
Computing Riemann–Roch spaces
for Algebraic Geometry codes

Elena Berardini

joint work with S. Abelard (Thales), A. Couvreur (Inria), G. Lecerf (LIX)

Télécom Paris, Institut polytechnique de Paris, France

Cyber–Crypto Seminar
12 October 2021

1 / 25

Algebraic Geometry Information Theory

Computer Algebra

2 / 25

Table of Contents

I. Error Correcting and Algebraic Geometry Codes: long story short

II. Some recent applications of AG codes

III. Computing Riemann–Roch spaces

3 / 25

What is an error correcting code?

A tool for transmitting and storing
data.

Main feature: detection and correc-
tion of the errors that can occur
during transmission/storage

4 / 25

What is an error correcting code?

A tool for transmitting and storing
data.

Main feature: detection and correc-
tion of the errors that can occur
during transmission/storage

A Fq-vector subspace of Fn
q (linear

codes).

Three parameters:
I n, the length
I k, the dimension
I d, the minimum distance

Rate of transmission: k/n
Detects up to d − 1 errors
Corrects up to b d−12 c errors

4 / 25

What is an error correcting code?

A tool for transmitting and storing
data.

Main feature: detection and correc-
tion of the errors that can occur
during transmission/storage

A Fq-vector subspace of Fn
q (linear

codes).

Three parameters:
I n, the length
I k, the dimension
I d, the minimum distance

Rate of transmission: k/n
Detects up to d − 1 errors
Corrects up to b d−12 c errors

4 / 25

What is an error correcting code?

A tool for transmitting and storing
data.

Main feature: detection and correc-
tion of the errors that can occur
during transmission/storage

GOAL: to encode as much data as
possible and to detect and correct
as many errors as possible!

A Fq-vector subspace of Fn
q (linear

codes).

Three parameters:
I n, the length
I k, the dimension
I d, the minimum distance

Rate of transmission: k/n
Detects up to d − 1 errors
Corrects up to b d−12 c errors

4 / 25

What is an error correcting code?

A tool for transmitting and storing
data.

Main feature: detection and correc-
tion of the errors that can occur
during transmission/storage

GOAL: to encode as much data as
possible and to detect and correct
as many errors as possible!

A Fq-vector subspace of Fn
q (linear

codes).

Three parameters:
I n, the length
I k, the dimension
I d, the minimum distance

Rate of transmission: k/n
Detects up to d − 1 errors
Corrects up to b d−12 c errors
GOAL: to have k and d as big as
possible!

4 / 25

What is an error correcting code?

A tool for transmitting and storing
data.

Main feature: detection and correc-
tion of the errors that can occur
during transmission/storage

GOAL: to encode as much data as
possible and to detect and correct
as many errors as possible!

A Fq-vector subspace of Fn
q (linear

codes).

Three parameters:
I n, the length
I k, the dimension
I d, the minimum distance

Rate of transmission: k/n
Detects up to d − 1 errors
Corrects up to b d−12 c errors
GOAL: to have k and d as big as
possible!

Singleton Bound: k + d 6 n + 1
 tradeoff between redundancy
and capacity of errors-correction

4 / 25

Evaluation codes: from Reed–Solomon codes...

f ∈ Fq[X]<k

RSk(x) := {(f (x1), f (x2), f (x3), . . . , f (xn)) | f ∈ Fq[X]<k}

•
x3

•
x2

•
x1

•
xn

X Optimal parameters: k + d = n + 1 (MDS codes)
X Efficient decoding algorithm (Berlekamp, 1968)
X Operations on data
"Drawback: require n ≤ q

5 / 25

...to Algebraic Geometry codes

f ∈ L(D)

C((Pi)i ,D) := {(f (P1), f (P2), f (P3), . . . , f (Pn)) | f ∈ L(D)}

Riemann–Roch space

•
P3•

P2

•P1 •
Pn

Proposition

The parameters [n, k, d] of AG codes from curves satisfy

k ≥ degD + 1− g d ≥ n − degD.

