Codes géométriques : mise en œuvre et applications

Flena Berardini

avec S. Abelard (Thales), A. Couvreur (Inria), G. Lecerf (LIX)

Journées de Théorie des Nombres et Cryptographie de Valenciennes 2&3 novembre 2021

Sommaire

I. Codes correcteurs et codes géométriques : une introduction

II. Quelques applications récentes des codes AG

III. Calcul effectif d'espaces de Riemann-Roch

Une méthode pour transmettre et stocker des données.

Caractéristiques : detection et correction des erreurs qui peuvent arriver lors de la transmission / le stockage

Une méthode pour transmettre et stocker des données.

Caractéristiques : detection et correction des erreurs qui peuvent arriver lors de la transmission / le stockage Un \mathbb{F}_q -sous espace vectoriel de \mathbb{F}_q^n (codes linéaires).

Trois paramètres :

- ▶ n, la longueur
- **k**, la dimension
- **d**, la distance minimale

Taux de transmission: k/n Detecte jusqu'à d-1 erreurs Corrige jusqu'à $\lfloor \frac{d-1}{2} \rfloor$ erreurs

Une méthode pour transmettre et stocker des données.

Caractéristiques : detection et correction des erreurs qui peuvent arriver lors de la transmission / le stockage

Un \mathbb{F}_q -sous espace vectoriel de \mathbb{F}_q^n (codes linéaires).

Trois paramètres:

- ▶ **n**, la longueur
- **k**, la dimension
- **d**, la distance minimale

Taux de transmission: k/nDetecte jusqu'à d-1 erreurs Corrige jusqu'à $\left\lfloor \frac{d-1}{2} \right\rfloor$ erreurs

Une méthode pour transmettre et stocker des données.

Caractéristiques : detection et correction des erreurs qui peuvent arriver lors de la transmission / le stockage

BUT : encoder le plus grand nombre de données et detecter et corriger le plus grand nombre d'erreurs! Un \mathbb{F}_q -sous espace vectoriel de \mathbb{F}_q^n (codes linéaires).

Trois paramètres:

- ▶ **n**, la longueur
- **k**, la dimension
- **d**, la distance minimale

Taux de transmission: k/nDetecte jusqu'à d-1 erreurs Corrige jusqu'à $\lfloor \frac{d-1}{2} \rfloor$ erreurs

Une méthode pour transmettre et stocker des données.

Caractéristiques : detection et correction des erreurs qui peuvent arriver lors de la transmission / le stockage

BUT : encoder le plus grand nombre de données et detecter et corriger le plus grand nombre d'erreurs! Un \mathbb{F}_q -sous espace vectoriel de \mathbb{F}_q^n (codes linéaires).

Trois paramètres:

- ▶ **n**, la longueur
- **k**, la dimension
- **d**, la distance minimale

Taux de transmission: k/nDetecte jusqu'à d-1 erreurs Corrige jusqu'à $\lfloor \frac{d-1}{2} \rfloor$ erreurs

BUT : avoir \mathbf{k} et \mathbf{d} les plus grands possible !

Une méthode pour transmettre et stocker des données.

Caractéristiques : detection et correction des erreurs qui peuvent arriver lors de la transmission / le stockage

BUT : encoder le plus grand nombre de données et detecter et corriger le plus grand nombre d'erreurs! Un \mathbb{F}_q -sous espace vectoriel de \mathbb{F}_q^n (codes linéaires).

Trois paramètres:

- ▶ **n**, la longueur
- **k**, la dimension
- ▶ **d**, la distance minimale

Taux de transmission: k/nDetecte jusqu'à d-1 erreurs Corrige jusqu'à $\lfloor \frac{d-1}{2} \rfloor$ erreurs

BUT : avoir \mathbf{k} et \mathbf{d} les plus grands possible !

Borne de Singleton : $k + d \le n + 1$ \rightsquigarrow compromis entre redondance et capacité de correction

Codes d'évaluation : des codes de Reed-Solomon...

Codes d'évaluation : des codes de Reed-Solomon...

