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Evaluatioh codes

Let V/Fq be an algebraic variety and set V(Fq) = {P1,..., Pa}.
Let D be a divisor on V such that Supp(D) N V(Fq) = 0.
Consider the Riemann-Roch space

L(D) = {f e Fo(V) | (f)+ D >0} U {0}.
Definition:
The code C(V/, D) is defined to be the image of the evaluation map

ev ;. LD
f— (F(P1), ..., f(Pn)).
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Algebraic surfaces: basic notions and notations

X smooth, projective, absolutely irreducible algebraic surface defined over
the finite field F,

D € Div(X), a formal sum of irreducible curves on X

D € Div(X) is nefif D.C > 0 for every irreducible curve C on X
Linear equivalence: D ~ D' < D — D' = (f)

Pic(X) = Div(X)/ ~

NS(X) = Pic(X)/Pic®(X), its rank is called the Picard number

- Div(X) x Div(X) — Z the intersection pairing
- if C and D meet transversally then C.D = #(C N D)
- symmetric and additive

- it depends only on the linear equivalence classes




Evaluation codes from algebraic surfaces

Let X be a surface and G a rational divisor on X.
Consider the Riemann-Roch space

L(G) = {f e Fy(X) | (f)+ G = 0} U {0}.

Definition:
Set X(Fq) ={P1,...,Pa}. The code C(X, G) is defined to be the image
of the evaluation map
A L (C) —— [T
f— (f(P1),...,f(Ppn)).
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Length, Dimension, Minimum Distance

n = #X(Fq)
dim(C(X, G)) = dimg, L(G)

For f € L(G) \ {0}, N(f) := number of zero coordinates of ev(f)

d = #X(Fq) - N()

max
feL(G)\{o}

dimension of the Riemann-Roch space = dim(C(X, G))

upper bound for N(f) = lower bound for the minimum distance




A lower bound for the price of two upper bounds

Let f € L(G) \ {0} = {f € ]F:;(X) | Z(f) — P(f)+ G > 0}.
We consider the effective divisor

=G+ Z(f) - Zn, ;

where every D; is an irreducible curve of arithmetic genus 7; and n; > 0.
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+
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Some tools on algebraic surfaces

Notation: A is an ample divisor on X

- Nakai-Moishezon : A ample <= A2 >0 and A.C > 0 for every
irreducible curve C on X

Riemann-Roch Theorem: if Kx.A < G.A then

1
dime, L(G) > 5G.(G — Kx) + 1+ ps

Adjonction Formula: D curve of genus 7 on X, then

D.(D + Kx) = 27 — 2

Corollary of Hodge Index Theorem: let D be a divisor on X, then

a2 A2 D2
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Length, Dimension, Minimum Distance

= #X(Fq)
dim(C(X,G)) > =G.(G— Kx)+ 1+ p,

greetl
N(f) := number of zero coordinates of ev(f)

d=#X(F,) — N(f
#X(Fq) A (f)

k

N(F) < 37 #D4(F,)

fi=il




On the number of rational points of algebraic curves

Set m= [2,/q].
Theorem: (Serre-Weil, 1983)

Let C be an absolutely irreducible smooth curve of genus g defined over
the finite field Fq. Then

#C(Fg) < qg+1+gm.
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Theorem: (Aubry-Perret, 1995)

Let C be an absolutely irreducible curve of arithmetic genus w defined
over the finite field F,. Then

#C(Fg) <g+1+mm.




On the number of rational points of algebraic curves

Set m= [2,/q].
Theorem: (Aubry-Perret, 2004)

Let C be an irreducible curve of arithmetic genus 7 defined over the
finite field ¥y with  absolutely irreducible components. Then

#C(Fy) <Fg+1+mm.




On the number of rational points of algebraic curves

Set m.=[2y/q|*
Theorem: (Aubry-Perret, 2004)

Let C be an irreducible curve of arithmetic genus © defined over the
finite field By with F absolutely irreducible components. Then

#C(Fy) <Fg+1+mm.