AG codes satisfy n + 1− g ≤ k + d ≤ n + 1

 AG codes from curves lie at distance g from optimality

6 / 25

...to Algebraic Geometry codes

f ∈ L(D)

C((Pi)i ,D) := {(f (P1), f (P2), f (P3), . . . , f (Pn)) | f ∈ L(D)}

Riemann–Roch space

•
P3•

P2

•P1 •
Pn

Proposition

The parameters [n, k , d] of AG codes from curves satisfy

k ≥ degD + 1− g d ≥ n − degD.

AG codes satisfy n + 1− g ≤ k + d ≤ n + 1

 AG codes from curves lie at distance g from optimality

6 / 25

...to Algebraic Geometry codes

f ∈ L(D)

C((Pi)i ,D) := {(f (P1), f (P2), f (P3), . . . , f (Pn)) | f ∈ L(D)}

Riemann–Roch space

•
P3•

P2

•P1 •
Pn

Proposition

The parameters [n, k , d] of AG codes from curves satisfy

k ≥ degD + 1− g d ≥ n − degD.

AG codes satisfy n + 1− g ≤ k + d ≤ n + 1

 AG codes from curves lie at distance g from optimality

6 / 25

A brief history of algebraic geometry codes
1981: Goppa introduces AG codes from smooth algebraic curves

1982: Tsfasman, Vlăduţ and Zink use AG codes for beating the
Gilbert–Varshamov bound

XXc: different families of curves are studied to obtain optimal codes
↪→ only curves whose Riemann–Roch spaces are already known are used

XXIc: AG codes are used in new area of information theory

7 / 25

A brief history of algebraic geometry codes
1981: Goppa introduces AG codes from smooth algebraic curves

1982: Tsfasman, Vlăduţ and Zink use AG codes for beating the
Gilbert–Varshamov bound

XXc: different families of curves are studied to obtain optimal codes
↪→ only curves whose Riemann–Roch spaces are already known are used

XXIc: AG codes are used in new area of information theory

7 / 25

A brief history of algebraic geometry codes
1981: Goppa introduces AG codes from smooth algebraic curves

1982: Tsfasman, Vlăduţ and Zink use AG codes for beating the
Gilbert–Varshamov bound

XXc: different families of curves are studied to obtain optimal codes
↪→ only curves whose Riemann–Roch spaces are already known are used

XXIc: AG codes are used in new area of information theory

7 / 25

A brief history of algebraic geometry codes
1981: Goppa introduces AG codes from smooth algebraic curves

1982: Tsfasman, Vlăduţ and Zink use AG codes for beating the
Gilbert–Varshamov bound

XXc: different families of curves are studied to obtain optimal codes
↪→ only curves whose Riemann–Roch spaces are already known are used

XXIc: AG codes are used in new area of information theory

7 / 25

A brief history of algebraic geometry codes
1981: Goppa introduces AG codes from smooth algebraic curves

1982: Tsfasman, Vlăduţ and Zink use AG codes for beating the
Gilbert–Varshamov bound

XXc: different families of curves are studied to obtain optimal codes
↪→ only curves whose Riemann–Roch spaces are already known are used

XXIc: AG codes are used in new area of information theory ...let’s see how!

7 / 25

Cloud storage

I data is distributed over various
servers

I in case of server(s) failure data
needs to be reconstructed

I need to limit the bandwidth

Model: one symbol per server

How do we reconstruct one symbol from a small set of other symbols?

"Reed–Solomon codes reconstructing one symbol requires k symbols

8 / 25

Cloud storage

I data is distributed over various
servers

I in case of server(s) failure data
needs to be reconstructed

I need to limit the bandwidth

Model: one symbol per server

How do we reconstruct one symbol from a small set of other symbols?

"Reed–Solomon codes reconstructing one symbol requires k symbols

8 / 25

Cloud storage

I data is distributed over various
servers

I in case of server(s) failure data
needs to be reconstructed

I need to limit the bandwidth

Model: one symbol per server

How do we reconstruct one symbol from a small set of other symbols?