- ✓ Paramètres optimaux : k + d = n + 1 (codes MDS)
- ✓ Algorithme de décodage efficace (Berlekamp, 1968)
- √ Operations sur les données

 \land Incovenient : $n \leq q$

... aux codes géométriques

... aux codes géométriques

$$\mathsf{Longeur}: \ |\# \mathit{C}(\mathbb{F}_q) - (q+1)| \leq \mathit{g}\lfloor 2\sqrt{q} \rfloor$$

... aux codes géométriques

$$\mathcal{C}((P_i)_i,D) := \{(f(P_1),f(P_2),f(P_3),\dots,f(P_n)) \mid f \in L(D)\}$$

Longeur :
$$|\#C(\mathbb{F}_q) - (q+1)| \le g\lfloor 2\sqrt{q} \rfloor$$

Proposition

Les paramètres [n, k, d] des codes géométriques satisfont

$$n+1-g \le k+d \le n+1.$$

 \leadsto les codes AG sont à distance g de l'optimalité

1981: Goppa introduit les codes AG sur les courbes algébriques

1981: Goppa introduit les codes AG sur les courbes algébriques

1982: Tsfasman, Vlăduț et Zink utilisent les codes AG pour dépasser la borne de Gilbert–Varshamov

1981: Goppa introduit les codes AG sur les courbes algébriques

1982: Tsfasman, Vlăduț et Zink utilisent les codes AG pour dépasser la borne de Gilbert–Varshamov

XXe: des different familles de courbes sont étudiées afin d'obtenir des codes optimaux ou quasi-optimaux

→ seulement les courbes dont les espaces de Riemann–Roch sont déjà connus sont utilisées

1981: Goppa introduit les codes AG sur les courbes algébriques

1982: Tsfasman, Vlăduț et Zink utilisent les codes AG pour dépasser la borne de Gilbert–Varshamov

XXc: des different familles de courbes sont étudiées afin d'obtenir des codes optimaux ou quasi-optimaux

→ seulement les courbes dont les espaces de Riemann–Roch sont déjà connus sont utilisées

XXIc: les codes AG sont utilisés dans des nouvelles applications en théorie de l'information

1981: Goppa introduit les codes AG sur les courbes algébriques

1982: Tsfasman, Vlăduț et Zink utilisent les codes AG pour dépasser la borne de Gilbert–Varshamov

XXc: des different familles de courbes sont étudiées afin d'obtenir des codes optimaux ou quasi-optimaux

→ seulement les courbes dont les espaces de Riemann–Roch sont déjà connus sont utilisées

XXIc: les codes AG sont utilisés dans des nouvelles applications en théorie de l'information ...allons voir comment!

- o G, matrice d'un code [n, k, 2t + 1]
- \circ \mathcal{A} , algorithme de décodage
- o S, a $k \times k$ matrice
- o P, a $n \times n$ matrice

Calcule
$$\bar{G} = SGP$$

PubKey = (\bar{G}, t) , SecKey= (G, P, S, A)

- o G, matrice d'un code [n, k, 2t + 1]
- \circ \mathcal{A} , algorithme de décodage
- o S, a $k \times k$ matrice
- o P, a $n \times n$ matrice

Calcule
$$\bar{G} = SGP$$

PubKey = (\bar{G}, t) , SecKey= (G, P, S, A)

- Divise son message en vecteurs m_i de longueur k
- Construit un vecteur e de longueur n et poids t

- o G, matrice d'un code [n, k, 2t + 1]
- \circ \mathcal{A} , algorithme de décodage
- o S, a $k \times k$ matrice
- \circ P, a $n \times n$ matrice

Calcule
$$\bar{G} = SGP$$

PubKey = (\bar{G}, t) , SecKey= (G, P, S, A)

- Divise son message en vecteurs m_i de longueur k
- Construit un vecteur e de longueur n et poids t

Calcule
$$y_i = m_i \bar{G} + e$$

- o G, matrice d'un code [n, k, 2t + 1]
- \circ \mathcal{A} , algorithme de décodage
- o S, a $k \times k$ matrice
- o P, a $n \times n$ matrice

Calcule
$$\bar{G} = SGP$$

PubKey = (\bar{G}, t) , SecKey= (G, P, S, A)
Reçoit y_i

- O Divise son message en vecteurs m_i de longueur k
- Construit un vecteur e de longueur n et poids t

Calcule
$$y_i = m_i \bar{G} + e$$

- o G, matrice d'un code [n, k, 2t + 1]
- \circ \mathcal{A} , algorithme de décodage
- o S, a $k \times k$ matrice
- o P, a $n \times n$ matrice

Calcule
$$\bar{G} = SGP$$

PubKey = (\bar{G}, t) , SecKey= (G, P, S, A)

Calcule $y_i P^{-1} = (m_i \bar{G} + e) P^{-1}$ = $m_i SG + eP^{-1} = m_i SG + e'$ Utilise A pour retrouver $m_i SG$

$$m_i = m_i SG \times G^{-1} S^{-1}$$

- Divise son message en vecteurs m_i de longueur k
- Construit un vecteur e de longueur n et poids t