Theorem: (Aubry-Perret, 2004)

Let f : D — C be a surjective flat morphism between the irreducible
curve D of arithmetic genus wp and the smooth absolutely irreducible
curve C of genus gc defined over F,. Let T be the number of absolutely
irreducible components of D. Then

[#D(Fq) — #C(Fg)| < (F = 1)g + m(mp — gc)
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Bound for N(f)

Lemma:
Let A be an ample divisor on X. Then we have
1. IfNS(X) =< A > and G = rA then we have
(i) Zf:l fis,
(ii) (Voloch-Zarzar) k < r.
2. Otherwise,

(i) T, T < GA
(i) k< G.A.




To be (néf) or not to be (ample)

Lemma:
Let A be an ample divisor on X. Then we have
1. FNS(X) =< A> and G = rA then Y5, m; < S A2+ LA Ky +1.
2. Otherwise,
> if Kx is nef then 3% | 1 < a(G, A) + k,
> if Kx is anti-ample then > m; < (G.A)?/2A% + k/2,

where oG, A) = (G.A)?/2A? + G.Kx /2.
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Lemma:
Let A be an ample divisor on X. Then we have
1. IFNS(X) =< A> and G = rA then Y5, 7 < ZA? + LAKx + 1.
2. Otherwise,
> if Kx is nef then Y mi < oG, A) + k,
> if Kx is anti-ample then S | m; < (G.A)%/2A + k/2,

where a(G, A) = (G.A)?/2A% + G.Kx/2.

Sketch of the proof: consider D;.A

+ Corollary of Hodge Index Theorem D?A? < (D;.A)?
+ Adjonction Formula 7; — 1 < (D;.A)?/2A% + D;.Kx /2
+ Zf'(:l m; — k <...
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Lemma:
Let A be an ample divisor on X. Then we have
1. FNS(X) =< A> and G = rA then "% | m; < S A2+ LAKx +1.
2. Otherwise,
> if Kx is nef then Y mi < oG, A) + k,
> if Kx is anti-ample then > | m; < (G.A)?/2A + k/2,

where a(G, A) = (G.A)?/2A? 4 G.Kx /2.




To be (néf) or not to be (ample)

Lemma:
Let A be an ample divisor on X. Then we have
1. FNS(X) =< A> and G = rA then Y5, 7 < S A2 + LA Ky +1.
2. Otherwise,
> if Kx is nef then 3% | 7 < a(G, A) + k,
> if Kx is anti-ample then >, m; < (G.A)?/2A% + k/2,

where oG, A) = (G.A)?/2A? + G.Kx/2.

k
Z +k+mz7r,
e

d=#X(F N(f).

fel( G)\{O}




Bound fof the minimum distance

Theorem: (Aubry, B., Herbaut, Perret)
The minimum distance of the codes C(X, G) satisfies:
1. IfNS(X) =< A > and G = rA then
d> #X(F,) — rlg+1) — m — mr*A?/2 — mrA.Kx /2.

2. Otherwise,

d>

#X(Fq) — G.A(q + 1+ m) — ma(G, A) if Kx is nef,
#X(Fq) — G.A(g+ 1+ m/2) — m(G.A)?/2A% if —Kx is ample,

where a(G, A) = (G.A)?/2A% + G.Kx/2.




Length, Dimension, Minimum Distance

W= #X(Fq)

dim(C(X,G)) > =G.(G — Kx) + 1+ p,

#X(Fq) — r(g+1) — m— mr(rA%> + A.Kx)/2, if NS(X) =< A >,
d> { #X(Fy) — G.A(g+ 1+ m) — ma(G, A), if Kx is nef,
#X(Fq) — G.A(g+ 1+ m/2) — m(G.A)?/2A2, if Kx is anti-ample.




