Bound on the minimum distance of algebraic geometry codes over surfaces

Elena Berardini
joint work with Yves Aubry, Fabien Herbaut, Marc Perret
1/ msitur
do MATHÉMATIOUES
Aix*Marseille
universite
MANTA International Workshop 26/08/19

Table of Contents

I. Algebraic Geometric Codes: a short introduction
II. AG codes over surfaces
III. Algebraic Surfaces and Curves
IV. A bound on the minimum distance
V. Some examples and some improvements

- Cubic surfaces in \mathbb{P}^{3}
- Minimal fibrations
- Abelian surfaces

Evaluation codes

Let V / \mathbb{F}_{q} be an algebraic variety and set $V\left(\mathbb{F}_{q}\right)=\left\{P_{1}, \ldots, P_{n}\right\}$. Let D be a divisor on V such that $\operatorname{Supp}(D) \cap V\left(\mathbb{F}_{q}\right)=\emptyset$. Consider the Riemann-Roch space

$$
L(D)=\left\{f \in \mathbb{F}_{q}^{*}(V) \mid(f)+D \geq 0\right\} \cup\{0\} .
$$

Definition:
The code $\mathcal{C}(V, D)$ is defined to be the image of the evaluation map

$$
\begin{aligned}
\text { ev : } \quad L(D) & \longrightarrow \mathbb{F}_{q}^{n} \\
f & \longmapsto\left(f\left(P_{1}\right), \ldots, f\left(P_{n}\right)\right) .
\end{aligned}
$$

Evaluation codes

Let V / \mathbb{F}_{q} be an algebraic variety and set $V\left(\mathbb{F}_{q}\right)=\left\{P_{1}, \ldots, P_{n}\right\}$. Let D be a divisor on V stich that $\operatorname{Stpp}(D) \cap V\left(\mathbb{F}_{q}\right)=(\theta$. Consider the Riemann-Roch space

$$
L(D)=\left\{f \in \mathbb{F}_{q}^{*}(V) \mid(f)+D \geq 0\right\} \cup\{0\} .
$$

Definition:
The code $\mathcal{C}(V, D)$ is defined to be the image of the evaluation map

$$
\begin{aligned}
\text { ev : } \quad L(D) & \longrightarrow \mathbb{F}_{q}^{n} \\
f & \longmapsto\left(f\left(P_{1}\right), \ldots, f\left(P_{n}\right)\right) .
\end{aligned}
$$

The favourite Algebraic Varieties since now

1981: Goppa introduces AG codes from smooth algebraic curves

The favourite Algebraic Varieties since now

1981: Goppa introduces AG codes from smooth algebraic curves
1982: Tsfaman, Vlăduț and Zink use Goppa codes for beating the Gilbert-Varshamov bound

The favourite Algebraic Varieties since now

1981: Goppa introduces AG codes from smooth algebraic curves
1982: Tsfaman, Vlădut and Zink use Goppa codes for beating the Gilbert-Varshamov bound
$21^{\text {st }}$ century: AG codes from algebraic surfaces (non-exhaustive list)

The favourite Algebraic Varieties since now

1981: Goppa introduces AG codes from smooth algebraic curves
1982: Tsfaman, Vlădut and Zink use Goppa codes for beating the Gilbert-Varshamov bound
$21^{\text {st }}$ century: AG codes from algebraic surfaces (non-exhaustive list)

- Ruled surfaces (Aubry, 1993)

The favourite Algebraic Varieties since now

1981: Goppa introduces AG codes from smooth algebraic curves
1982: Tsfaman, Vlăduţ and Zink use Goppa codes for beating the Gilbert-Varshamov bound
$21^{\text {st }}$ century: AG codes from algebraic surfaces (non-exhaustive list)

- Ruled surfaces (Aubry, 1993)
- Surfaces with small Picard Number (Voloch and Zarzar, 2005)

The favourite Algebraic Varieties since now

1981: Goppa introduces AG codes from smooth algebraic curves
1982: Tsfaman, Vlăduţ and Zink use Goppa codes for beating the Gilbert-Varshamov bound
$21^{\text {st }}$ century: AG codes from algebraic surfaces (non-exhaustive list)

- Ruled surfaces (Aubry, 1993)
- Surfaces with small Picard Number (Voloch and Zarzar, 2005)
- Rational Surfaces (Couvreur, 2011)

The favourite Algebraic Varieties since now

1981: Goppa introduces AG codes from smooth algebraic curves
1982: Tsfaman, Vlăduţ and Zink use Goppa codes for beating the Gilbert-Varshamov bound
$21^{\text {st }}$ century: AG codes from algebraic surfaces (non-exhaustive list)

- Ruled surfaces (Aubry, 1993)
- Surfaces with small Picard Number (Voloch and Zarzar, 2005)
- Rational Surfaces (Couvreur, 2011)
- Toric surfaces (Little and Schenck, 2011)

The favourite Algebraic Varieties since now

1981: Goppa introduces AG codes from smooth algebraic curves
1982: Tsfaman, Vlăduţ and Zink use Goppa codes for beating the Gilbert-Varshamov bound
$21^{\text {st }}$ century: AG codes from algebraic surfaces (non-exhaustive list)

- Ruled surfaces (Aubry, 1993)
- Surfaces with small Picard Number (Voloch and Zarzar, 2005)
- Rational Surfaces (Couvreur, 2011)
- Toric surfaces (Little and Schenck, 2011)
- Simple jacobian surfaces (Haloui, 2017)

The favourite Algebraic Varieties since now

1981: Goppa introduces AG codes from smooth algebraic curves
1982: Tsfaman, Vlăduț and Zink use Goppa codes for beating the Gilbert-Varshamov bound
$21^{\text {st }}$ century: AG codes from algebraic surfaces (non-exhaustive list)

- Ruled surfaces (Aubry, 1993)
- Surfaces with small Picard Number (Voloch and Zarzar, 2005)
- Rational Surfaces (Couvreur, 2011)
- Toric surfaces (Little and Schenck, 2011)
- Simple jacobian surfaces (Haloui, 2017)
- Hirzebruch surfaces (Nardi, 2018)

The favourite Algebraic Varieties since now

1981: Goppa introduces AG codes from smooth algebraic curves
1982: Tsfaman, Vlăduţ and Zink use Goppa codes for beating the Gilbert-Varshamov bound
$21^{\text {st }}$ century: AG codes from algebraic surfaces (non-exhaustive list)

- Ruled surfaces (Aubry, 1993)
- Surfaces with small Picard Number (Voloch and Zarzar, 2005)
- Rational Surfaces (Couvreur, 2011)
- Toric surfaces (Little and Schenck, 2011)
- Simple jacobian surfaces (Haloui, 2017)
- Hirzebruch surfaces (Nardi, 2018)
- Del Pezzo surfaces (Blache, Couvreur, Hallouin, Madore, Nardi, Rambaud, Randriambolona, 2019)

