Bound on the minimum distance of algebraic geometry codes over surfaces

Elena Berardini

joint work with Yves Aubry, Fabien Herbaut, Marc Perret

INSTITUT de MATHÉMATIQUES de MARSEILLE

Aix*Marseille université

MANTA International Workshop 26/08/19

Table of Contents

I. Algebraic Geometric Codes: a short introduction

II. AG codes over surfaces

III. Algebraic Surfaces and Curves

IV. A bound on the minimum distance

V. Some examples and some improvements
Cubic surfaces in P³
Minimal fibrations
Abelian surfaces

Evaluation codes

Let V/\mathbb{F}_q be an algebraic variety and set $V(\mathbb{F}_q) = \{P_1, \ldots, P_n\}$. Let D be a divisor on V such that $\operatorname{Supp}(D) \cap V(\mathbb{F}_q) = \emptyset$. Consider the Riemann-Roch space

$$L(D) = \{f \in \mathbb{F}_q^*(V) \mid (f) + D \ge 0\} \cup \{0\}.$$

<u>Definition:</u> The code C(V, D) is defined to be the image of the evaluation map

> ev: $\overline{L}(D) \longrightarrow \mathbb{F}_q^n$ $f \longmapsto (f(P_1), \dots, f(P_n)).$

Evaluation codes

Let V/\mathbb{F}_q be an algebraic variety and set $V(\mathbb{F}_q) = \{P_1, \ldots, P_n\}$. Let D be a divisor on V such that $\mathrm{Supp}(D) \cap V(\mathbb{F}_q) = \emptyset$. Consider the Riemann-Roch space

$$L(D) = \{f \in \mathbb{F}_q^*(V) \mid (f) + D \ge 0\} \cup \{0\}.$$

<u>Definition:</u> The code C(V, D) is defined to be the image of the evaluation map

ev: $\overline{L(D)} \longrightarrow \mathbb{F}_q^n$ $f \longmapsto (f(P_1), \dots, f(P_n)).$

1981: Goppa introduces AG codes from smooth algebraic curves

1981: Goppa introduces AG codes from smooth algebraic curves 1982: Tsfaman, Vlăduț and Zink use Goppa codes for beating the Gilbert-Varshamov bound

1981: Goppa introduces AG codes from smooth algebraic curves 1982: Tsfaman, Vlăduț and Zink use Goppa codes for beating the Gilbert-Varshamov bound

1981: Goppa introduces AG codes from smooth algebraic curves 1982: Tsfaman, Vlăduț and Zink use Goppa codes for beating the Gilbert-Varshamov bound

21st century: AG codes from algebraic surfaces (non-exhaustive list)

- Ruled surfaces (Aubry, 1993)

1981: Goppa introduces AG codes from smooth algebraic curves 1982: Tsfaman, Vlăduț and Zink use Goppa codes for beating the Gilbert-Varshamov bound

- Ruled surfaces (Aubry, 1993)
- Surfaces with small Picard Number (Voloch and Zarzar, 2005)

1981: Goppa introduces AG codes from smooth algebraic curves 1982: Tsfaman, Vlăduț and Zink use Goppa codes for beating the Gilbert-Varshamov bound

- Ruled surfaces (Aubry, 1993)
- Surfaces with small Picard Number (Voloch and Zarzar, 2005)
- Rational Surfaces (Couvreur, 2011)

1981: Goppa introduces AG codes from smooth algebraic curves 1982: Tsfaman, Vlăduț and Zink use Goppa codes for beating the Gilbert-Varshamov bound

- Ruled surfaces (Aubry, 1993)
- Surfaces with small Picard Number (Voloch and Zarzar, 2005)
- Rational Surfaces (Couvreur, 2011)
- Toric surfaces (Little and Schenck, 2011)

1981: Goppa introduces AG codes from smooth algebraic curves 1982: Tsfaman, Vlăduț and Zink use Goppa codes for beating the Gilbert-Varshamov bound

- Ruled surfaces (Aubry, 1993)
- Surfaces with small Picard Number (Voloch and Zarzar, 2005)
- Rational Surfaces (Couvreur, 2011)
- Toric surfaces (Little and Schenck, 2011)
- Simple jacobian surfaces (Haloui, 2017)

1981: Goppa introduces AG codes from smooth algebraic curves 1982: Tsfaman, Vlăduț and Zink use Goppa codes for beating the Gilbert-Varshamov bound

- Ruled surfaces (Aubry, 1993)
- Surfaces with small Picard Number (Voloch and Zarzar, 2005)
- Rational Surfaces (Couvreur, 2011)
- Toric surfaces (Little and Schenck, 2011)
- Simple jacobian surfaces (Haloui, 2017)
- Hirzebruch surfaces (Nardi, 2018)

1981: Goppa introduces AG codes from smooth algebraic curves 1982: Tsfaman, Vlăduț and Zink use Goppa codes for beating the Gilbert-Varshamov bound

- Ruled surfaces (Aubry, 1993)
- Surfaces with small Picard Number (Voloch and Zarzar, 2005)
- Rational Surfaces (Couvreur, 2011)
- Toric surfaces (Little and Schenck, 2011)
- Simple jacobian surfaces (Haloui, 2017)
- Hirzebruch surfaces (Nardi, 2018)
- Del Pezzo surfaces (Blache, Couvreur, Hallouin, Madore, Nardi, Rambaud, Randriambolona, 2019)

1981: Goppa introduces AG codes from smooth algebraic curves 1982: Tsfaman, Vlăduț and Zink use Goppa codes for beating the Gilbert-Varshamov bound