Cubic sur_faces in P3: the case of Voloch and Zarzar

Let X be a cubic surface in P3.

Its arithmetic genus is p,(X) = (3%) = () = 0.

Let L be an hyperplane in X: L is ample and [2 = d = 3.

The canonical divisor is Kx = (d —4)L = —L and it is anti ample.

Take G = rL and A = L. In this setting we have:

Kx G A
Kx 3 -3r | -3
G gre | 3r
A 3

For the code C(X, rL) we get: dimC(X,rL) > 3r(r+1)/2+1,

% #X(Fq) +m(3r/2—1) — r(g+ 1) —3mr?/2, if NS(X) =< L >,
— | #X(Fq) —3r(q + 1+ m/2) — 3mr?/2, otherwise.




Fibratioﬂs

Definition:
Let f : S — B be a mq fibration:
- f is a surjective morphism from a smooth projective surface S to a
smooth absolutely irreducible curve B;

- T Is the arithmetic genus of the general fiber.




Fibratioﬂs

Definition:
Let f : S — B be a mg fibration:

- f is a surjective morphism from a smooth projective surface S to a
smooth absolutely irreducible curve B;

- o is the arithmetic genus of the general fiber.

- mg = 0 — ruled surfaces;
- mp = 1 — elliptic surfaces;
- m > 2 — surfaces of general type.




Fibratioﬂs

Definition:
Let f : S — B be a mq fibration:
- f is a surjective morphism from a smooth projective surface S to a
smooth absolutely irreducible curve B;

- T IS the arithmetic genus of the general fiber.

For the code C(S, G) we get (Ks is nef):

dim(C(S,G)) = 56.(G — Kx) + 1+ p,

d > #5(F;) — G.A(g+1+ m) — ma(G,A)

where (G, A) = (G.A)?/2A% + G.Kx/2.




The geonietry of fibrations

Every divisor on S can be uniquely written as a sum of horizontal and
fiber curves.

We study the code C(S, G) where G is a divisor on S which has at least
one horizontal component.
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Every divisor on S can be uniquely written as a sum of horizontal and
fiber curves.

We study the code C(S, G) where G is a divisor on S which has at least
one horizontal component.

k

N(F) < 3 #Di(F,)

=il




The geonietry of fibrations

Every divisor on S can be uniquely written as a sum of horizontal and
fiber curves.

We study the code C(S, G) where G is a divisor on S which has at least
one horizontal component.

k

h
N(f) gZ#H;(Fq)—i— > #Vi(Fy).

i=h+1

h: horizontal curves

v: fiber curves




The geonietry of fibrations

Every divisor on S can be uniquely written as a sum of horizontal and
fiber curves.

We study the code C(S, G) where G is a divisor on S which has at least
one horizontal component.

h

k
#H;(Fg) + > #Vi(Fy).

i=h+1

h: horizontal curves — #H(Fq) < #B(Fgy) + (F—1)qg + m(7n — gg)

v: fiber curves




The geonietry of fibrations

Every divisor on S can be uniquely written as a sum of horizontal and
fiber curves.

We study the code C(S, G) where G is a divisor on S which has at least
one horizontal component.

h k
N(F) < D #H(Eq) + D #Vi(Fo).

i=h+1

h: horizontal curves — #H(F,) < #B(F,) + (F—1)qg + m(mn — gB)
v: fiber curves — #V(F,) < Fqg+ 1+ mmy




The geonietry of fibrations

Every divisor on S can be uniquely written as a sum of horizontal and
fiber curves.

We study the code C(S, G) where G is a divisor on S which has at least
one horizontal component.

k
7‘79/'11'(1&7)+ Z #Vi(Fq)-

v: fiber curves — #V(Fy) < Fg+ 1+ mny

k k
N(f) < h(#B(Fq) —mgs —q)+mY mi+qy Fi+v

i=1 fi=il

18/30

i=h+1

h: horizontal curves — #H(F,) < #B(Fy) + (F—1)g + m(mn — g8) ]
1

1




The geonietry of fibrations

Every divisor on S can be uniquely written as a sum of horizontal and
fiber curves.