The favourite Algebraic Varieties since now

1981: Goppa introduces AG codes from smooth algebraic curves
1982: Tsfaman, Vlăduţ and Zink use Goppa codes for beating the Gilbert-Varshamov bound
$21^{\text {st }}$ century: AG codes from algebraic surfaces (non-exhaustive list)

- Ruled surfaces (Aubry, 1993)
- Surfaces with small Picard Number (Voloch and Zarzar, 2005)
- Rational Surfaces (Couvreur, 2011)
- Toric surfaces (Little and Schenck, 2011)
- Simple jacobian surfaces (Haloui, 2017)
- Hirzebruch surfaces (Nardi, 2018)
- Del Pezzo surfaces (Blache, Couvreur, Hallouin, Madore, Nardi, Rambaud, Randriambolona, 2019)
- Abelian surfaces (Aubry, B, Herbaut, Perret, 2019)

Algebraic surfaces: basic notions and notations
X smooth, projective, absolutely irreducible algebraic surface defined over the finite field \mathbb{F}_{q}
$D \in \operatorname{Div}(X)$, a formal sum of irreducible curves on X
$D \in \operatorname{Div}(X)$ is nef if $D . C \geq 0$ for every irreducible curve C on X
Linear equivalence: $D \sim D^{\prime} \Longleftrightarrow D-D^{\prime}=(f)$
$\operatorname{Pic}(X)=\operatorname{Div}(X) / \sim$
$\mathrm{NS}(X)=\operatorname{Pic}(X) / \operatorname{Pic}^{0}(X)$, its rank is called the Picard number
$\cdot: \operatorname{Div}(X) \times \operatorname{Div}(X) \rightarrow \mathbb{Z}$ the intersection pairing

- if C and D meet transversally then $C . D=\#(C \cap D)$
- symmetric and additive
- it depends only on the linear equivalence classes

Evaluation codes from algebraic surfaces

Let X be a surface and G a rational divisor on X.
Consider the Riemann-Roch space

$$
L(G)=\left\{f \in \mathbb{F}_{q}^{*}(X) \mid(f)+G \geq 0\right\} \cup\{0\} .
$$

Definition:
Set $X\left(\mathbb{F}_{q}\right)=\left\{P_{1}, \ldots, P_{n}\right\}$. The code $\mathcal{C}(X, G)$ is defined to be the image of the evaluation map

$$
\begin{aligned}
\mathrm{ev}: \quad L(G) & \longrightarrow \mathbb{F}_{q}^{n} \\
f & \longmapsto\left(f\left(P_{1}\right), \ldots, f\left(P_{n}\right)\right) .
\end{aligned}
$$

Length, Dimension, Minimum Distance

$$
n=?
$$

$$
\operatorname{dim}(\mathcal{C}(X, G))=?
$$

$$
d \geq ?
$$

Length, Dimension, Minimum Distance

$$
n=\# X\left(\mathbb{F}_{q}\right)
$$

$$
\operatorname{dim}(\mathcal{C}(X, G))=\operatorname{dim}_{\mathbb{F}_{q}} L(G)
$$

$$
d \geq ?
$$

Length, Dimension, Minimum Distance

$$
n=\# X\left(\mathbb{F}_{q}\right)
$$

$$
\operatorname{dim}(\mathcal{C}(X, G))=\operatorname{dim}_{\mathbb{E}_{q}} L(G)
$$

For $f \in L(G) \backslash\{0\}, N(f):=$ number of zero coordinates of $\operatorname{ev}(f)$

$$
d=\# X\left(\mathbb{F}_{q}\right)-\max _{f \in L(G) \backslash\{0\}} N(f)
$$

Length, Dimension, Minimum Distance

$$
n=\# X\left(\mathbb{F}_{q}\right)
$$

$$
\operatorname{dim}(\mathcal{C}(X, G))=\operatorname{dim}_{\mathbb{F}_{q}} L(G)
$$

For $f \in L(G) \backslash\{0\}, N(f):=$ number of zero coordinates of $\operatorname{ev}(f)$

$$
d=\# X\left(\mathbb{F}_{q}\right)-\max _{f \in L(G) \backslash\{0\}} N(f)
$$

dimension of the Riemann-Roch space $\Rightarrow \operatorname{dim}(\mathcal{C}(X, G))$
upper bound for $\underline{N(f)} \Rightarrow$ lower bound for the minimum distance

A lower bound for the price of two upper bounds
Let $f \in L(G) \backslash\{0\}=\left\{f \in \mathbb{R}_{q}^{*}(X) \mid Z(f)-P(f)+G \geq 0\right\}$.
We consider the effective divisor

$$
D_{f}=G+Z(f)-P(f)=\sum_{i=1}^{k} n_{i} D_{i}
$$

where every D_{i} is an irreducible curve of arithmetic genus π_{i} and $n_{i}>0$. For $f \in L(G) \backslash\{0\}$ we have

$$
\# Z(f)=N(f) \leq \sum_{i=1}^{k} \# D_{i}\left(\mathbb{F}_{q}\right)
$$

A lower bound for the price of two upper bounds
Let $f \in L(G) \backslash\{0\}=\left\{f \in \mathbb{R}_{q}^{*}(X) \mid Z(f)-P(f)+G \geq 0\right\}$.
We consider the effective divisor

$$
D_{f}=G+Z(f)-P(f)=\sum_{i=1}^{k} n_{i} D_{i}
$$

where every D_{i} is an irreducible curve of arithmetic genus π_{i} and $n_{i}>0$. For $f \in L(G) \backslash\{0\}$ we have

$$
\# Z(f)=N(f) \leq \sum_{i=1}^{k} \# D_{i}\left(\mathbb{F}_{q}\right)
$$

Some tools on algebraic surfaces

Notation: A is an ample divisor on X

Some tools on algebraic surfaces

Notation: A is an ample divisor on X

- Nakai-Moishezon : A ample $\Longleftrightarrow A^{2}>0$ and $A . C>0$ for every irreducible curve C on X

Some tools on algebraic surfaces

Notation: A is an ample divisor on X

- Nakai-Moishezon : A ample $\Longleftrightarrow A^{2}>0$ and $A . C>0$ for every irreducible curve C on X
- Riemann-Roch Theorem: $\operatorname{dim}_{\mathbb{P}_{q}} L(G)+\operatorname{dim}_{\mathbb{P}_{q}} L\left(K_{X}-G\right)=\frac{1}{2} G .\left(G-K_{X}\right)+1+p_{a}+s(G)$