Calcule
$$y_i = m_i \bar{G} + e$$

- o G, matrice d'un code [n, k, 2t + 1]
- \circ \mathcal{A} , algorithme de décodage
- o S, a $k \times k$ matrice
- o P, a $n \times n$ matrice

Calcule
$$\bar{G} = SGP$$

PubKey = (\bar{G}, t) , SecKey= (G, P, S, A)

Calcule $y_i P^{-1} = (m_i \bar{G} + e) P^{-1}$ = $m_i SG + eP^{-1} = m_i SG + e'$ Utilise A pour retrouver $m_i SG$

$$m_i = m_i SG \times G^{-1} S^{-1}$$

- Divise son message en vecteurs m_i de longueur k
- Construit un vecteur e de longueur n et poids t

Calcule
$$y_i = m_i \bar{G} + e$$

Le cryptosystème McEliece pour la crypto post-quantique

- la sécurité se base sur la
 - difficulté calculatoire du décodage d'un code aléatoire
 - difficulté calculatoire de distinguer un code structuré d'un code aléatoire
- ✓ Post-quantum

- ⚠ Les codes AG classiques ne sont pas sûrs pour ce cryptosystème
- ✓ Les sous-codes de codes AG sur un sous-corps sont prometteurs!

Prouver Puissant (e.g. un serveur)

Faible Vérifieu (e.g. un client)

Prouver Puissant (e.g. un serveur)

retourne le résultat y et une preuve de correction π

 y,π

Faible Vérifieur

(e.g. un client)

vérifie la validité de π pour l'énoncé y = F(x)

Prouver Puissant (e.g. un serveur)

retourne le résultat y et une preuve de correction π

Proximité à un code C

Faible Vérifieur (e.g. un client)

 y,π vérifie la validité de π pour l'énoncé y = F(x)

Le Prouver renvoie un mot

- o $c \in C$, si l'énoncé y = F(x) est vrai,
- o ĉ très loin de C, autrement.

retourne le résultat y et une preuve de correction π

Proximité à un code C

Faible Vérifieur (e.g. un client)

 y,π vérifie la validité de π pour l'énoncé y = F(x)

Le Prouver renvoie un mot

- o $c \in C$, si l'énoncé y = F(x) est vrai,
- o č très loin de C, autrement.

Applications: cryptomonnaies, blockchain...

Prouver Puissant (e.g. un serveur)

retourne le résultat y et une preuve de correction π

Tournez le programme F sur l'entrée x pour moi

Je veux vérifier vite si votre résultat est correct

Faible Vérifieur

(e.g. un client)

vérifie la validité de π pour l'énoncé y = F(x)

Proximité à un code C

Le Prouver renvoie un mot

 y,π

- o $c \in C$, si l'énoncé y = F(x) est vrai,
- o č très loin de C, autrement.

Applications: cryptomonnaies, blockchain...

Quels codes peuvent être utilisés ? Les codes AG semblent être une bonne option¹

¹S. Bordage et J. Nardi, preprint, 2020

Espaces de Riemann-Roch : les codes AG et au-delà

Construction explicites de codes AG pour

- ► Cryptosystème de McEliece
- Calcul Vérifiable
- ► Autres applications (partage de secret, stockage distribué...)

→ besoin de calculer les espaces de Riemann–Roch de courbes

Espaces de Riemann-Roch : les codes AG et au-delà

Construction explicites de codes AG pour

- ► Cryptosystème de McEliece
- Calcul Vérifiable
- Autres applications (partage de secret, stockage distribué...)
 - → besoin de calculer les espaces de Riemann-Roch de courbes

Cela est utile aussi pour...

- ▶ Operations arithmétiques sur les Jacobiennes de courbes²
- ► Integration symbolique³

²K. Khuri-Makdisi, Mathematics of Computations, 2007

³J.H. Davenport, Intern. Symp. on Symbolic et Algebraic Manipulation, 1979

Espaces de Riemann-Roch

Diviseurs sur une courbe C: $D = \sum_{P \in C} n_P P$

L'espace de Riemann–Roch L(D) est l'espace de toutes les fonctions de la forme $\frac{G}{H} \in \mathbb{K}(\mathcal{C})$ telles que :

- ▶ si $n_P < 0$ alors P doit être un zéro de G (de multiplicité $\ge -n_P$)
- ▶ si $n_P > 0$ alors P peut être un zéro of H (de multiplicité $\leq n_P$)
- ► G/H n'a pas d'autres pôles en dehors des points P avec $n_P > 0$

lci : Z doit être un zéro de G, les P_i peuvent être des zéros de H

Espaces de Riemann-Roch

Diviseurs sur une courbe C: $D = \sum_{P \in C} n_P P$

L'espace de Riemann–Roch L(D) est l'espace de toutes les fonctions de la forme $\frac{G}{H} \in \mathbb{K}(\mathcal{C})$ telles que :