We study the code C(S, G) where G is a divisor on S which has at least
one horizontal component.

h k
N(F) < D #H(Eq) + D #Vi(Fq).

(=h+1

h: horizontal curves — #H(Fq) < #B(Fg) + (F—1)qg + m(7mn — gB)
v: fiber curves — #V(F,) < Fg+ 1+ mmy

N(f) < h(#B(Fq) — mgg — q — 1) + ma(G, A) + mk + qG.A+ k.




Codes wars: a new bound

Theorem: (Aubry, B., Herbaut, Perret)

The minimum distance of the code C(S, G) satisfies

d > #S5(F,)+(q+ 1+ mgs — #B(Fy)) — G.A(g+ 1+ m) — ma(G, A).




Codes wars: a new bound

Theorem: (Aubry, B., Herbaut, Perret)

The minimum distance of the code C(S, G) satisfies

d > #S(Fq)+(qg+ 1+ mge —#B(F,)) — G.A(g+ 1+ m) — ma(G, A).

Compare with
d > #S(F;) — G.A(g+ 1+ m) — ma(G, A)

the new bound is better than the first and improves as gg grows and
#B(F,) stays low.




Abelian sﬁrfaces strike back

Let X be an abelian surface defined over .
Its arithmetic genus is p,(X) = —1 and Kx = 0.
Let A be an ample divisor on X and let G = rA.

For the code C(X, rA) we get:

dimC(X, rA) > r?A%/2,
i NN~ 1 1+ m) — mreA%/2.




Number of rational points of curves over abelian surfaces

Let X be an abelian surface.

Rational Points: set m := [2,/q]
- for D an irreducible curve on X of arithmetic genus m we have

#D(Fg) < g+ 1—Te(X)+ |7 — 2|m

- for D a non absolutely irreducible curve on X of arithmetic genus 7
we have
#D([Fy) <m—1
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Number of rational points of curves over abelian surfaces

Let X be an abelian surface.

Rational Points: set m := [2,/q]
- for D an irreducible curve on X of arithmetic genus m we have

#D(Fgf= g1 Te(X)+ |7 — 2|m

- for D a non absolutely irreducible curve on X of arithmetic genus 7
we have
ED(E ) <7 —1

Remark:

Let D be an irreducible curve of arithmetic genus  on a simple abelian
surface X, then ™ > 2.




Number of rational points of curves over abelian surfaces

Let X be an abelian surface.

Rational Points: set m := [2,/q]
- for D an irreducible curve on X of arithmetic genus m we have

#D([Fy) < g+ 1—Tr(X)+ (7 —2)m

- for D a non absolutely irreducible curve on X of arithmetic genus 7
we have
ED(E ) <7 —1

Remark:

Let D be an irreducible curve of arithmetic genus  on a simple abelian
surface X, then ™ > 2.




Improviné the lower bound for the minimum distance

Let X be a simple abelian surface such that every absolutely irreducible
curve on it has arithmetic genus 7 > ¢, for a positive integer /.
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Let X be a simple abelian surface such that every absolutely irreducible
curve on it has arithmetic genus 7 > ¢, for a positive integer /.

k
N(f) < Z#D;(Fq)

Write k = ki + ko where
kq :#{D,' | T} >£}

ke = #{D; | mj < {}




Improviné the lower bound for the minimum distance

Let X be a simple abelian surface such that every absolutely irreducible
curve on it has arithmetic genus 7 > ¢, for a positive integer /.

k
N(f) < Z#D;(Fq)

Write k = ki + ko where

ki =#{D; | m >0} = #D(Fy) < g+ 1—Tr(X)+ (7 —2)m
ko = #{D; | mi < £}




Improviné the lower bound for the minimum distance

Let X be a simple abelian surface such that every absolutely irreducible
curve on it has arithmetic genus 7 > ¢, for a positive integer £.