Some tools on algebraic surfaces

Notation: A is an ample divisor on X

- Nakai-Moishezon : A ample $\Longleftrightarrow A^{2}>0$ and $A . C>0$ for every irreducible curve C on X
- Riemann-Roch Theorem: if $K_{X} . A<G . A$ then $\operatorname{dim}_{\mathbb{F}_{q}} L(G)+\operatorname{dim}_{\mathbb{F}_{q}} L\left(K_{X}-G\right)=\frac{1}{2} G .\left(G-K_{X}\right)+1+p_{a}+s(G)$

Some tools on algebraic surfaces

Notation: A is an ample divisor on X

- Nakai-Moishezon : A ample $\Longleftrightarrow A^{2}>0$ and $A . C>0$ for every irreducible curve C on X
- Riemann-Roch Theorem: if $K_{X} \cdot A<G . A$ then

$$
\operatorname{dim}_{\mathbb{F}_{q}} L(G) \geq \frac{1}{2} G .\left(G-K_{X}\right)+1+p_{a}
$$

Some tools on algebraic surfaces

Notation: A is an ample divisor on X

- Nakai-Moishezon : A ample $\Longleftrightarrow A^{2}>0$ and $A . C>0$ for every irreducible curve C on X
- Riemann-Roch Theorem: if $K_{X} \cdot A<G . A$ then

$$
\operatorname{dim}_{\mathbb{F}_{q}} L(G) \geq \frac{1}{2} G \cdot\left(G-K_{X}\right)+1+p_{a}
$$

- Adjonction Formula: D curve of genus π on X, then

$$
D .\left(D+K_{X}\right)=2 \pi-2
$$

Some tools on algebraic surfaces

Notation: A is an ample divisor on X

- Nakai-Moishezon : A ample $\Longleftrightarrow A^{2}>0$ and $A . C>0$ for every irreducible curve C on X
- Riemann-Roch Theorem: if $K_{X} \cdot A<G . A$ then

$$
\operatorname{dim}_{\mathbb{P}_{q}} L(G) \geq \frac{1}{2} G \cdot\left(G-K_{X}\right)+1+p_{a}
$$

- Adjonction Formula: D curve of genus π on X, then

$$
D .\left(D+K_{X}\right)=2 \pi-2
$$

- Corollary of Hodge Index Theorem: let D be a divisor on X, then

$$
(A \cdot D)^{2} \geq A^{2} D^{2}
$$

Length, Dimension, Minimum Distance

$$
n=\# X\left(\mathbb{F}_{q}\right)
$$

$$
\operatorname{dim}(\mathcal{C}(X, G))=\operatorname{dim}_{\mathbb{P}_{q}} L(G)
$$

$$
d \geq ?
$$

Length, Dimension, Minimum Distance

$$
n=\# X\left(\mathbb{F}_{q}\right)
$$

$$
\operatorname{dim}(\mathcal{C}(X, G)) \geq \frac{1}{2} G \cdot\left(G-K_{X}\right)+1+p_{a}
$$

$$
d \geq ?
$$

Length, Dimension, Minimum Distance

$$
n=\# X\left(\mathbb{F}_{q}\right)
$$

$$
\operatorname{dim}(\mathcal{C}(X, G)) \geq \frac{1}{2} G \cdot\left(G-K_{X}\right)+1+p_{a}
$$

$$
d \geq ?
$$

$N(f):=$ number of zero coordinates of $\operatorname{ev}(f)$

$$
\begin{gathered}
d=\# X\left(\mathbb{F}_{q}\right)-\max _{f \in L(G) \backslash\{0\}} N(f) \\
N(f) \leq \sum_{i=1}^{k} \# D_{i}\left(\mathbb{F}_{q}\right)
\end{gathered}
$$

On the number of rational points of algebraic curves

Set $m=\lfloor 2 \sqrt{q}\rfloor$.
Theorem: (Serre-Weil, 1983)
Let C be an absolutely irreducible smooth curve of genus g defined over the finite field \mathbb{F}_{q}. Then

$$
\# C\left(\mathbb{F}_{q}\right) \leq q+1+g m .
$$

On the number of rational points of algebraic curves

Set $m=\lfloor 2 \sqrt{q}\rfloor$.
Theorem: (Serre-Weil, 1983)
Let C be an absolutely irreducible smooth curve of genus g defined over the finite field \mathbb{F}_{q}. Then

$$
\# C\left(\mathbb{F}_{q}\right) \leq q+1+g m .
$$

On the number of rational points of algebraic curves

Set $m=\lfloor 2 \sqrt{q}\rfloor$.
Theorem: (Aubry-Perret, 1995)
Let C be an absolutely irreducible curve of arithmetic genus π defined over the finite field \mathbb{F}_{q}. Then

$$
\# C\left(\mathbb{F}_{q}\right) \leq q+1+\pi m .
$$

On the number of rational points of algebraic curves

Set $m=\lfloor 2 \sqrt{q}\rfloor$.
Theorem: (Aubry-Perret, 1995)
Let C be an absolutely irreducible curve of arithmetic genus π defined over the finite field \mathbb{F}_{q}. Then

$$
\# C\left(\mathbb{F}_{q}\right) \leq q+1+\pi m .
$$

On the number of rational points of algebraic curves

Set $m=\lfloor 2 \sqrt{q}\rfloor$.
Theorem: (Aubry-Perret, 2004)
Let C be an irreducible curve of arithmetic genus π defined over the finite field \mathbb{F}_{q} with \bar{r} absolutely irreducible components. Then

$$
\# C\left(\mathbb{F}_{q}\right) \leq \bar{r} q+1+\pi m .
$$

On the number of rational points of algebraic curves

Set $m=\lfloor 2 \sqrt{q}\rfloor$.
Theorem: (Aubry-Perret, 2004)
Let C be an irreducible curve of arithmetic genus π defined over the finite field \mathbb{F}_{q} with \bar{r} absolutely irreducible components. Then

$$
\# C\left(\mathbb{F}_{q}\right) \leq \bar{r} q+1+\pi m .
$$

Theorem: (Aubry-Perret, 2004)
Let $f: D \rightarrow C$ be a surjective flat morphism between the irreducible curve D of arithmetic genus π_{D} and the smooth absolutely irreducible curve C of genus g_{c} defined over \mathbb{F}_{q}. Let \bar{r} be the number of absolutely irreducible components of D. Then

$$
\left|\# D\left(\mathbb{F}_{q}\right)-\# C\left(\mathbb{F}_{q}\right)\right| \leq(\bar{r}-1) q+m\left(\pi_{D}-g_{C}\right)
$$

Bound for $N(f)$

$$
N(f) \leq \sum_{i=1}^{k} \# D_{i}\left(\mathbb{F}_{q}\right)
$$

Bound for $N(f)$

$$
N(f) \leq q \sum_{i=1}^{k} \bar{r}_{i}+k+m \sum_{i=1}^{k} \pi_{i}
$$

Bound for $N(f)$

$$
N(f) \leq q \sum_{i=1}^{k} \bar{r}_{i}+k+m \sum_{i=1}^{k} \pi_{i}
$$

Lemma:

Let A be an ample divisor on X. Then we have

1. If $\mathrm{NS}(X)=<A>$ and $G=r A$ then we have
(i) $\sum_{i=1}^{k} \bar{r}_{i} \leq r$,
(ii) (Voloch-Zarzar) $k \leq r$.
2. Otherwise,
(i) $\sum_{i=1}^{k} \bar{r}_{i} \leq G . A$,
(ii) $k \leq G$.A.