- ▶ si $n_P < 0$ alors P doit être un zéro de G (de multiplicité $\ge -n_P$)
- ▶ si $n_P > 0$ alors P peut être un zéro of H (de multiplicité $\leq n_P$)
- ► G/H n'a pas d'autres pôles en dehors des points P avec $n_P > 0$

Ici : Z doit être un zéro de G, les P_i peuvent être des zéros de H

Théorème de Riemann–Roch \leadsto dimension de $L(D) = \deg D + 1 - g$ où le degré d'un diviseur est $\deg D = \sum_P n_P$

Exemple jouet

Soit
$$\mathcal{C}=\mathbb{P}^1$$
, $P=[0:1]$ et $Q=[1:1]$. Soit $D=P-Q$, alors
$$f\in L(D)\iff \begin{cases} \text{f a un z\'ero d'ordre au moins 1 en }Q\\ \text{f peut avoir un p\^ole d'ordre au plus 1 en }P\\ \text{f n'a pas d'autres p\^oles en dehors de }P \end{cases}$$

Exemple jouet

Soit
$$\mathcal{C}=\mathbb{P}^1$$
, $P=[0:1]$ et $Q=[1:1]$. Soit $D=P-Q$, alors
$$f\in L(D)\iff \begin{cases} \text{f a un z\'ero d'ordre au moins 1 en }Q\\ \text{f peut avoir un p\^ole d'ordre au plus 1 en }P\\ \text{f n'a pas d'autres p\^oles en dehors de }P \end{cases}$$

$$f = \frac{X-1}{X}$$
 est une solution

$$g=0,\deg D=0$$
 $\xrightarrow{\mathsf{Riemann-Roch}} \dim L(D)=\deg D+1-g=1$ $\to f$ engendre l'espace des solutions

Exemple jouet

Soit
$$\mathcal{C}=\mathbb{P}^1$$
, $P=[0:1]$ et $Q=[1:1]$. Soit $D=P-Q$, alors
$$f\in L(D)\iff \begin{cases} \text{f a un z\'ero d'ordre au moins 1 en }Q\\ \text{f peut avoir un p\^ole d'ordre au plus 1 en }P\\ \text{f n'a pas d'autres p\^oles en dehors de }P \end{cases}$$

$$f = \frac{X-1}{X}$$
 est une solution

$$g=0, \deg D=0 \xrightarrow{\mathsf{Riemann-Roch}} \dim L(D) = \deg D + 1 - g = 1$$
 $\to f \text{ engendre l'espace des solutions}$

 \wedge on n'a pas une méthode explicite pour calculer une base de L(D) Comment résoudre le problème en général?

Problème de Riemann-Roch : état de l'art

Méthode géométrique :

(Théorie de Brill–Noether \sim 1874)

- Goppa, Le Brigand-Risler (80's)
- Huang–lerardi (90's)
- Khuri-Makdisi (2007)
- Le Gluher-Spaenlehauer (2018)
- Abelard–Couvreur–Lecerf (2020)

Méthode arithmétique :

(Idéaux dans de corps de fonctions)

- Hensel–Landberg (1902)
- Coates (1970)
- Davenport (1981)
- Hess (2001)

Problème de Riemann-Roch : état de l'art

Méthode géométrique :

(Théorie de Brill–Noether \sim 1874)

- Goppa, Le Brigand–Risler (80's)
- Huang-lerardi (90's)
- Khuri-Makdisi (2007)
- Le Gluher-Spaenlehauer (2018)
- Abelard-Couvreur-Lecerf (2020)

Méthode arithmétique :

(Idéaux dans de corps de fonctions)

- Hensel–Landberg (1902)
 - Coates (1970)Davenport (1981)
 - Hess (2001)

Courbes Algorithme Las Vegas qui calcule L(D) en

ordinaires/nodales : $\tilde{\mathcal{O}}((\delta^2 + \deg D)^{\frac{\omega+1}{2}})$ operations⁴

non-ordinaire:

 $^{^4}$ 2 $\leqslant \omega \leqslant$ 3 est un exposant faisable pour l'algèbre linéaire ($\omega =$ 2.373)

 $\mbox{M\'ethode Brill-Noether} \leadsto \mbox{conditions NS sur } H \mbox{ et } G \mbox{ t.q. } G/H \in L(D)$