k
N(f) < Z#D;(Fq)

Write k = k; + ko where

ki =#{D;i |mi >4} » #D(Fy) <qg+1—Tr(X)+ (7 —2)m
ke =#{Di | m <€} - #D(Fq)<m—1




Improviné the lower bound for the minimum distance

Let X be a simple abelian surface such that every absolutely irreducible
curve on it has arithmetic genus 7 > ¢, for a positive integer /.

k
N(f) < Z#D,-(Fq)

Write k = ki + ko where

klz#{D,'|7T,'>£}—) #D(Fq)§q+1—T‘I‘(X)+(7T—2)m
kzz#{D,-|7r,-§€}—> #D(Iﬁ‘q)gw—l

k1
N(f) < k(g +1=Te(X) = 2m) + m > 7 + ka(¢ — 1)
=1




Bound for N(f)

Lemma:

1 ke < /% — kiV2,

2 kl\/zS r\/ A727

3. 2% m < (/B2 kaVE) + V2R + (1 Ok




Bound for N(f)

Lemma:

1. ko < /% — kil

2. ivVE< /%,

BB = (r\/Az/ = kl\/z)2+f\/m+(1*£)kl~

N(f) < (ki)
d(ky) = mek2+ky (q 1 Te(X) — m(€+ 1) — mrv/2A20 — (0 — 1))

+mA?r? /2 + mrV2A20 4 r\/A2/2(0 — 1),
[A2
k]_ S [17 %r] o




Codes Wai"s: the last bound

We have:

< [ VBt -T00-m-vi(e-1)
N(F) < { ( r> "Wa s e

¢ (1) otherwise.




Codes Wai"s: the last bound

We have:

| A2 / V2(q+1— Tr(X) A ()
N(f)g{ ( 2er> if L <p< = .

@ (1) otherwise.

d=#X(F,) — max N(f).

feL(rA)\{0}




Codes Wa_rs: the last bound

Theorem: (Aubry, B., Herbaut, Perret)

Let X be a simple abelian surface of trace Tr(X) such that every
irreducible curve on it has arithmetic genus w > £, for a positive integer
. Then the minimum distance d of the code C(X, rA) satisfies:

2

d = #X(Fq) = r/ 57

g+1—Tr(X)+ (£ —1)m)

If\/ <r< V2(g+l- “(X) = ‘f(zfl)), otherwise

d > #X(F,) — (g + 1 = Te(X)) — m(r?A%/2 - 1) - rﬁ(ﬂ -1).




Compariﬂg the bounds

Compare

d > #X(F,) - r\/g(q +1—Tr(X)+ (¢ — 1)m)

du (A (gE ] - m) — mreAf)2!




Compariﬁg the bounds

d > #X(Fq) — r\/;\iZ(q +1 - Te(X) + (f=1)m)

A2

dmin — #X(Fq) 0 —r ?Eq'

Remark: the bound for £ = 2 is better than the one for ¢ = 1!

Question: There exist abelian surfaces which do not contain absolutely
irreducible curves of arithmetic genus 0, 1 nor 27




Compariﬁg the bounds

d > #X(Fq) — r\/g:Z(q—l— 1-Tr(X)+(£-1)m)

A2
dmin s #X(Fq) . 7,9

=\ o

Remark: the bound for ¢ = 2 is better than the one for ¢ = 1!

Question: There exist abelian surfaces which do not contain absolutely
irreducible curves of arithmetic genus 0, 1 nor 27

YES!




Abelian surfaces without curves of low genus: starting point

Lemma:

An abelian surface X contains no absolutely irreducible curves of
arithmetic genus 0, 1 nor 2 <= X is simple and not isogenous to a
Jacobian surface.