To be (nef) or not to be (ample)

Lemma:
Let A be an ample divisor on X. Then we have

1. If $\mathrm{NS}(X)=<A>$ and $G=r A$ then $\sum_{i=1}^{k} \pi_{i} \leq \frac{r^{2}}{2} A^{2}+\frac{r}{2} A \cdot K_{X}+1$.
2. Otherwise,
\downarrow if K_{X} is nef then $\sum_{i=1}^{k} \pi_{i} \leq \alpha(G, A)+k$,

- if K_{X} is anti-ample then $\sum_{i=1}^{k} \pi_{i} \leq(G . A)^{2} / 2 A^{2}+k / 2$, where $\alpha(G, A)=(G \cdot A)^{2} / 2 A^{2}+G . K_{X} / 2$.

To be (nef) or not to be (ample)

Lemma:

Let A be an ample divisor on X. Then we have

1. If $\mathrm{NS}(X)=<A>$ and $G=r A$ then $\sum_{i=1}^{k} \pi_{i} \leq \frac{r^{2}}{2} A^{2}+\frac{r}{2} A \cdot K_{X}+1$.
2. Otherwise,
$>$ if K_{X} is nef then $\sum_{i=1}^{k} \pi_{i} \leq \alpha(G, A)+k$,

- if K_{X} is anti-ample then $\sum_{i=1}^{k} \pi_{i} \leq(G . A)^{2} / 2 A^{2}+k / 2$, where $\alpha(G, A)=(G . A)^{2} / 2 A^{2}+G . K_{X} / 2$.

Sketch of the proof: consider $D_{i} . A$

+ Corollary of Hodge Index Theorem $D_{i}^{2} A^{2} \leq\left(D_{i} . A\right)^{2}$

To be (nef) or not to be (ample)

Lemma:

Let A be an ample divisor on X. Then we have

1. If $\mathrm{NS}(X)=<A>$ and $G=r A$ then $\sum_{i=1}^{k} \pi_{i} \leq \frac{r^{2}}{2} A^{2}+\frac{r}{2} A \cdot K_{X}+1$.
2. Otherwise,
$>$ if K_{X} is nef then $\sum_{i=1}^{k} \pi_{i} \leq \alpha(G, A)+k$,

- if K_{X} is anti-ample then $\sum_{i=1}^{k} \pi_{i} \leq(G . A)^{2} / 2 A^{2}+k / 2$,
where $\alpha(G, A)=(G . A)^{2} / 2 A^{2}+G . K_{X} / 2$.
Sketch of the proof: consider $D_{i} . A$
+ Corollary of Hodge Index Theorem $D_{i}^{2} A^{2} \leq\left(D_{i} . A\right)^{2}$
+ Adjonction Formula $\pi_{i}-1 \leq\left(D_{i} . A\right)^{2} / 2 A^{2}+D_{i} . K_{X} / 2$

To be (nef) or not to be (ample)

Lemma:

Let A be an ample divisor on X. Then we have

1. If $\mathrm{NS}(X)=<A>$ and $G=r A$ then $\sum_{i=1}^{k} \pi_{i} \leq \frac{r^{2}}{2} A^{2}+\frac{r}{2} A \cdot K_{X}+1$.
2. Otherwise,
$>$ if K_{X} is nef then $\sum_{i=1}^{k} \pi_{i} \leq \alpha(G, A)+k$,
\checkmark if K_{X} is anti-ample then $\sum_{i=1}^{k} \pi_{i} \leq(G . A)^{2} / 2 A^{2}+k / 2$,
where $\alpha(G, A)=(G . A)^{2} / 2 A^{2}+G . K_{X} / 2$.
Sketch of the proof: consider $D_{i} . A$

+ Corollary of Hodge Index Theorem $D_{i}^{2} A^{2} \leq\left(D_{i} . A\right)^{2}$
+ Adjonction Formula $\pi_{i}-1 \leq\left(D_{i} . A\right)^{2} / 2 A^{2}+D_{i} . K_{X} / 2$
$+\sum_{i=1}^{k} \pi_{i}-k \leq \ldots$

To be (nef) or not to be (ample)

Lemma:

Let A be an ample divisor on X. Then we have

1. If $\mathrm{NS}(X)=<A>$ and $G=r A$ then $\sum_{i=1}^{k} \pi_{i} \leq \frac{r^{2}}{2} A^{2}+\frac{r}{2} A \cdot K_{X}+1$.
2. Otherwise,
\checkmark if K_{X} is nef then $\sum_{i=1}^{k} \pi_{i} \leq \alpha(G, A)+k$,

- if K_{X} is anti-ample then $\sum_{i=1}^{k} \pi_{i} \leq(G . A)^{2} / 2 A^{2}+k / 2$,
where $\alpha(G, A)=(G . A)^{2} / 2 A^{2}+G . K_{X} / 2$.

$$
N(f) \leq q \sum_{i=1}^{k} \bar{r}_{i}+k+m \sum_{i=1}^{k} \pi_{i}
$$

To be (nef) or not to be (ample)

Lemma:

Let A be an ample divisor on X. Then we have

1. If $\operatorname{NS}(X)=<A>$ and $G=r A$ then $\sum_{i=1}^{k} \pi_{i} \leq \frac{r^{2}}{2} A^{2}+\frac{r}{2} A \cdot K_{X}+1$.
2. Otherwise,
$>$ if K_{X} is nef then $\sum_{i=1}^{k} \pi_{i} \leq \alpha(G, A)+k$,

- if K_{X} is anti-ample then $\sum_{i=1}^{k} \pi_{i} \leq(G . A)^{2} / 2 A^{2}+k / 2$,
where $\alpha(G, A)=(G . A)^{2} / 2 A^{2}+G . K_{x} / 2$.

$$
\begin{aligned}
& N(f) \leq q \sum_{i=1}^{k} \bar{r}_{i}+k+m \sum_{i=1}^{k} \pi_{i} \\
& d=\# X\left(\mathbb{F}_{q}\right)-\max _{f \in L(G) \backslash\{0\}} N(f) .
\end{aligned}
$$

Bound for the minimum distance

Theorem: (Aubry, B., Herbaut, Perret)
The minimum distance of the codes $\mathcal{C}(X, G)$ satisfies:

1. If $\mathrm{NS}(X)=<A>$ and $G=r A$ then

$$
d \geq \# X\left(\mathbb{F}_{q}\right)-r(q+1)-m-m r^{2} A^{2} / 2-m r A \cdot K_{X} / 2
$$

2. Otherwise,

$$
d \geq\left\{\begin{array}{l}
\# X\left(\mathbb{F}_{q}\right)-G \cdot A(q+1+m)-m \alpha(G, A) \text { if } K_{X} \text { is nef } \\
\# X\left(\mathbb{F}_{q}\right)-G \cdot A(q+1+m / 2)-m(G \cdot A)^{2} / 2 A^{2} \text { if }-K_{X} \text { is ample }
\end{array}\right.
$$

where $\alpha(G, A)=(G . A)^{2} / 2 A^{2}+G . K_{X} / 2$.