- Ruled surfaces (Aubry, 1993)
- Surfaces with small Picard Number (Voloch and Zarzar, 2005)
- Rational Surfaces (Couvreur, 2011)
- Toric surfaces (Little and Schenck, 2011)
- Simple jacobian surfaces (Haloui, 2017)
- Hirzebruch surfaces (Nardi, 2018)
- Del Pezzo surfaces (Blache, Couvreur, Hallouin, Madore, Nardi, Rambaud, Randriambolona, 2019)
- Abelian surfaces (Aubry, B, Herbaut, Perret, 2019)

Algebraic surfaces: basic notions and notations

X smooth, projective, absolutely irreducible algebraic surface defined over the finite field \mathbb{F}_q

 $D \in \operatorname{Div}(X)$, a formal sum of irreducible curves on X $D \in \operatorname{Div}(X)$ is *nef* if $D.C \ge 0$ for every irreducible curve C on XLinear equivalence: $D \sim D' \iff D - D' = (f)$ $\operatorname{Pic}(X) = \operatorname{Div}(X)/\sim$

 $NS(X) = Pic(X)/Pic^{0}(X)$, its rank is called the Picard number

- $\cdot: \operatorname{Div}(X) imes \operatorname{Div}(X) o \mathbb{Z}$ the intersection pairing
 - if C and D meet transversally then $C.D = \#(C \cap D)$
 - symmetric and additive
 - it depends only on the linear equivalence classes

Evaluation codes from algebraic surfaces

Let X be a surface and G a rational divisor on X. Consider the Riemann-Roch space

$$L(G) = \{ f \in \mathbb{F}_q^*(X) \mid (f) + G \ge 0 \} \cup \{ 0 \}.$$

<u>Definition:</u> Set $X(\mathbb{F}_q) = \{P_1, \ldots, P_n\}$. The code C(X, G) is defined to be the image of the evaluation map

ev:
$$L(G) \longrightarrow \mathbb{F}_q^n$$

 $f \longmapsto (f(P_1), \dots, f(P_n)).$

 $\dim(\mathcal{C}(X,G)) = ?$

 $d \ge ?$

13. 13.

$$n = \#X(\mathbb{F}_q)$$

 $\dim(\mathcal{C}(X,G)) = \dim_{\mathbb{F}_q} L(G)$

 $d \ge ?$

 $n = \#X(\mathbb{F}_q)$

 $\dim(\mathcal{C}(X,G)) = \dim_{\mathbb{F}_q} L(G)$

For $f \in L(G) \setminus \{0\}$, N(f) := number of zero coordinates of ev(f)

$$d = \#X(\mathbb{F}_q) - \max_{f \in L(G) \setminus \{0\}} N(f)$$

 $n = \#X(\mathbb{F}_q)$

 $\dim(\mathcal{C}(X,G)) = \dim_{\mathbb{F}_q} L(G)$

For $f \in L(G) \setminus \{0\}$, N(f) := number of zero coordinates of ev(f) $d = \#X(\mathbb{F}_q) - \max_{f \in L(G) \setminus \{0\}} N(f)$

dimension of the Riemann-Roch space $\Rightarrow \operatorname{dim}(\mathcal{C}(X, G))$ upper bound for $N(f) \Rightarrow$ lower bound for the minimum distance

A lower bound for the price of two upper bounds

Let $f \in L(G) \setminus \{0\} = \{f \in \mathbb{F}_q^*(X) \mid Z(f) - P(f) + G \ge 0\}$. We consider the effective divisor

$$D_f = G + Z(f) - P(f) = \sum_{i=1}^{k} n_i D_i$$

where every D_i is an irreducible curve of arithmetic genus π_i and $n_i > 0$. For $f \in L(G) \setminus \{0\}$ we have

$$\#Z(f) = N(f) \leq \sum_{i=1}^k \#D_i(\mathbb{F}_q)$$

A lower bound for the price of two upper bounds

Let $f \in L(G) \setminus \{0\} = \{f \in \mathbb{F}_q^*(X) \mid Z(f) - P(f) + G \ge 0\}$. We consider the effective divisor

$$D_f = G + Z(f) - P(f) = \sum_{i=1}^{k} n_i D_i$$

where every D_i is an irreducible curve of arithmetic genus π_i and $n_i > 0$. For $f \in L(G) \setminus \{0\}$ we have

$$\#Z(f) = N(f) \leq \sum_{i=1}^k \#D_i(\mathbb{F}_q)$$

upper bound for
$$k$$

+
upper bound for $\#D_i(\mathbb{F}_q)$ \Rightarrow lower bound for d

<u>Notation</u>: A is an ample divisor on X

<u>Notation</u>: A is an ample divisor on X

- Nakai-Moishezon : A ample $\iff A^2 > 0$ and A.C > 0 for every irreducible curve C on X

Notation: A is an ample divisor on X

- <u>Nakai-Moishezon</u> : A ample \iff $A^2 > 0$ and A.C > 0 for every irreducible curve C on X
- <u>Riemann-Roch Theorem:</u> $\dim_{\mathbb{F}_{q}} L(G) + \dim_{\mathbb{F}_{q}} L(K_{X} - G) = \frac{1}{2}G.(G - K_{X}) + 1 + p_{a} + s(G)$

<u>Notation</u>: A is an ample divisor on X

- <u>Nakai-Moishezon</u> : A ample $\iff A^2 > 0$ and A.C > 0 for every irreducible curve C on X
- <u>Riemann-Roch Theorem</u>: if $K_X . A < G . A$ then $\dim_{\mathbb{F}_q} L(G) + \dim_{\mathbb{F}_q} L(K_X - G) = \frac{1}{2}G . (G - K_X) + 1 + p_a + s(G)$