Méthode Brill-Noether \leadsto conditions NS sur H et G t.q. $G/H \in L(D)$

Notations:

- $(H) = \sum_{P \in \mathcal{C}} \operatorname{ord}_P(H) P$ (zéros de H avec multiplicité)
- ▶ $D \geqslant D' \leadsto D D' = \sum n_P P$ avec $n_P \geqslant 0$ pour tout P

Méthode Brill-Noether \rightsquigarrow conditions NS sur H et G t.q. $G/H \in L(D)$

Notations:

- ▶ $(H) = \sum_{P \in \mathcal{C}} \operatorname{ord}_P(H)P$ (zéros de H avec multiplicité)
- ▶ $D \geqslant D' \rightsquigarrow D D' = \sum n_P P$ avec $n_P \geqslant 0$ pour tout P

Description de L(D) pour C: F(X, Y, Z) = 0 courbe plane projective.

Les éléments non-nuls sont de la forme $\frac{G_i}{H}$ où

- H satisfait (H) ≥ D
- ▶ H passe à travers tout point singulier de C avec multiplicité ad hoc
- ▶ deg G_i = deg H, G_i copremier avec F et $(G_i) \geqslant (H) D$

Méthode Brill–Noether \rightsquigarrow conditions NS sur H et G t.q. $G/H \in L(D)$

Notations:

- ► $(H) = \sum_{P \in \mathcal{C}} \operatorname{ord}_P(H) P$ (zéros de H avec multiplicité)
- ▶ $D \geqslant D' \rightsquigarrow D D' = \sum n_P P$ avec $n_P \geqslant 0$ pour tout P

Description de L(D) pour C: F(X, Y, Z) = 0 courbe plane projective.

Les éléments non-nuls sont de la forme $\frac{G_i}{H}$ où

- ► H satisfait (H) ≥ D
- lacktriangle H passe à travers tout point singulier de ${\mathcal C}$ avec multiplicité ad hoc
- ▶ deg G_i = deg H, G_i copremier avec F et $(G_i) \geqslant (H) D$

Comment gérer les points singuliers ?

Méthode Brill-Noether \rightsquigarrow conditions NS sur H et G t.q. $G/H \in L(D)$

Notations:

- ▶ $(H) = \sum_{P \in \mathcal{C}} \operatorname{ord}_P(H)P$ (zéros de H avec multiplicité)
- ▶ $D \geqslant D' \rightsquigarrow D D' = \sum n_P P$ avec $n_P \geqslant 0$ pour tout P

Description de L(D) pour C: F(X,Y,Z) = 0 courbe plane projective.

Les éléments non-nuls sont de la forme $\frac{G_i}{H}$ où

- H satisfait (H) ≥ D
- lacktriangledown H satisfait $(H)\geqslant \mathcal{A}$ (on dira que "H est adjoint à la courbe")
- ▶ deg G_i = deg H, G_i copremier avec F et $(G_i) \geqslant (H) D$

Comment gérer les points singuliers ?

 \leadsto le diviseur d'adjonction ${\mathcal A}$ "contient" les points singuliers de ${\mathcal C}$ avec leurs multiplicités

Méthode Brill-Noether \rightsquigarrow conditions NS sur H et G t.q. $G/H \in L(D)$

Notations:

- ▶ $(H) = \sum_{P \in \mathcal{C}} \operatorname{ord}_P(H)P$ (zéros de H avec multiplicité)
- ▶ $D \geqslant D' \rightsquigarrow D D' = \sum n_P P$ avec $n_P \geqslant 0$ pour tout P

Description de L(D) pour C: F(X, Y, Z) = 0 courbe plane projective.

Les éléments non-nuls sont de la forme $\frac{G_i}{H}$ où

- ightharpoonup H satisfait $(H) \geqslant D$
- ightharpoonup H satisfait(H) $\geqslant A$
- ▶ deg G_i = deg H, G_i copremier avec F et $(G_i) \ge (H) D$

Comment gérer les points singuliers ?

 \leadsto le diviseur d'adjonction ${\mathcal A}$ "contient" les points singuliers de ${\mathcal C}$ avec leurs multiplicités

Comment gérer les diviseurs?

Méthode Brill-Noether \leadsto conditions NS sur H et G t.q. $G/H \in L(D)$

Notations:

- ► $(H) = \sum_{P \in \mathcal{C}} \operatorname{ord}_P(H) P$ (zéros de H avec multiplicité)
- $D \geqslant D' \rightsquigarrow D D' = \sum n_P P$ avec $n_P \geqslant 0$ pour tout P

Description de L(D) pour C: F(X, Y, Z) = 0 courbe plane projective.