"Reed–Solomon codes reconstructing one symbol requires k symbols

8 / 25

Cloud storage

I data is distributed over various
servers

I in case of server(s) failure data
needs to be reconstructed

I need to limit the bandwidth

Model: one symbol per server

How do we reconstruct one symbol from a small set of other symbols?

"Reed–Solomon codes reconstructing one symbol requires k symbols

8 / 25

Locally Recoverable Codes (LRCs)

Definition

A Locally Recoverable Code with locality ` is a code of length n such
that for every i ∈ {1, . . . , n} there exists at least one subset
Ji ∈ {1, . . . , n} not containing i with #Ji = ` and such that the
coordinate ci can be recovered from the coordinates cj for j ∈ Ji .

Singleton-type boud: k + d ≤ n − d k` e+ 2

AG codes enter the game:

I Barg, Tamo and Vlăduţ proposed constructions of LRC using curves
that are optimal (parameters reach the Singleton-type bound)

I extension of this approach to more curves and

I optimal exemples of LRC from (fibered)
"Yes, we can construct AG codes from surfaces...but this is another story!

9 / 25

Locally Recoverable Codes (LRCs)

Definition

A Locally Recoverable Code with locality ` is a code of length n such
that for every i ∈ {1, . . . , n} there exists at least one subset
Ji ∈ {1, . . . , n} not containing i with #Ji = ` and such that the
coordinate ci can be recovered from the coordinates cj for j ∈ Ji .

Singleton-type boud: k + d ≤ n − d k` e+ 2

AG codes enter the game:

I Barg, Tamo and Vlăduţ proposed constructions of LRC using curves
that are optimal (parameters reach the Singleton-type bound)

I extension of this approach to more curves and

I optimal exemples of LRC from (fibered)
"Yes, we can construct AG codes from surfaces...but this is another story!

9 / 25

Locally Recoverable Codes (LRCs)

Definition

A Locally Recoverable Code with locality ` is a code of length n such
that for every i ∈ {1, . . . , n} there exists at least one subset
Ji ∈ {1, . . . , n} not containing i with #Ji = ` and such that the
coordinate ci can be recovered from the coordinates cj for j ∈ Ji .

Singleton-type boud: k + d ≤ n − d k` e+ 2

AG codes enter the game:

I Barg, Tamo and Vlăduţ1 proposed constructions of LRC using
curves that are optimal (parameters reach the Singleton-type bound)

I extension of this approach to more curves and surfaces2

I optimal exemples of LRC from (fibered) surfaces3

"Yes, we can construct AG codes from surfaces...but this is another story!

1IEEE Transactions on Information Theory, 2017
2Barg et al, Algebraic geometry for coding theory and cryptography, 2017
3Salgado, Varilly-Alvarado, Voloch, IEEE Transactions on Information Theory, 2021

9 / 25

Locally Recoverable Codes (LRCs)

Definition

A Locally Recoverable Code with locality ` is a code of length n such
that for every i ∈ {1, . . . , n} there exists at least one subset
Ji ∈ {1, . . . , n} not containing i with #Ji = ` and such that the
coordinate ci can be recovered from the coordinates cj for j ∈ Ji .

Singleton-type boud: k + d ≤ n − d k` e+ 2

AG codes enter the game:

I Barg, Tamo and Vlăduţ1 proposed constructions of LRC using
curves that are optimal (parameters reach the Singleton-type bound)

I extension of this approach to more curves and surfaces2

I optimal exemples of LRC from (fibered) surfaces3

"Yes, we can construct AG codes from surfaces...but this is another story!

1IEEE Transactions on Information Theory, 2017
2Barg et al, Algebraic geometry for coding theory and cryptography, 2017
3Salgado, Varilly-Alvarado, Voloch, IEEE Transactions on Information Theory, 2021

9 / 25

Verifiable Computing

Please run program F

on input x for me

I want to quickly check

if your result is correct

Powerful Prover
(e.g. a server)

Weak Verifier
(e.g. a client)

outputs result y and
proof of correctness π

checks validity of π
for statement y = F (x)

y ,π

Proximity to a code C

Provers produces a word

◦ c ∈ C if the statement y = F (x) holds,

◦ c̃ is very far from C otherwise.