Length, Dimension, Minimum Distance

$$
n=\# X\left(\mathbb{F}_{q}\right)
$$

$$
\begin{gathered}
\operatorname{dim}(\mathcal{C}(X, G)) \geq \frac{1}{2} G \cdot\left(G-K_{X}\right)+1+p_{a} \\
d \geq\left\{\begin{array}{l}
\# X\left(\mathbb{F}_{q}\right)-r(q+1)-m-m r\left(r A^{2}+A \cdot K_{X}\right) / 2, \text { if } N S(X)=<A>, \\
\# X\left(\mathbb{F}_{q}\right)-G \cdot A(q+1+m)-m \alpha(G, A), \text { if } K_{X} \text { is nef, } \\
\# X\left(\mathbb{F}_{q}\right)-G \cdot A(q+1+m / 2)-m(G . A)^{2} / 2 A^{2}, \text { if } K_{X} \text { is anti-ample. }
\end{array}\right.
\end{gathered}
$$

Cubic surfaces in \mathbb{P}^{3} : the case of Voloch and Zarzar

Let X be a cubic surface in \mathbb{P}^{3}.
Its arithmetic genus is $p_{a}(X)=\binom{d-1}{3}=\binom{2}{3}=0$.
Let L be an hyperplane in $X: L$ is ample and $L^{2}=d=3$.
The canonical divisor is $K_{X}=(d-4) L=-L$ and it is anti ample.
Take $G=r L$ and $A=L$. In this setting we have:

	K_{X}	G	A
K_{X}	3	$-3 r$	-3
G		$3 r^{2}$	$3 r$
A			3

For the code $\mathcal{C}(X, r L)$ we get: $\operatorname{dim} \mathcal{C}(X, r L) \geq 3 r(r+1) / 2+1$,
$d \geq\left\{\begin{array}{l}\# X\left(\mathbb{F}_{q}\right)+m(3 r / 2-1)-r(q+1)-3 m r^{2} / 2, \text { if } \mathrm{NS}(X)=<L>, \\ \# X\left(\mathbb{F}_{q}\right)-3 r(q+1+m / 2)-3 m r^{2} / 2, \text { otherwise. }\end{array}\right.$

Fibrations

Definition:

Let $f: S \rightarrow B$ be a π_{0} fibration:

- f is a surjective morphism from a smooth projective surface S to a smooth absolutely irreducible curve B;
- π_{0} is the arithmetic genus of the general fiber.

Fibrations

Definition:

Let $f: S \rightarrow B$ be a π_{0} fibration:

- f is a surjective morphism from a smooth projective surface S to a smooth absolutely irreducible curve B;
- π_{0} is the arithmetic genus of the general fiber.
- $\pi_{0}=0 \rightarrow$ ruled surfaces;
- $\pi_{0}=1 \rightarrow$ elliptic surfaces;
- $\pi_{0} \geq 2 \rightarrow$ surfaces of general type.

Fibrations

Definition:

Let $f: S \rightarrow B$ be a π_{0} fibration:

- f is a surjective morphism from a smooth projective surface S to a smooth absolutely irreducible curve B;
- π_{0} is the arithmetic genus of the general fiber.

For the code $\mathcal{C}(S, G)$ we get (K_{S} is nef):

$$
\begin{gathered}
\operatorname{dim}(C(S, G)) \geq \frac{1}{2} G \cdot\left(G-K_{X}\right)+1+p_{a}, \\
d \geq \# S\left(\mathbb{F}_{q}\right)-G \cdot A(q+1+m)-m \alpha(G, A)
\end{gathered}
$$

where $\alpha(G, A)=(G . A)^{2} / 2 A^{2}+G . K_{X} / 2$.

The geometry of fibrations

Every divisor on S can be uniquely written as a sum of horizontal and fiber curves.

We study the code $\mathcal{C}(S, G)$ where G is a divisor on S which has at least one horizontal component.

The geometry of fibrations

Every divisor on S can be uniquely written as a sum of horizontal and fiber curves.

We study the code $\mathcal{C}(S, G)$ where G is a divisor on S which has at least one horizontal component.

$$
N(f) \leq \sum_{i=1}^{k} \# D_{i}\left(\mathbb{F}_{q}\right)
$$

The geometry of fibrations

Every divisor on S can be uniquely written as a sum of horizontal and fiber curves.

We study the code $\mathcal{C}(S, G)$ where G is a divisor on S which has at least one horizontal component.

$$
N(f) \leq \sum_{i=1}^{h} \# H_{i}\left(\mathbb{F}_{q}\right)+\sum_{i=h+1}^{k} \# V_{i}\left(\mathbb{F}_{q}\right) .
$$

h: horizontal curves
v: fiber curves

The geometry of fibrations

Every divisor on S can be uniquely written as a sum of horizontal and fiber curves.

We study the code $\mathcal{C}(S, G)$ where G is a divisor on S which has at least one horizontal component.

$$
N(f) \leq \sum_{i=1}^{h} \# H_{i}\left(\mathbb{F}_{q}\right)+\sum_{i=h+1}^{k} \# V_{i}\left(\mathbb{F}_{q}\right) .
$$

h: horizontal curves $\rightarrow \# H\left(\mathbb{F}_{q}\right) \leq \# B\left(\mathbb{F}_{q}\right)+(\bar{r}-1) q+m\left(\pi_{H}-g_{B}\right)$
v: fiber curves

The geometry of fibrations

Every divisor on S can be uniquely written as a sum of horizontal and fiber curves.
We study the code $\mathcal{C}(S, G)$ where G is a divisor on S which has at least one horizontal component.

$$
N(f) \leq \sum_{i=1}^{h} \# H_{i}\left(\mathbb{F}_{q}\right)+\sum_{i=h+1}^{k} \# V_{i}\left(\mathbb{F}_{q}\right) .
$$

h: horizontal curves $\rightarrow \# H\left(\mathbb{F}_{q}\right) \leq \# B\left(\mathbb{F}_{q}\right)+(\bar{r}-1) q+m\left(\pi_{H}-g_{B}\right)$
v: fiber curves $\quad \rightarrow \# V\left(\mathbb{F}_{q}\right) \leq \bar{r} q+1+m \pi v$

The geometry of fibrations

Every divisor on S can be uniquely written as a sum of horizontal and fiber curves.