<u>Notation</u>: A is an ample divisor on X

- <u>Nakai-Moishezon</u> : A ample \iff $A^2 > 0$ and A.C > 0 for every irreducible curve C on X
- <u>Riemann-Roch Theorem</u>: if $K_X A < G A$ then

$$\dim_{\mathbb{F}_q} L(G) \geq \frac{1}{2}G.(G - K_X) + 1 + p_a$$

<u>Notation</u>: A is an ample divisor on X

- Nakai-Moishezon : A ample $\iff A^2 > 0$ and A.C > 0 for every irreducible curve C on X
- <u>Riemann-Roch Theorem</u>: if $K_X A < G A$ then

$$\dim_{\mathbb{F}_q} L(G) \geq \frac{1}{2}G.(G - K_X) + 1 + p_a$$

- Adjonction Formula: D curve of genus π on X, then

 $D.(D+K_X)=2\pi-2$

<u>Notation:</u> A is an ample divisor on X

- <u>Nakai-Moishezon</u> : A ample $\iff A^2 > 0$ and A.C > 0 for every irreducible curve C on X
- Riemann-Roch Theorem: if $K_X.A < G.A$ then

$$\dim_{\mathbb{F}_q} L(G) \geq \frac{1}{2}G.(G - K_X) + 1 + p_a$$

- Adjonction Formula: D curve of genus π on X, then

$$D.(D+K_X)=2\pi-2$$

- Corollary of Hodge Index Theorem: let D be a divisor on X, then

 $\overline{(A.D)^2} \ge A^2 D^2$

$$n = \#X(\mathbb{F}_q)$$

 $\dim(\mathcal{C}(X,G)) = \dim_{\mathbb{F}_q} L(G)$

 $d \ge ?$

$$n = \#X(\mathbb{F}_q)$$

$$\mathsf{dim}(\mathcal{C}(X,G)) \geq \frac{1}{2}G.(G-K_X) + 1 + p_{\mathsf{a}}$$

 $d \geq ?$

13. 131

 $n = \#X(\mathbb{F}_q)$

$$\mathsf{dim}(\mathcal{C}(X,G)) \geq \frac{1}{2}G.(G-\mathcal{K}_X) + 1 + p_{\mathsf{a}}$$

 $d \geq ?$

 $egin{aligned} &N(f):= ext{number of zero coordinates of ev}(f)\ &d=\#X(\mathbb{F}_q)-\max_{f\in L(G)\setminus\{0\}}N(f)\ &N(f)\leq \sum_{i=1}^k\#D_i(\mathbb{F}_q) \end{aligned}$

On the number of rational points of algebraic curves

Set $m = \lfloor 2\sqrt{q} \rfloor$. <u>Theorem:</u> (Serre-Weil, 1983) Let C be an absolutely irreducible smooth curve of genus g defined over the finite field \mathbb{F}_{q} . Then

 $\#C(\mathbb{F}_q) \leq q+1+gm.$

On the number of rational points of algebraic curves

Set $m = \lfloor 2\sqrt{q} \rfloor$. <u>Theorem:</u> (Serre-Weil, 1983) Let C be an absolutely irreducible <u>smooth</u> curve of <u>genus g</u> defined over the finite field \mathbb{F}_q . Then

 $\#C(\mathbb{F}_q) \leq q+1+gm.$

On the number of rational points of algebraic curves

Set $m = \lfloor 2\sqrt{q} \rfloor$. <u>Theorem:</u> (Aubry-Perret, 1995) Let C be an absolutely irreducible curve of arithmetic genus π defined over the finite field \mathbb{F}_q . Then

 $\#C(\mathbb{F}_q) \leq q+1+\pi m.$

On the number of rational points of algebraic curves

Set $m = \lfloor 2\sqrt{q} \rfloor$. <u>Theorem:</u> (Aubry-Perret, 1995) Let C be an <u>absolutely</u> irreducible curve of arithmetic genus π defined over the finite field \mathbb{F}_q . Then

 $\#C(\mathbb{F}_q) \leq q+1+\pi m.$

On the number of rational points of algebraic curves

Set $m = \lfloor 2\sqrt{q} \rfloor$. <u>Theorem:</u> (Aubry-Perret, 2004) Let C be an irreducible curve of arithmetic genus π defined over the finite field \mathbb{F}_q with \bar{r} absolutely irreducible components. Then

 $\#C(\mathbb{F}_q) \leq \bar{r}q + 1 + \pi m.$

On the number of rational points of algebraic curves

Set $m = \lfloor 2\sqrt{q} \rfloor$. <u>Theorem:</u> (Aubry-Perret, 2004) Let C be an irreducible curve of arithmetic genus π defined over the finite field \mathbb{F}_{q} with \bar{r} absolutely irreducible components. Then

 $\#C(\mathbb{F}_q) \leq \bar{r}q + 1 + \pi m.$

<u>Theorem:</u> (Aubry-Perret, 2004)

Let $f : D \to C$ be a surjective flat morphism between the irreducible curve D of arithmetic genus π_D and the smooth absolutely irreducible curve C of genus g_C defined over \mathbb{F}_q . Let \overline{r} be the number of absolutely irreducible components of D. Then

 $|\#D(\mathbb{F}_q) - \#C(\mathbb{F}_q)| \leq (\bar{r}-1)q + m(\pi_D - g_C)$

Bound for N(f)

$$N(f) \leq q \sum_{i=1}^k ar{r}_i + k + m \sum_{i=1}^k \pi_i$$

1.15. 13.

Bound for N(f)

$$N(f) \leq q \sum_{i=1}^k ar{r}_i + k + m \sum_{i=1}^k \pi_i$$

Lemma:

(ii) $k \leq G.A$.