10 / 25

Verifiable Computing

Please run program F

on input x for me

I want to quickly check

if your result is correct

Powerful Prover
(e.g. a server)

Weak Verifier
(e.g. a client)

outputs result y and
proof of correctness π

checks validity of π
for statement y = F (x)

y ,π

Proximity to a code C

Provers produces a word

◦ c ∈ C if the statement y = F (x) holds,

◦ c̃ is very far from C otherwise.

10 / 25

Verifiable Computing

Please run program F

on input x for me

I want to quickly check

if your result is correct

Powerful Prover
(e.g. a server)

Weak Verifier
(e.g. a client)

outputs result y and
proof of correctness π

checks validity of π
for statement y = F (x)

y ,π

Proximity to a code C

Provers produces a word

◦ c ∈ C if the statement y = F (x) holds,

◦ c̃ is very far from C otherwise.

Applications: cryptocurrencies, blockchain...

10 / 25

Verifiable Computing

Please run program F

on input x for me

I want to quickly check

if your result is correct

Powerful Prover
(e.g. a server)

Weak Verifier
(e.g. a client)

outputs result y and
proof of correctness π

checks validity of π
for statement y = F (x)

y ,π

Proximity to a code C

Provers produces a word

◦ c ∈ C if the statement y = F (x) holds,

◦ c̃ is very far from C otherwise.

Applications: cryptocurrencies, blockchain...

Which codes can be used? AG codes seem a good option4

4S. Bordage and J. Nardi, preprint, 2020
10 / 25

McEliece cryptosystem (1978)

◦ G , matrix of a [n, k, 2t + 1]-code

◦ A, decoding algorithm

◦ S , a k × k matrix

◦ P, a n × n matrix

Computes Ḡ = SGP
PubKey = (Ḡ , t), SecKey= (G ,P,S ,A)

Blocks his message into
vectors mi of length k
Randomly constructs e

a n-vector of weight t

Computes
yi = mi Ḡ + e

Receives yi

Computes yiP−1 = (mi Ḡ + e)P−1

= miSG + eP−1 = miSG + e′

Applies A to retrieve miSG

mi = miSG × G−1S−1

11 / 25

McEliece cryptosystem (1978)

◦ G , matrix of a [n, k, 2t + 1]-code

◦ A, decoding algorithm

◦ S , a k × k matrix

◦ P, a n × n matrix

Computes Ḡ = SGP
PubKey = (Ḡ , t), SecKey= (G ,P,S ,A)

Blocks his message into
vectors mi of length k
Randomly constructs e

a n-vector of weight t

Computes
yi = mi Ḡ + e

Receives yi

Computes yiP−1 = (mi Ḡ + e)P−1

= miSG + eP−1 = miSG + e′

Applies A to retrieve miSG

mi = miSG × G−1S−1

11 / 25

McEliece cryptosystem (1978)

◦ G , matrix of a [n, k, 2t + 1]-code

◦ A, decoding algorithm

◦ S , a k × k matrix

◦ P, a n × n matrix

Computes Ḡ = SGP
PubKey = (Ḡ , t), SecKey= (G ,P,S ,A)

Blocks his message into
vectors mi of length k
Randomly constructs e

a n-vector of weight t

Computes
yi = mi Ḡ + e

Receives yi

Computes yiP−1 = (mi Ḡ + e)P−1

= miSG + eP−1 = miSG + e′

Applies A to retrieve miSG

mi = miSG × G−1S−1

11 / 25

McEliece cryptosystem (1978)

◦ G , matrix of a [n, k, 2t + 1]-code

◦ A, decoding algorithm

◦ S , a k × k matrix

◦ P, a n × n matrix

Computes Ḡ = SGP
PubKey = (Ḡ , t), SecKey= (G ,P,S ,A)