Abelian surfaces without curves of low genus: starting point

Lemma:

An abelian surface X contains no absolutely irreducible curves of
arithmetic genus 0, 1 nor 2 <= X is simple and not isogenous to a
Jacobian surface.

Theorem: (Weil)

Let (X, \) be a principally polarized abelian surface defined over the
finite field k. Then (X, \) is either

. the polarized Jacobian of a genus 2 curve over k,
. the product of two polarized elliptic curves over k,

. the Weil restriction of a polarized elliptic curves over a quadratic
extension of k.




Abelian surfaces without curves of low genus: starting point

Lemma:

An abelian surface X contains no absolutely irreducible curves of
arithmetic genus 0, 1 nor 2 <= X is simple and not isogenous to a
Jacobian surface.

Theorem: (Weil)

Let (X, \) be a principally polarized abelian surface defined over the
finite field k. Then (X, ) is either

. the polarized Jacobian of a genus 2 curve over k,
. the product of two polarized elliptic curves over k,

. the Weil restriction of a polarized elliptic curve over a quadratic
extension of k.




Abelian surfaces without curves of low genus: starting point

Lemma:

An abelian surface X contains no absolutely irreducible curves of
arithmetic genus 0, 1 nor 2 <= X is simple and not isogenous to a
Jacobian surface.

Abelian surfaces that might have the property we are searching for:

- Weil restrictions of polarized elliptic curves over a quadratic
extension of k,

- abelian surfaces defined over k that do not admit a principal
polarization.




Abelian surfaces containing no curves of genus 0, 1 nor 2

Proposition: (Aubry, B., Herbaut, Perret)

(i) Let X be an abelian surface defined over F, which does not admit a
principal polarization. Then X does not contain absolutely
irreducible curves of arithmetic genus 0, 1 nor 2.

(ii) Let g = p®. Let E be and elliptic curve defined over F2 of trace
Tr(E/Fq2). Let X be the Fqz /F4-Weil restriction of the elliptic
curve E. Then X does not contain absolutely irreducible curves
defined over I of arithmetic genus 0, 1 nor 2 if and only if one of
the following cases holds:

(1) Tv(E/Fp2) =29 —1;

(2) p>2and Tr(E/Fp) = 2q — 2;
) p=11 mod 12 or p=3, g =0 and Tr(E/F,2) = q;
) p=2,g#0and Tr(E/Fp) =q;
) g=2o0rq=3, and Tr(E/F ) = 2q.




A frame has no name

- Our bounds seem to confirm the idea that surfaces with small Picard
number are suitable for obtaining good codes;
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- Our bounds seem to confirm the idea that surfaces with small Picard
number are suitable for obtaining good codes;

- Codes from surfaces with canonical divisor anti-ample seem
interesting as well;




A frame has no name

- Our bounds seem to confirm the idea that surfaces with small Picard
number are suitable for obtaining good codes;

- Codes from surfaces with canonical divisor anti-ample seem
interesting as well;

- Fibrations on curves of high genus and with few rational points
could give good codes as well (this case gives the best bound on the
minimum distance).




Some ideas for the "sequel"...

I) Eibrations. Provide examples of algebraic smooth curves of high
genus and with few rational points, and of fibrations on these curves.

Q7




Some ideas for the "sequel"...

I) Eibrations. Provide examples of algebraic smooth curves of high
genus and with few rational points, and of fibrations on these curves.

[I) Abelian surfaces. Under which condition(s) an abelian surface does
not contain absolutely irreducible genus 3 curves as well?
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Some ideas for the "sequel"...

I) Eibrations. Provide examples of algebraic smooth curves of high
genus and with few rational points, and of fibrations on these curves.

[I) Abelian surfaces. Under which condition(s) an abelian surface does
not contain absolutely irreducible genus 3 curves as well?

[I1) Lunch: Sounds like a good idea too.

L




Thank you for your attention!

(Questions?)

He who asks a question is a fool for five minutes;
he who does not ask a question remains a fool forever.

Confucius
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