Let A be an ample divisor on X. Then we have 1. If $NS(X) = \langle A \rangle$ and G = rA then we have (i) $\sum_{i=1}^{k} \overline{r}_i \leq r$, (ii) (Voloch-Zarzar) $k \leq r$. 2. Otherwise, (i) $\sum_{i=1}^{k} \overline{r}_i \leq G.A$,

hande ander

Lemma:

Let A be an ample divisor on X. Then we have

- 1. If $NS(X) = \langle A \rangle$ and G = rA then $\sum_{i=1}^{k} \pi_i \leq \frac{r^2}{2}A^2 + \frac{r}{2}A.K_X + 1$.
- 2. Otherwise,
 - if K_X is <u>nef</u> then $\sum_{i=1}^k \pi_i \leq \alpha(G, A) + k$,
 - if K_X is anti-ample then $\sum_{i=1}^k \pi_i \leq (G.A)^2/2A^2 + k/2$,

Lemma:

Let A be an ample divisor on X. Then we have

- 1. If $NS(X) = \langle A \rangle$ and G = rA then $\sum_{i=1}^{k} \pi_i \leq \frac{r^2}{2}A^2 + \frac{r}{2}A.K_X + 1$.
- 2. Otherwise,
 - if K_X is <u>nef</u> then $\sum_{i=1}^k \pi_i \leq \alpha(G, A) + k$,
 - if K_X is anti-ample then $\sum_{i=1}^k \pi_i \leq (G.A)^2/2A^2 + k/2$,

where $\alpha(G, A) = (G.A)^2/2A^2 + G.K_X/2$.

Sketch of the proof: consider $D_i.A$ + Corollary of Hodge Index Theorem $D_i^2 A^2 \leq (D_i.A)^2$

Lemma:

Let A be an ample divisor on X. Then we have

- 1. If $NS(X) = \langle A \rangle$ and G = rA then $\sum_{i=1}^{k} \pi_i \leq \frac{r^2}{2}A^2 + \frac{r}{2}A.K_X + 1$.
- 2. Otherwise,
 - if K_X is <u>nef</u> then $\sum_{i=1}^k \pi_i \leq \alpha(G, A) + k$,
 - if K_X is anti-ample then $\sum_{i=1}^k \pi_i \leq (G.A)^2/2A^2 + k/2$,

where $\alpha(G, A) = (G.A)^2/2A^2 + G.K_X/2$.

<u>Sketch of the proof:</u> consider $D_i.A$ + Corollary of Hodge Index Theorem $D_i^2 A^2 \le (D_i.A)^2$ + Adjonction Formula $\pi_i - 1 \le (D_i.A)^2/2A^2 + D_i.K_X/2$

Lemma:

Let A be an ample divisor on X. Then we have

- 1. If $NS(X) = \langle A \rangle$ and G = rA then $\sum_{i=1}^{k} \pi_i \leq \frac{r^2}{2}A^2 + \frac{r}{2}A.K_X + 1$.
- 2. Otherwise,
 - if K_X is <u>nef</u> then $\sum_{i=1}^k \pi_i \leq \alpha(G, A) + k$,
 - if K_X is anti-ample then $\sum_{i=1}^k \pi_i \leq (G.A)^2/2A^2 + k/2$,

where $\alpha(G, A) = (G.A)^2/2A^2 + G.K_X/2$.

 $\begin{array}{l} \underline{\text{Sketch of the proof: consider } D_i.A} \\ + \text{ Corollary of Hodge Index Theorem } D_i^2 A^2 \leq (D_i.A)^2 \\ + \text{ Adjonction Formula } \pi_i - 1 \leq (D_i.A)^2 / 2A^2 + D_i.K_X/2 \\ + \sum_{i=1}^k \pi_i - k \leq \dots \end{array}$

Lemma:

Let A be an ample divisor on X. Then we have

1. If $NS(X) = \langle A \rangle$ and G = rA then $\sum_{i=1}^{k} \pi_i \leq \frac{r^2}{2}A^2 + \frac{r}{2}A K_X + 1$.

2. Otherwise,

- if K_X is <u>nef</u> then $\sum_{i=1}^k \pi_i \leq \alpha(G, \overline{A}) + k$,
- if K_X is anti-ample then $\sum_{i=1}^k \pi_i \leq (G.A)^2/2A^2 + k/2$,

$$N(f) \leq q \sum_{i=1}^k \bar{r}_i + k + m \sum_{i=1}^k \pi_i$$

Lemma:

Let A be an ample divisor on X. Then we have 1. If $NS(X) = \langle A \rangle$ and G = rA then $\sum_{i=1}^{k} \pi_i \leq \frac{r^2}{2}A^2 + \frac{r}{2}A.K_X + 1$.

- 2. Otherwise,
 - if K_X is <u>nef</u> then $\sum_{i=1}^k \pi_i \leq \alpha(G, A) + k$,
 - if K_X is anti-ample then $\sum_{i=1}^k \pi_i \leq (G.A)^2/2A^2 + k/2$,

$$N(f) \leq q \sum_{i=1}^{k} \overline{r}_i + k + m \sum_{i=1}^{k} \pi_i$$

 $d = \#X(\mathbb{F}_q) - \max_{f \in L(G) \setminus \{0\}} N(f).$

Bound for the minimum distance

<u>Theorem:</u> (Aubry, B., Herbaut, Perret) The minimum distance of the codes C(X, G) satisfies: 1. If $NS(X) = \langle A \rangle$ and G = rA then

 $d \ge \#X(\mathbb{F}_q) - r(q+1) - m - mr^2A^2/2 - mrA.K_X/2.$

2. Otherwise,

 $d \geq egin{cases} \#X(\mathbb{F}_q) - G.A(q+1+m) - mlpha(G,A) ext{ if } K_X ext{ is nef,} \ \#X(\mathbb{F}_q) - G.A(q+1+m/2) - m(G.A)^2/2A^2 ext{ if } -K_X ext{ is ample,} \end{cases}$