Blocks his message into
vectors mi of length k
Randomly constructs e

a n-vector of weight t

Computes
yi = mi Ḡ + e

Receives yi

Computes yiP−1 = (mi Ḡ + e)P−1

= miSG + eP−1 = miSG + e′

Applies A to retrieve miSG

mi = miSG × G−1S−1

11 / 25

McEliece cryptosystem (1978)

◦ G , matrix of a [n, k, 2t + 1]-code

◦ A, decoding algorithm

◦ S , a k × k matrix

◦ P, a n × n matrix

Computes Ḡ = SGP
PubKey = (Ḡ , t), SecKey= (G ,P,S ,A)

Blocks his message into
vectors mi of length k
Randomly constructs e

a n-vector of weight t

Computes
yi = mi Ḡ + e

Receives yi

Computes yiP−1 = (mi Ḡ + e)P−1

= miSG + eP−1 = miSG + e′

Applies A to retrieve miSG

mi = miSG × G−1S−1

11 / 25

McEliece cryptosystem (1978)

◦ G , matrix of a [n, k, 2t + 1]-code

◦ A, decoding algorithm

◦ S , a k × k matrix

◦ P, a n × n matrix

Computes Ḡ = SGP
PubKey = (Ḡ , t), SecKey= (G ,P,S ,A)

Blocks his message into
vectors mi of length k
Randomly constructs e

a n-vector of weight t

Computes
yi = mi Ḡ + e

Receives yi

Computes yiP−1 = (mi Ḡ + e)P−1

= miSG + eP−1 = miSG + e′

Applies A to retrieve miSG

mi = miSG × G−1S−1

11 / 25

McEliece cryptosystem (1978)

◦ G , matrix of a [n, k, 2t + 1]-code

◦ A, decoding algorithm

◦ S , a k × k matrix

◦ P, a n × n matrix

Computes Ḡ = SGP
PubKey = (Ḡ , t), SecKey= (G ,P,S ,A)

Blocks his message into
vectors mi of length k
Randomly constructs e

a n-vector of weight t

Computes
yi = mi Ḡ + e

Receives yi

Computes yiP−1 = (mi Ḡ + e)P−1

= miSG + eP−1 = miSG + e′

Applies A to retrieve miSG

mi = miSG × G−1S−1

11 / 25

McEliece cryptosystem for post-quantum cryptography

I security relies on
◦ computational hardness of

decoding a random code
◦ computational hardness of

distinguishing a structured code
from a random code

X Post-quantum

" Requires huge key sizes

Classic McEliece5, a cryptosystem using binary AG codes, is at the third
round of NIST’s Post-Quantum Cryptography Standardization Project.

5Berstein et al, NIST submission, 2017
12 / 25

Riemann–Roch spaces: AG codes and beyond

Explicit construction of AG codes for

I Locally Recoverable Codes

I Verifiable Computing

I McEliece cryptosystem

 need of explicit computation of Riemann–Roch spaces

This can be also useful for...

I Group operations on Jacobians of curves

I Symbolic integration

13 / 25

Riemann–Roch spaces: AG codes and beyond

Explicit construction of AG codes for

I Locally Recoverable Codes

I Verifiable Computing

I McEliece cryptosystem

 need of explicit computation of Riemann–Roch spaces

This can be also useful for...

I Group operations on Jacobians of curves6

I Symbolic integration7

6K. Khuri-Makdisi, Mathematics of Computations, 2007
7J.H. Davenport, Intern. Symp. on Symbolic and Algebraic Manipulation, 1979