We study the code $\mathcal{C}(S, G)$ where G is a divisor on S which has at least one horizontal component.

$$
N(f) \leq \sum_{i=1}^{h} \# H_{i}\left(\mathbb{F}_{q}\right)+\sum_{i=h+1}^{k} \# V_{i}\left(\mathbb{F}_{q}\right)
$$

h : horizontal curves $\rightarrow \# H\left(\mathbb{F}_{q}\right) \leq \# B\left(\mathbb{F}_{q}\right)+(\bar{r}-1) q+m\left(\pi_{H}-g_{B}\right)$
v: fiber curves $\quad \rightarrow \# V\left(\mathbb{F}_{q}\right) \leq \bar{r} q+1+m \pi v$

$$
N(f) \leq h\left(\# B\left(\mathbb{F}_{q}\right)-m g_{B}-q\right)+m \sum_{i=1}^{k} \pi_{i}+q \sum_{i=1}^{k} \bar{r}_{i}+v
$$

The geometry of fibrations

Every divisor on S can be uniquely written as a sum of horizontal and fiber curves.

We study the code $\mathcal{C}(S, G)$ where G is a divisor on S which has at least one horizontal component.

$$
N(f) \leq \sum_{i=1}^{h} \# H_{i}\left(\mathbb{F}_{q}\right)+\sum_{i=h+1}^{k} \# V_{i}\left(\mathbb{F}_{q}\right) .
$$

h: horizontal curves $\rightarrow \# H\left(\mathbb{F}_{q}\right) \leq \# B\left(\mathbb{F}_{q}\right)+(\bar{r}-1) q+m\left(\pi_{H}-g_{B}\right)$
v: fiber curves $\quad \rightarrow \# V\left(\mathbb{F}_{q}\right) \leq \bar{r} q+1+m \pi v$

$$
N(f) \leq h\left(\# B\left(\mathbb{F}_{q}\right)-m g_{B}-q-1\right)+m \alpha(G, A)+m k+q G . A+k .
$$

Codes wars: a new bound

Theorem: (Aubry, B., Herbaut, Perret)
The minimum distance of the code $\mathcal{C}(S, G)$ satisfies
$d \geq \# S\left(\mathbb{F}_{q}\right)+\left(q+1+m g_{B}-\# B\left(\mathbb{F}_{q}\right)\right)-G \cdot A(q+1+m)-m \alpha(G, A)$.

Codes wars: a new bound

Theorem: (Aubry, B., Herbaut, Perret)
The minimum distance of the code $\mathcal{C}(S, G)$ satisfies
$d \geq \# S\left(\mathbb{F}_{q}\right)+\left(q+1+m g_{B}-\# B\left(\mathbb{F}_{q}\right)\right)-G \cdot A(q+1+m)-m \alpha(G, A)$.

Compare with

$$
d \geq \# S\left(\mathbb{F}_{q}\right)-G \cdot A(q+1+m)-m \alpha(G, A)
$$

the new bound is better than the first and improves as g_{B} grows and $\# B\left(\mathbb{F}_{q}\right)$ stays low.

Abelian surfaces strike back

Let X be an abelian surface defined over \mathbb{F}_{q}.
Its arithmetic genus is $p_{a}(X)=-1$ and $K_{X}=0$.
Let A be an ample divisor on X and let $G=r A$.
For the code $\mathcal{C}(X, r A)$ we get:

$$
\begin{gathered}
\operatorname{dim} \mathcal{C}(X, r A) \geq r^{2} A^{2} / 2, \\
d \geq \# X\left(\mathbb{F}_{q}\right)-r A^{2}(q+1+m)-m r^{2} A^{2} / 2 .
\end{gathered}
$$

Number of rational points of curves over abelian surfaces

Let X be an abelian surface.
Rational Points: set $m:=\lfloor 2 \sqrt{q}\rfloor$

- for D an irreducible curve on X of arithmetic genus π we have

$$
\# D\left(\mathbb{F}_{q}\right) \leq q+1-\operatorname{Tr}(X)+|\pi-2| m
$$

- for D a non absolutely irreducible curve on X of arithmetic genus π we have

$$
\# D\left(\mathbb{F}_{q}\right) \leq \pi-1
$$

Number of rational points of curves over abelian surfaces

Let X be an abelian surface.
Rational Points: set $m:=\lfloor 2 \sqrt{q}\rfloor$

- for D an irreducible curve on X of arithmetic genus π we have

$$
\# D\left(\mathbb{F}_{q}\right) \leq q+1-\operatorname{Tr}(X)+\underline{|\pi-2|} m
$$

- for D a non absolutely irreducible curve on X of arithmetic genus π we have

$$
\# D\left(\mathbb{F}_{q}\right) \leq \pi-1
$$

Number of rational points of curves over abelian surfaces

Let X be an abelian surface.
Rational Points: set $m:=\lfloor 2 \sqrt{q}\rfloor$

- for D an irreducible curve on X of arithmetic genus π we have

$$
\# D\left(\mathbb{F}_{q}\right) \leq q+1-\operatorname{Tr}(X)+|\pi-2| m
$$

- for D a non absolutely irreducible curve on X of arithmetic genus π we have

$$
\# D\left(\mathbb{F}_{q}\right) \leq \pi-1
$$

Remark:
Let D be an irreducible curve of arithmetic genus π on a simple abelian surface X, then $\pi \geq 2$.

Number of rational points of curves over abelian surfaces

Let X be an abelian surface.
Rational Points: set $m:=\lfloor 2 \sqrt{q}\rfloor$

- for D an irreducible curve on X of arithmetic genus π we have

$$
\# D\left(\mathbb{F}_{q}\right) \leq q+1-\operatorname{Tr}(X)+(\pi-2) m
$$

- for D a non absolutely irreducible curve on X of arithmetic genus π we have

$$
\# D\left(\mathbb{F}_{q}\right) \leq \pi-1
$$

Remark:
Let D be an irreducible curve of arithmetic genus π on a simple abelian surface X, then $\pi \geq 2$.

Improving the lower bound for the minimum distance

Let X be a simple abelian surface such that every absolutely irreducible curve on it has arithmetic genus $\pi>\ell$, for a positive integer ℓ.