Les éléments non-nuls sont de la forme $\frac{G_i}{H}$ où

- ► H satisfait (H) ≥ D
- $ightharpoonup H satisfait(H) \geqslant A$
- ▶ deg G_i = deg H, G_i copremier avec F et $(G_i) \ge (H) D$

Comment gérer les points singuliers ?

 \leadsto le diviseur d'adjonction $\mathcal A$ "contient" les points singuliers de $\mathcal C$ avec leurs multiplicités

Comment gérer les diviseurs?

expansions en séries de representations multi-set $((P_i)_i, m_i)$

opérations sur les diviseurs ont coût négligeable

Input

C: F(X, Y, Z) = 0 une courbe plane projective, D un diviseur lisse.

Étape 1: Calcule le diviseur d'adjonction \mathcal{A}

Étape 2 : Calcule le dénominateur commun H

Étape 3: Calcule (H) - D

Étape 4 : Calcule des numérateurs G_i (proche de l'étape 2)

Output

Input

C: F(X, Y, Z) = 0 une courbe plane projective, D un diviseur lisse.

Étape 1: Calcule le diviseur d'adjonction \mathcal{A}

Étape 2 : Calcule le dénominateur commun *H*

Étape 3: Calcule $(H) - D \checkmark \leftarrow \tilde{O}((\delta^2 + \deg D)^2)$

Étape 4 : Calcule des numérateurs G_i (proche de l'étape 2)

Output

Input

C: F(X, Y, Z) = 0 une courbe plane projective, D un diviseur lisse.

Étape 1: Calcul le diviseur d'adjonction \mathcal{A}

Étape 2 : Calcule le dénominateur commun *H*

Étape 3: Calcule $(H) - D \checkmark \leftarrow \tilde{O}((\delta^2 + \deg D)^2)$

Étape 4 : Calcule des numérateurs G_i (proche de l'étape 2)

Output

La condition d'adjonction via les séries de Puiseux

Soit $F \in \mathbb{K}[x,y]$ absolument irréductible, monic en y et de degré d en y. Les racines de $F \in \mathbb{K}((x))[y]$ en $\cup_{e\geqslant 1}\overline{\mathbb{K}}((x^{1/e}))$ sont ses series de Puiseux $\varphi_0,\ldots,\varphi_{d-1}$, et F s'écrit

$$F = \prod_{i=1}^{d-1} (y - \varphi_i) = \prod_{i=1}^{d-1} (y - \sum_{i=n}^{\infty} \beta_{i,j} x^{j/e_i}).$$

Exemple:
$$F = y^2 - x^3 \rightsquigarrow F = (y - x^{3/2})(y + x^{3/2})$$

La condition d'adjonction via les séries de Puiseux

Soit $F \in \mathbb{K}[x,y]$ absolument irréductible, monic en y et de degré d en y. Les racines de $F \in \mathbb{K}((x))[y]$ en $\cup_{e\geqslant 1}\overline{\mathbb{K}}((x^{1/e}))$ sont ses series de Puiseux $\varphi_0,\ldots,\varphi_{d-1}$, et F s'écrit

$$F = \prod_{i=1}^{d-1} (y - \varphi_i) = \prod_{i=1}^{d-1} (y - \sum_{i=n}^{\infty} \beta_{i,j} x^{j/e_i}).$$

Exemple:
$$F = y^2 - x^3 \rightsquigarrow F = (y - x^{3/2})(y + x^{3/2})$$

On fixe une φ de degré e. Soit ζ une racine primitive e-ème de l'unité. Pour $0 \leqslant k < e$ on peut construire autres e séries de Puiseux en remplaçant $x^{1/e}$ par $\zeta^k x^{1/e}$.

Elles sont toutes équivalentes et représentées par une seule

Expansion de Puiseux Rationnelle : un couple
$$(X(t), Y(t)) = (\gamma t^e, \sum_{i=n} \beta_i t^i)$$

Expansions de Puiseux
$$\iff$$
 places de la courbe Rationnelles de F $F(x,y) = 0$

Example (continue):
$$\rightsquigarrow$$
 ($X(t), Y(t)$) = (t^2, t^3)

Le diviseur d'adjonction

Le diviseur d'adjonction est

$$\mathcal{A} = \sum_{P \in \operatorname{Sing}(\mathcal{C})} - \sum_{P \mid P} \operatorname{val}_{\mathcal{P}} \left(\frac{dx}{F_{y}} \right) \mathcal{P}$$

$$\frac{\text{En utilisant les}}{\text{expansions de Puiseux rationnelles}} \operatorname{val}_{\mathcal{P}} \left(\frac{dx}{F_y} \right) = \operatorname{val}_t \left(\frac{et^{e-1}}{F_y(X(t), Y(t), 1)} \right)$$