Length, Dimension, Minimum Distance

 $n=\#X(\mathbb{F}_q)$

$$\dim(\mathcal{C}(\mathsf{X},\mathsf{G})) \geq rac{1}{2} \mathsf{G}.(\mathsf{G}-\mathsf{K}_{\mathsf{X}}) + 1 + p_{ extsf{a}}$$

 $d \ge \begin{cases} \#X(\mathbb{F}_q) - r(q+1) - m - mr(rA^2 + A.K_X)/2, \text{ if } NS(X) = <A>, \\ \#X(\mathbb{F}_q) - G.A(q+1+m) - m\alpha(G,A), \text{ if } K_X \text{ is nef,} \\ \#X(\mathbb{F}_q) - G.A(q+1+m/2) - m(G.A)^2/2A^2, \text{ if } K_X \text{ is anti-ample.} \end{cases}$

Cubic surfaces in \mathbb{P}^3 : the case of Voloch and Zarzar

Let X be a cubic surface in \mathbb{P}^3 . Its arithmetic genus is $p_a(X) = \binom{d-1}{3} = \binom{2}{3} = 0$. Let L be an hyperplane in X: L is ample and $L^2 = d = 3$. The canonical divisor is $K_X = (d-4)L = -L$ and it is anti ample. Take C = rl and A = L in this active we have:

Take $\overline{G} = rL$ and $\overline{A} = L$. In this setting we have:

	K_X	G	A
K _X	3	-3r	-3
G		3 <i>r</i> ²	3r
А			3

For the code C(X, rL) we get: dim $C(X, rL) \ge 3r(r+1)/2 + 1$,

 $d \geq \begin{cases} \#X(\mathbb{F}_q) + m(3r/2 - 1) - r(q + 1) - 3mr^2/2, \text{ if } NS(X) = <L>, \\ \#X(\mathbb{F}_q) - 3r(q + 1 + m/2) - 3mr^2/2, \text{ otherwise.} \end{cases}$

Fibrations

Definition:

Let $f : S \rightarrow B$ be a π_0 fibration:

- f is a surjective morphism from a smooth projective surface S to a smooth absolutely irreducible curve B;

- π_0 is the arithmetic genus of the general fiber.

Fibrations

Definition:

Let $f : S \rightarrow B$ be a π_0 fibration:

- f is a surjective morphism from a smooth projective surface S to a smooth absolutely irreducible curve B;

- π_0 is the arithmetic genus of the general fiber.

- $\pi_0 = 0 \rightarrow$ ruled surfaces;
- $\pi_0 = 1
 ightarrow$ elliptic surfaces;
- $\pi_0 \ge 2 \rightarrow$ surfaces of general type.

<u>Fibrations</u>

Definition:

Let $f : S \rightarrow B$ be a π_0 fibration:

- f is a surjective morphism from a smooth projective surface S to a smooth absolutely irreducible curve B;
- π_0 is the arithmetic genus of the general fiber.

For the code C(S, G) we get (K_S is nef):

$$\dim(\mathcal{C}(S,G)) \ge \frac{1}{2}G.(G-K_X) + 1 + p_a,$$

$$d \ge \#S(\mathbb{F}_q) - G.A(q+1+m) - m\alpha(G,A)$$

Every divisor on S can be uniquely written as a sum of horizontal and fiber curves.

We study the code C(S, G) where G is a divisor on S which has at least one horizontal component.

Every divisor on S can be uniquely written as a sum of horizontal and fiber curves.

We study the code C(S, G) where G is a divisor on S which has at least one horizontal component.

 $N(f) \leq \sum_{i=1}^k \#D_i(\mathbb{F}_q)$

Every divisor on S can be uniquely written as a sum of horizontal and fiber curves.

We study the code C(S, G) where G is a divisor on S which has at least one horizontal component.

$$N(f) \leq \sum_{i=1}^{h} \# H_i(\mathbb{F}_q) + \sum_{i=h+1}^{k} \# V_i(\mathbb{F}_q).$$

h: horizontal curves

v: fiber curves

Every divisor on S can be uniquely written as a sum of horizontal and fiber curves.

We study the code C(S, G) where G is a divisor on S which has at least one horizontal component.

$$N(f) \leq \sum_{i=1}^{h} \# H_i(\mathbb{F}_q) + \sum_{i=h+1}^{k} \# V_i(\mathbb{F}_q).$$

h: horizontal curves $\rightarrow \#H(\mathbb{F}_q) \leq \#B(\mathbb{F}_q) + (\bar{r}-1)q + m(\pi_H - g_B)$ v: fiber curves

Every divisor on S can be uniquely written as a sum of horizontal and fiber curves.

We study the code C(S, G) where G is a divisor on S which has at least one horizontal component.

$$N(f) \leq \sum_{i=1}^{h} \#H_i(\mathbb{F}_q) + \sum_{i=h+1}^{k} \#V_i(\mathbb{F}_q).$$

h: horizontal curves $\rightarrow \#H(\mathbb{F}_q) \leq \#B(\mathbb{F}_q) + (\bar{r}-1)q + m(\pi_H - g_B)$ v: fiber curves $\rightarrow \#V(\mathbb{F}_q) \leq \bar{r}q + 1 + m\pi_V$

Every divisor on S can be uniquely written as a sum of horizontal and fiber curves.

We study the code C(S, G) where G is a divisor on S which has at least one horizontal component.

$$\mathsf{N}(f) \leq \sum_{i=1}^h \# \mathsf{H}_i(\mathbb{F}_q) + \sum_{i=h+1}^k \# V_i(\mathbb{F}_q).$$

h: horizontal curves $\rightarrow \#H(\mathbb{F}_q) \leq \#B(\mathbb{F}_q) + (\bar{r}-1)q + m(\pi_H - g_B)$ v: fiber curves $\rightarrow \#V(\mathbb{F}_q) \leq \bar{r}q + 1 + m\pi_V$

$$N(f) \leq h(\#B(\mathbb{F}_q) - mg_B - q) + m\sum_{i=1}^k \pi_i + q\sum_{i=1}^k \overline{r}_i + v$$

Every divisor on S can be uniquely written as a sum of horizontal and fiber curves.