Improving the lower bound for the minimum distance

Let X be a simple abelian surface such that every absolutely irreducible curve on it has arithmetic genus $\pi>\ell$, for a positive integer ℓ.

$$
N(f) \leq \sum_{i=1}^{k} \# D_{i}\left(\mathbb{F}_{q}\right)
$$

Write $k=k_{1}+k_{2}$ where

$$
\begin{aligned}
& k_{1}=\#\left\{D_{i} \mid \pi_{i}>\ell\right\} \\
& k_{2}=\#\left\{D_{i} \mid \pi_{i} \leq \ell\right\}
\end{aligned}
$$

Improving the lower bound for the minimum distance

Let X be a simple abelian surface such that every absolutely irreducible curve on it has arithmetic genus $\pi>\ell$, for a positive integer ℓ.

$$
N(f) \leq \sum_{i=1}^{k} \# D_{i}\left(\mathbb{F}_{q}\right)
$$

Write $k=k_{1}+k_{2}$ where

$$
\begin{aligned}
& k_{1}=\#\left\{D_{i} \mid \pi_{i}>\ell\right\} \rightarrow \# D\left(\mathbb{F}_{q}\right) \leq q+1-\operatorname{Tr}(X)+(\pi-2) m \\
& k_{2}=\#\left\{D_{i} \mid \pi_{i} \leq \ell\right\}
\end{aligned}
$$

Improving the lower bound for the minimum distance

Let X be a simple abelian surface such that every absolutely irreducible curve on it has arithmetic genus $\pi>\ell$, for a positive integer ℓ.

$$
N(f) \leq \sum_{i=1}^{k} \# D_{i}\left(\mathbb{F}_{q}\right)
$$

Write $k=k_{1}+k_{2}$ where

$$
\begin{aligned}
& k_{1}=\#\left\{D_{i} \mid \pi_{i}>\ell\right\} \rightarrow \quad \# D\left(\mathbb{F}_{q}\right) \leq q+1-\operatorname{Tr}(X)+(\pi-2) m \\
& k_{2}=\#\left\{D_{i} \mid \pi_{i} \leq \ell\right\} \rightarrow \quad \# D\left(\mathbb{F}_{q}\right) \leq \pi-1
\end{aligned}
$$

Improving the lower bound for the minimum distance

Let X be a simple abelian surface such that every absolutely irreducible curve on it has arithmetic genus $\pi>\ell$, for a positive integer ℓ.

$$
N(f) \leq \sum_{i=1}^{k} \# D_{i}\left(\mathbb{F}_{q}\right)
$$

Write $k=k_{1}+k_{2}$ where

$$
\begin{aligned}
k_{1}= & \#\left\{D_{i} \mid \pi_{i}>\ell\right\} \rightarrow \quad \# D\left(\mathbb{F}_{q}\right) \leq q+1-\operatorname{Tr}(X)+(\pi-2) m \\
k_{2}= & \#\left\{D_{i} \mid \pi_{i} \leq \ell\right\} \rightarrow \quad \# D\left(\mathbb{F}_{q}\right) \leq \pi-1 \\
& N(f) \leq k_{1}(q+1-\operatorname{Tr}(X)-2 m)+m \sum_{i=1}^{k_{1}} \pi_{i}+k_{2}(\ell-1)
\end{aligned}
$$

Bound for $N(f)$

Lemma:

1. $k_{2} \leq r \sqrt{\frac{A^{2}}{2}}-k_{1} \sqrt{\ell}$,
2. $k_{1} \sqrt{\ell} \leq r \sqrt{\frac{A^{2}}{2}}$,
3. $\sum_{i=1}^{k_{1}} \pi_{i} \leq\left(r \sqrt{A^{2} / 2}-k_{1} \sqrt{\ell}\right)^{2}+r \sqrt{2 A^{2} \ell}+(1-\ell) k_{1}$.

Bound for $N(f)$

Lemma:

1. $k_{2} \leq r \sqrt{\frac{A^{2}}{2}}-k_{1} \sqrt{\ell}$,
2. $k_{1} \sqrt{\ell} \leq r \sqrt{\frac{A^{2}}{2}}$,
3. $\sum_{i=1}^{k_{1}} \pi_{i} \leq\left(r \sqrt{A^{2} / 2}-k_{1} \sqrt{\ell}\right)^{2}+r \sqrt{2 A^{2} \ell}+(1-\ell) k_{1}$.

$$
N(f) \leq \phi\left(k_{1}\right),
$$

$$
\phi\left(k_{1}\right):=m \ell k_{1}^{2}+k_{1}\left(q+1-\operatorname{Tr}(X)-m(\ell+1)-m r \sqrt{2 A^{2} \ell}-\sqrt{\ell}(\ell-1)\right)
$$

$$
+m A^{2} r^{2} / 2+m r \sqrt{2 A^{2} \ell}+r \sqrt{A^{2} / 2}(\ell-1),
$$

$$
k_{1} \in\left[1, \sqrt{\frac{A^{2}}{2 \ell}} r\right]
$$

Codes wars: the last bound

We have:

$$
N(f) \leq\left\{\begin{array}{l}
\phi\left(\sqrt{\frac{A^{2}}{2 \ell}} r\right) \text { if } \sqrt{\frac{2 \ell}{A^{2}}} \leq r \leq \frac{\sqrt{2}(q+1-\operatorname{Tr}(X)-m-\sqrt{\ell}(\ell-1))}{m \sqrt{A^{2} \ell}}, \\
\phi(1) \text { otherwise. }
\end{array}\right.
$$

Codes wars: the last bound

We have:

$$
N(f) \leq\left\{\begin{array}{l}
\phi\left(\sqrt{\frac{A^{2}}{2 \ell}} r\right) \text { if } \sqrt{\frac{2 \ell}{A^{2}}} \leq r \leq \frac{\sqrt{2}(q+1-\operatorname{Tr}(X)-m-\sqrt{\ell}(\ell-1))}{m \sqrt{A^{2} \ell}} \\
\phi(1) \text { otherwise }
\end{array}\right.
$$

$$
d=\# X\left(\mathbb{F}_{q}\right)-\max _{f \in L(r A) \backslash\{0\}} N(f) .
$$

Codes wars: the last bound

Theorem: (Aubry, B., Herbaut, Perret)
Let X be a simple abelian surface of trace $\operatorname{Tr}(X)$ such that every irreducible curve on it has arithmetic genus $\pi>\ell$, for a positive integer ℓ. Then the minimum distance d of the code $\mathcal{C}(X, r A)$ satisfies:

$$
d \geq \# X\left(\mathbb{F}_{q}\right)-r \sqrt{\frac{A^{2}}{2 \ell}}(q+1-\operatorname{Tr}(X)+(\ell-1) m)
$$

if $\sqrt{\frac{2 \ell}{A^{2}}} \leq r \leq \frac{\sqrt{2}(q+1-\operatorname{Tr}(X)-m-\sqrt{\ell}(\ell-1))}{m \sqrt{A^{2} \ell}}$, otherwise

$$
d \geq \# X\left(\mathbb{F}_{q}\right)-(q+1-\operatorname{Tr}(X))-m\left(r^{2} A^{2} / 2-1\right)-r \sqrt{\frac{A^{2}}{2}}(\ell-1) .
$$