Le diviseur d'adjonction

Le diviseur d'adjonction est

$$\mathcal{A} = \sum_{P \in \operatorname{Sing}(\mathcal{C})} - \sum_{P \mid P} \operatorname{val}_{\mathcal{P}} \left(\frac{dx}{F_y} \right) \mathcal{P}$$

$$\frac{\text{En utilisant les}}{\text{expansions de Puiseux rationnelles}} \operatorname{val}_{\mathcal{P}} \left(\frac{dx}{F_y} \right) = \operatorname{val}_t \left(\frac{et^{e-1}}{F_y(X(t), Y(t), 1)} \right)$$

Exemple

On considère $C: y^2 - x^3 = 0$.

L'unique point singulier (non-ordinaire) est (0,0).

$$(X(t), Y(t)) = (t^2, t^3) \rightsquigarrow \operatorname{val}_{\mathcal{P}} \left(\frac{dx}{F_y}\right) = \operatorname{val}_t \left(\frac{2t}{2t^3}\right) = -2$$

Calcul : algorithme pour les séries de Puiseux de germes de courbes⁵ $\rightsquigarrow \mathcal{A}$ calculé avec $\tilde{O}(\delta^3)$ opérations

⁵A. Poteaux et M. Weimann, Annales Herni Lebesgue, 2021

Input

C: F(X, Y, Z) = 0 une courbe plane projective, D un diviseur lisse.

Étape 1 : Calcule le diviseur d'adjonction $\mathcal{A} \checkmark \leftarrow \tilde{O}(\delta^3)$

Étape 2 : Calcule le dénominateur commun *H*

Étape 3 : Calcule $(H) - D \checkmark \leftarrow \tilde{O}((\delta^2 + \deg D)^2)$

Étape 4 : Calcule les numérateurs G_i (proche de l'étape 2)

Output

Input

C: F(X,Y,Z) = 0 une courbe plane projective, D un diviseur lisse.

Étape 1 : Calcule le diviseur d'adjonction $\mathcal{A} \checkmark \leftarrow \tilde{O}(\delta^3)$

Étape 2 : Calcule le dénominateur commun H

Étape 3: Calcule $(H) - D \checkmark \leftarrow \tilde{O}((\delta^2 + \deg D)^2)$

Étape 4 : Calcule les numérateurs G_i (proche de l'étape 2)

Output

Trouver un dénominateur en pratique Algèbre linéaire classique

Soit $d = \deg H$.

Condition
$$(H) \geqslant A + D$$

- \rightsquigarrow système linéaire avec deg $A + \deg D \sim \delta^2 + \deg D$ équations
- → l'élimination de Gauss coûte

$$ilde{O}((d\delta+\delta^2+\deg D)^\omega)$$
 opérations 6

 $^{^62\}leqslant\omega\leqslant3$ est un exposant faisable pour l'algèbre linéaire ($\omega=2.373$)

Trouver un dénominateur en pratique Algèbre linéaire classique

Soit $d = \deg H$.

Condition
$$(H) \geqslant A + D$$

 \rightarrow système linéaire avec deg $A + \deg D \sim \delta^2 + \deg D$ équations

→ l'élimination de Gauss coûte

$$ilde{O}((d\delta + \delta^2 + \deg D)^\omega)$$
 opérations⁶

Quelle taille a d?

On montre que
$$d=\left\lceil \frac{(\delta-1)(\delta-2)+\deg D}{\delta} \right
ceil$$
 est suffisant $ightsquigarrow ilde{O}((\delta^2+\deg D)^\omega)$ opérations

 $^{^6}$ 2 $\leqslant \omega \leqslant$ 3 est un exposant faisable pour l'algèbre linéaire ($\omega = 2.373$)

Deuxième méthode : algèbre linéaire structurée

$$\operatorname{val}_t(H(X(t),Y(t),1)\geqslant \operatorname{val}_t\left(rac{et^{e-1}}{F_y(X(t),Y(t),1)}
ight)$$

 \leadsto l'espace de polynômes H(x,y) qui satisfont ces conditions est un $\mathbb{K}[x]$ -module

 \rightsquigarrow calculer une base⁷ coûte $\tilde{O}((\delta^2 + \deg D)^{\omega})$ opérations⁸

⁷C.-P. Jeannerod, V. Neiger, É. Schost et G. Villard, Journal of Symbolic Computation, 2017