13 / 25

Riemann–Roch space

Divisor on a curve C: D =
∑

P∈C nPP

D=P1 + P2 + P3−Z

P2

P1 Z

P3

The Riemann–Roch space L(D) is the
space of all functions G

H ∈ K(C) s. t.:
I if nP < 0 then P must be a zero

of G (of multiplicity > −nP)
I if nP > 0 then P can be a zero of

H (of multiplicity 6 nP)
I G/H has not other poles outside

the points P with nP > 0

Here: Z must be a zero of G , the Pi ’s can be
zeros of H

Riemann–Roch theorem dimension of L(D) = degD + 1− g

where the degree of a divisor is degD =
∑

P nP

14 / 25

Riemann–Roch space

Divisor on a curve C: D =
∑

P∈C nPP

D=P1 + P2 + P3−Z

P2

P1 Z

P3

The Riemann–Roch space L(D) is the
space of all functions G

H ∈ K(C) s. t.:
I if nP < 0 then P must be a zero

of G (of multiplicity > −nP)
I if nP > 0 then P can be a zero of

H (of multiplicity 6 nP)
I G/H has not other poles outside

the points P with nP > 0

Here: Z must be a zero of G , the Pi ’s can be
zeros of H

Riemann–Roch theorem dimension of L(D) = degD + 1− g

where the degree of a divisor is degD =
∑

P nP

14 / 25

Toy example

Take C = P1, P = [0 : 1] and Q = [1 : 1]. Set D = P − Q, then

f ∈ L(D) ⇐⇒

f has a zero of order at least 1 at Q
f can have a pole of order at most 1 at P
f has no other poles outside P

f = X−1
X is a solution

g = 0, degD = 0 Riemann–Roch−−−−−−−−−→
Theorem

dim L(D) = degD + 1− g = 1

→ f generates the solutions space

"no explicit method to compute a basis of L(D)
How do we handle the problem in general?

15 / 25

Toy example

Take C = P1, P = [0 : 1] and Q = [1 : 1]. Set D = P − Q, then

f ∈ L(D) ⇐⇒

f has a zero of order at least 1 at Q
f can have a pole of order at most 1 at P
f has no other poles outside P

f = X−1
X is a solution

g = 0, degD = 0 Riemann–Roch−−−−−−−−−→
Theorem

dim L(D) = degD + 1− g = 1

→ f generates the solutions space

"no explicit method to compute a basis of L(D)
How do we handle the problem in general?

15 / 25

Toy example

Take C = P1, P = [0 : 1] and Q = [1 : 1]. Set D = P − Q, then

f ∈ L(D) ⇐⇒

f has a zero of order at least 1 at Q
f can have a pole of order at most 1 at P
f has no other poles outside P

f = X−1
X is a solution

g = 0, degD = 0 Riemann–Roch−−−−−−−−−→
Theorem

dim L(D) = degD + 1− g = 1

→ f generates the solutions space

"no explicit method to compute a basis of L(D)
How do we handle the problem in general?

15 / 25

Riemann-Roch problem: state of the art

Geometric methods: Arithmetic methods:
(Brill–Noether theory ∼1874) (Ideals in function fields)
• Goppa, Le Brigand–Risler (80’s)
• Huang–Ierardi (90’s)
• Khuri-Makdisi (2007)
• Le Gluher–Spaenlehauer (2018)
• Abelard–Couvreur–Lecerf (2020)

• Hensel–Landberg (1902)
• Coates (1970)
• Davenport (1981)
• Hess (2001)

Nodal/ordinary
curves:

Las Vegas algorithm computing L(D) in
Õ((δ2 + degD)

ω+1
2) field operations

Non-ordinary curves: "no explicit complexity exponent

16 / 25

Riemann-Roch problem: state of the art
Geometric methods: Arithmetic methods:
(Brill–Noether theory ∼1874) (Ideals in function fields)
• Goppa, Le Brigand–Risler (80’s)
• Huang–Ierardi (90’s)
• Khuri-Makdisi (2007)
• Le Gluher–Spaenlehauer (2018)
• Abelard–Couvreur–Lecerf (2020)

• Hensel–Landberg (1902)
• Coates (1970)
• Davenport (1981)
• Hess (2001)

Nodal/ordinary
curves:

Las Vegas algorithm computing L(D) in
Õ((δ2 + degD)

ω+1
2) field operations8

Non-ordinary curves: "no explicit complexity exponent

8here 2 6 ω 6 3 is a feasible exponent for linear algebra (ω = 2.373)
16 / 25

Brill–Noether in a nutshell
Brill–Noether method NSC on H and G such that G/H ∈ L(D)

Notation:
I (H) =

∑
P∈C ordP(H)P (zeros of H with multiplicity)

I D > D ′ means D − D ′ =
∑

nPP with nP > 0 for every P

Description of L(D) for C : F (X ,Y ,Z) = 0 a plane projective curve.