Comparing the bounds

Compare

$$
d \geq \# X\left(\mathbb{F}_{q}\right)-r \sqrt{\frac{A^{2}}{2 \ell}}(q+1-\operatorname{Tr}(X)+(\ell-1) m)
$$

with

$$
d \geq \# X\left(\mathbb{F}_{q}\right)-r A^{2}(q+1+m)-m r^{2} A^{2} / 2 .
$$

Comparing the bounds

$$
\begin{gathered}
d \geq \# X\left(\mathbb{F}_{q}\right)-r \sqrt{\frac{A^{2}}{2 \ell}}(q+1-\operatorname{Tr}(X)+(\ell-1) m) \\
d_{\text {min }}-\# X\left(\mathbb{F}_{q}\right) \underset{q \rightarrow \infty}{\sim}-r \sqrt{\frac{A^{2}}{2 \ell}} q .
\end{gathered}
$$

Remark: the bound for $\ell=2$ is better than the one for $\ell=1$!
Question: There exist abelian surfaces which do not contain absolutely irreducible curves of arithmetic genus 0,1 nor 2?

Comparing the bounds

$$
\begin{gathered}
d \geq \# X\left(\mathbb{F}_{q}\right)-r \sqrt{\frac{A^{2}}{2 \ell}}(q+1-\operatorname{Tr}(X)+(\ell-1) m) \\
d_{\text {min }}-\# X\left(\mathbb{F}_{q}\right) \underset{q \rightarrow \infty}{\sim}-r \sqrt{\frac{A^{2}}{2 \ell}} q .
\end{gathered}
$$

Remark: the bound for $\ell=2$ is better than the one for $\ell=1$!
Question: There exist abelian surfaces which do not contain absolutely irreducible curves of arithmetic genus 0,1 nor 2?

YES!

Abelian surfaces without curves of low genus: starting point

Lemma:
An abelian surface X contains no absolutely irreducible curves of arithmetic genus 0,1 nor $2 \Longleftrightarrow X$ is simple and not isogenous to a Jacobian surface.

Abelian surfaces without curves of low genus: starting point

Lemma:

An abelian surface X contains no absolutely irreducible curves of arithmetic genus 0,1 nor $2 \Longleftrightarrow X$ is simple and not isogenous to a Jacobian surface.

Theorem: (Weil)
Let (X, λ) be a principally polarized abelian surface defined over the finite field k. Then (X, λ) is either

1. the polarized Jacobian of a genus 2 curve over k,
2. the product of two polarized elliptic curves over k,
3. the Weil restriction of a polarized elliptic curves over a quadratic extension of k.

Abelian surfaces without curves of low genus: starting point

Lemma:

An abelian surface X contains no absolutely irreducible curves of arithmetic genus 0,1 nor $2 \Longleftrightarrow X$ is simple and not isogenous to a Jacobian surface.

Theorem: (Weil)
Let (X, λ) be a principally polarized abelian surface defined over the finite field k. Then (X, λ) is either

1. the polarized Jacobian of a genus 2 curve over k,
2. the product of two polarized elliptic curves over k,
3. the Weil restriction of a polarized elliptic curve over a quadratic extension of k.

Abelian surfaces without curves of low genus: starting point

Lemma:

An abelian surface X contains no absolutely irreducible curves of arithmetic genus 0,1 nor $2 \Longleftrightarrow X$ is simple and not isogenous to a Jacobian surface.

Abelian surfaces that might have the property we are searching for:

- Weil restrictions of polarized elliptic curves over a quadratic extension of k,
- abelian surfaces defined over k that do not admit a principal polarization.

Abelian surfaces containing no curves of genus 0,1 nor 2

Proposition: (Aubry, B., Herbaut, Perret)
(i) Let X be an abelian surface defined over \mathbb{F}_{q} which does not admit a principal polarization. Then X does not contain absolutely irreducible curves of arithmetic genus 0, 1 nor 2 .
(ii) Let $q=p^{e}$. Let E be and elliptic curve defined over $\mathbb{F}_{q^{2}}$ of trace $\operatorname{Tr}\left(E / \mathbb{F}_{q^{2}}\right)$. Let X be the $\mathbb{F}_{q^{2}} / \mathbb{F}_{q^{-}}$-Weil restriction of the elliptic curve E. Then X does not contain absolutely irreducible curves defined over \mathbb{F}_{q} of arithmetic genus 0,1 nor 2 if and only if one of the following cases holds:
(1) $\operatorname{Tr}\left(E / \mathbb{F}_{q^{2}}\right)=2 q-1$;
(2) $p>2$ and $\operatorname{Tr}\left(E / \mathbb{F}_{q^{2}}\right)=2 q-2$;
(3) $p \equiv 11 \bmod 12$ or $p=3, q=\square$ and $\operatorname{Tr}\left(E / \mathbb{F}_{q^{2}}\right)=q$;
(4) $p=2, q \neq \square$ and $\operatorname{Tr}\left(E / \mathbb{F}_{q^{2}}\right)=q$;
(5) $q=2$ or $q=3$, and $\operatorname{Tr}\left(E / \mathbb{F}_{q^{2}}\right)=2 q$.

A frame has no name

- Our bounds seem to confirm the idea that surfaces with small Picard number are suitable for obtaining good codes;

A frame has no name

- Our bounds seem to confirm the idea that surfaces with small Picard number are suitable for obtaining good codes;
- Codes from surfaces with canonical divisor anti-ample seem interesting as well;

A frame has no name

- Our bounds seem to confirm the idea that surfaces with small Picard number are suitable for obtaining good codes;
- Codes from surfaces with canonical divisor anti-ample seem interesting as well;
- Fibrations on curves of high genus and with few rational points could give good codes as well (this case gives the best bound on the minimum distance).

Some ideas for the "sequel"...

I) Fibrations. Provide examples of algebraic smooth curves of high genus and with few rational points, and of fibrations on these curves.

Some ideas for the "sequel"...

I) Fibrations. Provide examples of algebraic smooth curves of high genus and with few rational points, and of fibrations on these curves.
II) Abelian surfaces. Under which condition(s) an abelian surface does not contain absolutely irreducible genus 3 curves as well?

Some ideas for the "sequel"...

I) Fibrations. Provide examples of algebraic smooth curves of high genus and with few rational points, and of fibrations on these curves.
II) Abelian surfaces. Under which condition(s) an abelian surface does not contain absolutely irreducible genus 3 curves as well?
III) Lunch: Sounds like a good idea too.

Thank you for your attention!

(Questions?)

He who asks a question is a fool for five minutes; he who does not ask a question remains a fool forever.

Confucius