We study the code C(S, G) where G is a divisor on S which has at least one horizontal component.

$$\mathcal{N}(f) \leq \sum_{i=1}^h \# \mathcal{H}_i(\mathbb{F}_q) + \sum_{i=h+1}^k \# \mathcal{V}_i(\mathbb{F}_q).$$

h: horizontal curves $\rightarrow \#H(\mathbb{F}_q) \leq \#B(\mathbb{F}_q) + (\bar{r}-1)q + m(\pi_H - g_B)$ v: fiber curves $\rightarrow \#V(\mathbb{F}_q) \leq \bar{r}q + 1 + m\pi_V$

 $N(f) \leq h(\#B(\mathbb{F}_q) - mg_B - q - 1) + m\alpha(G, A) + mk + qGA + k.$

Codes wars: a new bound

<u>Theorem:</u> (Aubry, B., Herbaut, Perret) The minimum distance of the code C(S, G) satisfies

 $\overline{d \geq \#S(\mathbb{F}_q) + (q+1+mg_B - \#B(\mathbb{F}_q)) - G.A(q+1+m) - m\alpha(G,A)}.$

Codes wars: a new bound

<u>Theorem:</u> (Aubry, B., Herbaut, Perret) The minimum distance of the code C(S, G) satisfies

 $d \geq \#S(\mathbb{F}_q) + (q+1+mg_B - \#B(\mathbb{F}_q)) - G.A(q+1+m) - m\alpha(G,A).$

Compare with

$$d \geq \#S(\mathbb{F}_q) - G.A(q+1+m) - m\alpha(G,A)$$

the new bound is better than the first and improves as g_B grows and $\#B(\mathbb{F}_q)$ stays low.

<u>Abelian surfaces strike back</u>

Let X be an abelian surface defined over \mathbb{F}_q . Its arithmetic genus is $p_a(X) = -1$ and $K_X = 0$. Let A be an ample divisor on X and let G = rA. For the code $\mathcal{C}(X, rA)$ we get:

 $\dim \mathcal{C}(X, rA) \ge r^2 A^2/2,$ $d \ge \# X(\mathbb{F}_q) - rA^2(q+1+m) - mr^2 A^2/2.$

Let X be an abelian surface.

<u>Rational Points:</u> set $m := \lfloor 2\sqrt{q} \rfloor$

- for D an irreducible curve on X of arithmetic genus π we have

 $\#D(\mathbb{F}_q) \leq q+1 - \operatorname{Tr}(X) + |\pi - 2|m$

- for D a non absolutely irreducible curve on X of arithmetic genus π we have

 $\#D(\mathbb{F}_q) \leq \pi - 1$

Let X be an abelian surface.

<u>Rational Points:</u> set $m := \lfloor 2\sqrt{q} \rfloor$

- for D an irreducible curve on X of arithmetic genus π we have

 $\#D(\mathbb{F}_q) \leq q+1 - \operatorname{Tr}(X) + |\pi - 2|m$

- for D a non absolutely irreducible curve on X of arithmetic genus π we have

 $\#D(\mathbb{F}_q) \leq \pi - 1$

Let X be an abelian surface.

<u>Rational Points:</u> set $m := \lfloor 2\sqrt{q} \rfloor$

- for D an irreducible curve on X of arithmetic genus π we have

 $\#D(\mathbb{F}_q) \leq q+1 - \operatorname{Tr}(X) + |\pi - 2|m$

- for D a non absolutely irreducible curve on X of arithmetic genus π we have

 $\#D(\mathbb{F}_q) \leq \pi - 1$

Remark:

Let D be an irreducible curve of arithmetic genus π on a simple abelian surface X, then $\pi \ge 2$.

Let X be an abelian surface.

<u>Rational Points:</u> set $m := \lfloor 2\sqrt{q} \rfloor$

- for D an irreducible curve on X of arithmetic genus π we have

 $\#D(\mathbb{F}_q) \leq q+1 - \operatorname{Tr}(X) + (\pi - 2)m$

- for D a non absolutely irreducible curve on X of arithmetic genus π we have

 $\#D(\mathbb{F}_q) \leq \pi - 1$

Remark:

Let D be an irreducible curve of arithmetic genus π on a simple abelian surface X, then $\pi \ge 2$.

Let X be a simple abelian surface such that every absolutely irreducible curve on it has arithmetic genus $\pi > \ell$, for a positive integer ℓ .

Let X be a simple abelian surface such that every absolutely irreducible curve on it has arithmetic genus $\pi > \ell$, for a positive integer ℓ .

$$N(f) \leq \sum_{i=1}^k \#D_i(\mathbb{F}_q)$$

Write $k = k_1 + k_2$ where

 $k_1 = \#\{D_i \mid \pi_i > \ell\}$ $k_2 = \#\{D_i \mid \pi_i \le \ell\}$

Let X be a simple abelian surface such that every absolutely irreducible curve on it has arithmetic genus $\pi > \ell$, for a positive integer ℓ .

$$N(f) \leq \sum_{i=1}^k \#D_i(\mathbb{F}_q)$$

Write $k = k_1 + k_2$ where

 $k_1 = \#\{D_i \mid \pi_i > \ell\} \to \#D(\mathbb{F}_q) \le q + 1 - \operatorname{Tr}(X) + (\pi - 2)m$ $k_2 = \#\{D_i \mid \pi_i \le \ell\}$

