tilde{O}((\delta^2 + \deg D)^\omega)$ opérations 8

L'exposant de complexité est le même mais...

Avantages :

- en général on obtient une base avec une taille de représentation plus petite
- l'exposant de complexité est meilleur sur des corps algébriquement clos
- on peut s'attendre à des améliorations dans le futur

 $^{^7\}text{C.-P.}$ Jeannerod, V. Neiger, É. Schost et G. Villard, Journal of Symbolic Computation, 2017

 $^{^{8}2\}leqslant\omega\leqslant$ 3 est un exposant faisable pour l'algèbre linéaire ($\omega=$ 2.373)

Input

C: F(X, Y, Z) = 0 une courbe plane projective, D un diviseur lisse.

Étape 1 : Calcule le diviseur d'adjonction $\mathcal{A} \checkmark \leftarrow ilde{O}(\delta^3)$

- **Étape 2 :** Calcule le dénominateur commun $H \checkmark \leftarrow \tilde{O}((\delta^2 + \deg D)^{\omega})$
- **Étape 3**: Calcule $(H) D \checkmark \leftarrow \tilde{O}((\delta^2 + \deg D)^2)$
- Étape 4 : Calcule les numérateurs G_i (proche de l'étape 2)

Output

Input

C: F(X, Y, Z) = 0 une courbe plane projective, D un diviseur lisse.

Étape 1 : Calcule le diviseur d'adjonction $\mathcal{A} \checkmark \leftarrow ilde{O}(\delta^3)$

Étape 2 : Calcule le dénominateur commun $H \checkmark \leftarrow ilde{O}((\delta^2 + \deg D)^\omega)$

Étape 3: Calcule $(H) - D \checkmark \leftarrow \tilde{O}((\delta^2 + \deg D)^2)$

Étape 4 : Calcule les numérateurs $G_i \checkmark \leftarrow \tilde{O}((\delta^2 + \deg D)^{\omega})$

Output

Une base de l'espace de Riemann-Roch L(D) en termes de H et des G_i .

Théorème (Abelard, B., Couvreur, Lecerf)

Algorithme de type Las Vegas qui calcule L(D) en $\tilde{O}((\delta^2 + \deg D)^{\omega})$ opérations⁹

 $^{9}\text{avec}~2\leqslant\omega\leqslant$ 3 est un exposant faisable pour l'algèbre linéaire ($\omega=2.373)$

Questions futures

Calcul d'espaces de Riemann-Roch de courbes.

- Implementation de l'algorithme (en cours)
- Calcul d'espaces de Riemann-Roch de courbes non-ordinaires en caractéristique positive "petite" (en cours)
- Améliorer l'exposant de complexité dans le cas non-ordinaire (sous-quadratique ?)

Questions futures

Calcul d'espaces de Riemann-Roch de courbes.

- Implementation de l'algorithme (en cours)
- Calcul d'espaces de Riemann-Roch de courbes non-ordinaires en caractéristique positive "petite" (en cours)
- Améliorer l'exposant de complexité dans le cas non-ordinaire (sous-quadratique ?)

Codes AG en dimension superièure.

◇ Calcul d'espace de Riemann–Roch de surfaces
 → construction de codes AG sur les surfaces

Questions futures

Calcul d'espaces de Riemann-Roch de courbes.

- Implementation de l'algorithme (en cours)
- Calcul d'espaces de Riemann-Roch de courbes non-ordinaires en caractéristique positive "petite" (en cours)
- Améliorer l'exposant de complexité dans le cas non-ordinaire (sous-quadratique ?)

Codes AG en dimension superièure.

◇ Calcul d'espace de Riemann–Roch de surfaces
 → construction de codes AG sur les surfaces

Codes en métrique rang.

 Peut-on utiliser les courbes et leurs espaces de Riemann–Roch pour construire des bons codes en métrique rang ?

Merci de votre attention !

Des questions? elena.berardini@telecom-paris.fr