 $^{^82 \}leqslant \omega \leqslant$ 3 est un exposant faisable pour l'algèbre linéaire ($\omega = 2.373$)

Deuxième méthode : algèbre linéaire structurée

$$\operatorname{val}_t(H(X(t),Y(t),1)\geqslant \operatorname{val}_t\left(rac{et^{e-1}}{F_y(X(t),Y(t),1)}
ight)$$

 \leadsto l'espace de polynômes H(x,y) qui satisfont ces conditions est un $\mathbb{K}[x]$ -module

ightharpoonup calculer une base⁷ coûte $\tilde{O}((\delta^2 + \deg D)^\omega)$ opérations⁸

L'exposant de complexité est le même mais...

Avantages:

- en général on obtient une base avec une taille de représentation plus petite
- l'exposant de complexité est meilleur sur des corps algébriquement clos
- on peut s'attendre à des améliorations dans le futur

⁷C.-P. Jeannerod, V. Neiger, É. Schost et G. Villard, Journal of Symbolic Computation, 2017

 $^{^82 \}leqslant \omega \leqslant 3$ est un exposant faisable pour l'algèbre linéaire ($\omega = 2.373$)

Input

C: F(X, Y, Z) = 0 une courbe plane projective, D un diviseur lisse.

Étape 1 : Calcule le diviseur d'adjonction $\mathcal{A} \checkmark \leftarrow \tilde{O}(\delta^3)$

Étape 2 : Calcule le dénominateur commun $H \checkmark \leftarrow \tilde{O}((\delta^2 + \deg D)^{\omega})$

Étape 3 : Calcule $(H) - D \checkmark \leftarrow \tilde{O}((\delta^2 + \deg D)^2)$

Étape 4 : Calcule les numérateurs G_i (proche de l'étape 2)

Output

Input

C: F(X, Y, Z) = 0 une courbe plane projective, D un diviseur lisse.

Étape 1: Calcule le diviseur d'adjonction $\mathcal{A} \checkmark \leftarrow \tilde{O}(\delta^3)$

Étape 2 : Calcule le dénominateur commun $H \checkmark \leftarrow \tilde{O}((\delta^2 + \deg D)^{\omega})$

Étape 3 : Calcule $(H) - D \checkmark \leftarrow \tilde{O}((\delta^2 + \deg D)^2)$

Étape 4 : Calcule les numérateurs $G_i \checkmark \leftarrow \tilde{O}((\delta^2 + \deg D)^{\omega})$

Output

Une base de l'espace de Riemann-Roch L(D) en termes de H et des G_i .

Théorème (Abelard, B., Couvreur, Lecerf)

Algorithme de type Las Vegas qui calcule L(D) en $\tilde{\mathcal{O}}((\delta^2 + \deg D)^{\omega})$ opérations⁹

 $^{^{9}}$ avec $2\leqslant\omega\leqslant3$ est un exposant faisable pour l'algèbre linéaire ($\omega=2.373$)

Questions futures

Calcul d'espaces de Riemann-Roch de courbes.

- Implementation de l'algorithme (en cours)
- Calcul d'espaces de Riemann–Roch de courbes non-ordinaires en caractéristique positive "petite" (en cours)
- Améliorer l'exposant de complexité dans le cas non-ordinaire (sous-quadratique ?)

Questions futures

Calcul d'espaces de Riemann-Roch de courbes.

- Implementation de l'algorithme (en cours)
- Calcul d'espaces de Riemann–Roch de courbes non-ordinaires en caractéristique positive "petite" (en cours)
- Améliorer l'exposant de complexité dans le cas non-ordinaire (sous-quadratique ?)

WOMAN AT WORK

Codes AG en dimension superièure.

♦ Calcul d'espace de Riemann–Roch de surfaces
 → construction de codes AG sur les surfaces

Questions futures

Calcul d'espaces de Riemann-Roch de courbes.

- Implementation de l'algorithme (en cours)
- Calcul d'espaces de Riemann–Roch de courbes non-ordinaires en caractéristique positive "petite" (en cours)
- Améliorer l'exposant de complexité dans le cas non-ordinaire (sous-quadratique ?)

Codes AG en dimension superièure.

♦ Calcul d'espace de Riemann–Roch de surfaces
 → construction de codes AG sur les surfaces

Codes en métrique rang.

 Peut-on utiliser les courbes et leurs espaces de Riemann-Roch pour construire des bons codes en métrique rang ?

Merci de votre attention!

<u>Des questions?</u> elena.berardini@telecom-paris.fr