Let X be a simple abelian surface such that every absolutely irreducible curve on it has arithmetic genus $\pi > \ell$, for a positive integer ℓ .

$$N(f) \leq \sum_{i=1}^k \#D_i(\mathbb{F}_q)$$

Write $k = k_1 + k_2$ where

 $\begin{aligned} k_1 &= \#\{D_i \mid \pi_i > \ell\} \to \quad \#D(\mathbb{F}_q) \leq q+1 - \operatorname{Tr}(X) + (\pi-2)m \\ k_2 &= \#\{D_i \mid \pi_i \leq \ell\} \to \quad \#D(\mathbb{F}_q) \leq \pi-1 \end{aligned}$

Improving the lower bound for the minimum distance

Let X be a simple abelian surface such that every absolutely irreducible curve on it has arithmetic genus $\pi > \ell$, for a positive integer ℓ .

$$N(f) \leq \sum_{i=1}^k \#D_i(\mathbb{F}_q)$$

Write $k = k_1 + k_2$ where

 $\begin{aligned} k_1 &= \#\{D_i \mid \pi_i > \ell\} \to \quad \#D(\mathbb{F}_q) \leq q+1 - \operatorname{Tr}(X) + (\pi-2)m \\ k_2 &= \#\{D_i \mid \pi_i \leq \ell\} \to \quad \#D(\mathbb{F}_q) \leq \pi-1 \end{aligned}$

$$N(f) \leq k_1(q+1 - \operatorname{Tr}(X) - 2m) + m \sum_{i=1}^{k_1} \pi_i + k_2(\ell - 1)$$

Bound for N(f)Lemma: 1. $k_2 \leq r \sqrt{\frac{A^2}{2}} - k_1 \sqrt{\ell}$, 2. $k_1\sqrt{\ell} \leq r\sqrt{\frac{A^2}{2}}$, 3. $\sum_{i=1}^{k_1} \pi_i \leq \left(r \sqrt{A^2/2} - k_1 \sqrt{\ell} \right)^2 + r \sqrt{2A^2\ell} + (1-\ell)k_1.$

Bound for N(f)

<u>Lemma:</u>

1.
$$k_2 \leq r\sqrt{\frac{A^2}{2}} - k_1\sqrt{\ell}$$
,
2. $k_1\sqrt{\ell} \leq r\sqrt{\frac{A^2}{2}}$,
3. $\sum_{i=1}^{k_1} \pi_i \leq \left(r\sqrt{A^2/2} - k_1\sqrt{\ell}\right)^2 + r\sqrt{2A^2\ell} + (1-\ell)k_1$.

 $N(f) \leq \phi(k_1),$

 $egin{aligned} \phi(k_1) &:= m\ell k_1^2 + k_1 \left(q + 1 - ext{Tr}(X) - m(\ell+1) - mr\sqrt{2A^2\ell} - \sqrt{\ell}(\ell-1)
ight) \ &+ mA^2r^2/2 + mr\sqrt{2A^2\ell} + r\sqrt{A^2/2}(\ell-1), \ &k_1 \in \left[1, \sqrt{rac{A^2}{2\ell}}r
ight]. \end{aligned}$

Codes wars: the last bound

We have:

$$N(f) \leq \begin{cases} \phi\left(\sqrt{\frac{A^2}{2\ell}}r\right) \text{ if } \sqrt{\frac{2\ell}{A^2}} \leq r \leq \frac{\sqrt{2}(q+1-\operatorname{Tr}(X)-m-\sqrt{\ell}(\ell-1))}{m\sqrt{A^2\ell}},\\ \phi(1) \text{ otherwise.} \end{cases}$$

1 13. KS.

Codes wars: the last bound

We have:

$$N(f) \leq \begin{cases} \phi\left(\sqrt{\frac{A^2}{2\ell}}r\right) & \text{if } \sqrt{\frac{2\ell}{A^2}} \leq r \leq \frac{\sqrt{2}(q+1-\operatorname{Tr}(X)-m-\sqrt{\ell}(\ell-1))}{m\sqrt{A^2\ell}}, \\ \phi(1) & \text{otherwise.} \end{cases}$$

$$d=\#X(\mathbb{F}_q)-\max_{f\in L(rA)\setminus\{0\}}N(f)$$

1 13. KS.

Codes wars: the last bound

<u>Theorem:</u> (Aubry, B., Herbaut, Perret)

Let X be a simple abelian surface of trace Tr(X) such that every irreducible curve on it has arithmetic genus $\pi > \ell$, for a positive integer ℓ . Then the minimum distance d of the code C(X, rA) satisfies:

$$d \geq \#X(\mathbb{F}_q) - r\sqrt{rac{A^2}{2\ell}} \left(q + 1 - \operatorname{Tr}(X) + (\ell - 1)m\right)$$

if
$$\sqrt{\frac{2\ell}{A^2}} \leq r \leq rac{\sqrt{2}(q+1-\mathrm{Tr}(X)-m-\sqrt{\ell}(\ell-1))}{m\sqrt{A^2\ell}}$$
, otherwise

$$d \ge \# X(\mathbb{F}_q) - (q + 1 - \operatorname{Tr}(X)) - m(r^2 A^2/2 - 1) - r \sqrt{\frac{A^2}{2}}(\ell - 1).$$

Comparing the bounds

Compare

$$d \geq \#X(\mathbb{F}_q) - r\sqrt{rac{A^2}{2\ell}} \left(q + 1 - \operatorname{Tr}(X) + (\ell - 1)m\right)$$

with

$$d \ge \# X(\mathbb{F}_q) - rA^2(q+1+m) - mr^2A^2/2.$$

1 13. KS.

Comparing the bounds

$$d \geq \#X(\mathbb{F}_q) - r\sqrt{rac{A^2}{2\ell}}\left(q+1-\operatorname{Tr}(X)+(\ell-1)m
ight)$$

$$d_{min} - \# X(\mathbb{F}_q) \underset{q o \infty}{\sim} - r \sqrt{rac{A^2}{2\ell}} q.$$

<u>Remark</u>: the bound for $\ell = 2$ is better than the one for $\ell = 1!$

<u>Question</u>: There exist abelian surfaces which do not contain absolutely irreducible curves of arithmetic genus 0, 1 <u>nor 2</u>?

Comparing the bounds

$$d \geq \#X(\mathbb{F}_q) - r\sqrt{rac{A^2}{2\ell}} \left(q + 1 - \operatorname{Tr}(X) + (\ell - 1)m\right)$$

$$d_{min} - \# X(\mathbb{F}_q) \mathop{\sim}\limits_{q o \infty} - r \sqrt{rac{A^2}{2\ell}} q.$$

<u>Remark</u>: the bound for $\ell = 2$ is better than the one for $\ell = 1!$

<u>Question</u>: There exist abelian surfaces which do not contain absolutely irreducible curves of arithmetic genus 0, 1 <u>nor 2</u>?

YES!

<u>Lemma:</u>

An abelian surface X contains no absolutely irreducible curves of arithmetic genus 0, 1 nor 2 \iff X is simple and not isogenous to a Jacobian surface.

<u>Lemma:</u>

An abelian surface X contains no absolutely irreducible curves of arithmetic genus 0, 1 nor 2 \iff X is simple and not isogenous to a Jacobian surface.

Theorem: (Weil)

Let (X, λ) be a principally polarized abelian surface defined over the finite field k. Then (X, λ) is either

- 1. the polarized Jacobian of a genus 2 curve over k,
- 2. the product of two polarized elliptic curves over k,
- 3. the Weil restriction of a polarized elliptic curves over a quadratic extension of k.

<u>Lemma:</u>

An abelian surface X contains no absolutely irreducible curves of arithmetic genus 0, 1 nor 2 \iff X is simple and not isogenous to a Jacobian surface.

<u>Theorem:</u> (Weil)

Let (X, λ) be a principally polarized abelian surface defined over the finite field k. Then (X, λ) is either

- 1. the polarized Jacobian of a genus 2 curve over k,
- 2. the product of two polarized elliptic curves over k,
- 3. the Weil restriction of a polarized elliptic curve over a quadratic <u>extension of k.</u>

Lemma:

An abelian surface X contains no absolutely irreducible curves of arithmetic genus 0, 1 nor 2 \iff X is simple and not isogenous to a Jacobian surface.

Abelian surfaces that might have the property we are searching for:

- Weil restrictions of polarized elliptic curves over a quadratic extension of k,
- abelian surfaces defined over k that do not admit a principal polarization.

Abelian surfaces containing no curves of genus 0, 1 nor 2

Proposition: (Aubry, B., Herbaut, Perret)

- (i) Let X be an abelian surface defined over \mathbb{F}_q which does not admit a principal polarization. Then X does not contain absolutely irreducible curves of arithmetic genus 0, 1 nor 2.
- (ii) Let q = p^e. Let E be and elliptic curve defined over 𝔽_{q²} of trace Tr(E/𝔽_{q²}). Let X be the 𝔽_{q²}/𝔽_q-Weil restriction of the elliptic curve E. Then X does not contain absolutely irreducible curves defined over 𝔽_q of arithmetic genus 0, 1 nor 2 if and only if one of the following cases holds:

(1)
$$\operatorname{Tr}(E/\mathbb{F}_{q^2}) = 2q - 1;$$

(2) $p > 2$ and $\operatorname{Tr}(E/\mathbb{F}_{q^2}) = 2q - 2;$
(3) $p \equiv 11 \mod 12$ or $p = 3$, $q = \Box$ and $\operatorname{Tr}(E/\mathbb{F}_{q^2}) = q;$
(4) $p = 2$, $q \neq \Box$ and $\operatorname{Tr}(E/\mathbb{F}_{q^2}) = q;$
(5) $q = 2$ or $q = 3$, and $\operatorname{Tr}(E/\mathbb{F}_{q^2}) = 2q.$

<u>A frame has no name</u>

 Our bounds seem to confirm the idea that surfaces with small Picard number are suitable for obtaining good codes;

<u>A frame has no name</u>

 Our bounds seem to confirm the idea that surfaces with small Picard number are suitable for obtaining good codes;

 Codes from surfaces with canonical divisor anti-ample seem interesting as well;

<u>A frame has no name</u>

- Our bounds seem to confirm the idea that surfaces with small Picard number are suitable for obtaining good codes;
- Codes from surfaces with canonical divisor anti-ample seem interesting as well;
- Fibrations on curves of high genus and with few rational points could give good codes as well (this case gives the best bound on the minimum distance).

Some ideas for the "sequel"...

1) <u>Fibrations.</u> Provide examples of algebraic smooth curves of high genus and with few rational points, and of fibrations on these curves.

Some ideas for the "sequel"...

- 1) <u>Fibrations.</u> Provide examples of algebraic smooth curves of high genus and with few rational points, and of fibrations on these curves.
- II) <u>Abelian surfaces.</u> Under which condition(s) an abelian surface does not contain absolutely irreducible genus 3 curves as well?

Some ideas for the "sequel"...

- 1) <u>Fibrations.</u> Provide examples of algebraic smooth curves of high genus and with few rational points, and of fibrations on these curves.
- II) <u>Abelian surfaces.</u> Under which condition(s) an abelian surface does not contain absolutely irreducible genus 3 curves as well?
- III) Lunch: Sounds like a good idea too.