Non-zero elements are of the form Gi

H where
I

I

I

How do we handle singular points?

 the adjoint divisor A "encodes" the singular points of C with their
multiplicities

How do we handle divisors?

series expansions of multi-set
representations ((Pi)i ,mi)

routines on divisors
have negligible cost

17 / 25

Brill–Noether in a nutshell
Brill–Noether method NSC on H and G such that G/H ∈ L(D)

Notation:
I (H) =

∑
P∈C ordP(H)P (zeros of H with multiplicity)

I D > D ′ means D − D ′ =
∑

nPP with nP > 0 for every P

Description of L(D) for C : F (X ,Y ,Z) = 0 a plane projective curve.

Non-zero elements are of the form Gi

H where
I

I

I

How do we handle singular points?

 the adjoint divisor A "encodes" the singular points of C with their
multiplicities

How do we handle divisors?

series expansions of multi-set
representations ((Pi)i ,mi)

routines on divisors
have negligible cost

17 / 25

Brill–Noether in a nutshell
Brill–Noether method NSC on H and G such that G/H ∈ L(D)

Notation:
I (H) =

∑
P∈C ordP(H)P (zeros of H with multiplicity)

I D > D ′ means D − D ′ =
∑

nPP with nP > 0 for every P

Description of L(D) for C : F (X ,Y ,Z) = 0 a plane projective curve.

Non-zero elements are of the form Gi

H where
I H satisfies (H) > D

I H passes through all the singular points of C with ad hoc
multiplicities

I degGi = degH, Gi coprime with F and (Gi) > (H)− D

How do we handle singular points?

 the adjoint divisor A "encodes" the singular points of C with their
multiplicities

How do we handle divisors?

series expansions of multi-set
representations ((Pi)i ,mi)

routines on divisors
have negligible cost

17 / 25

Brill–Noether in a nutshell
Brill–Noether method NSC on H and G such that G/H ∈ L(D)

Notation:
I (H) =

∑
P∈C ordP(H)P (zeros of H with multiplicity)

I D > D ′ means D − D ′ =
∑

nPP with nP > 0 for every P

Description of L(D) for C : F (X ,Y ,Z) = 0 a plane projective curve.

Non-zero elements are of the form Gi

H where
I H satisfies (H) > D

I H passes through all the singular points of C with ad hoc
multiplicities

I degGi = degH, Gi coprime with F and (Gi) > (H)− D

How do we handle singular points?

 the adjoint divisor A "encodes" the singular points of C with their
multiplicities

How do we handle divisors?

series expansions of multi-set
representations ((Pi)i ,mi)

routines on divisors
have negligible cost

17 / 25

Brill–Noether in a nutshell
Brill–Noether method NSC on H and G such that G/H ∈ L(D)

Notation:
I (H) =

∑
P∈C ordP(H)P (zeros of H with multiplicity)

I D > D ′ means D − D ′ =
∑

nPP with nP > 0 for every P

Description of L(D) for C : F (X ,Y ,Z) = 0 a plane projective curve.

Non-zero elements are of the form Gi

H where
I H satisfies (H) > D

I H satisfies (H) > A (we say that “H is adjoint to the curve”)
I degGi = degH, Gi coprime with F and (Gi) > (H)− D

How do we handle singular points?

 the adjoint divisor A "encodes" the singular points of C with their
multiplicities

How do we handle divisors?

series expansions of multi-set
representations ((Pi)i ,mi)

routines on divisors
have negligible cost

17 / 25

Brill–Noether in a nutshell
Brill–Noether method NSC on H and G such that G/H ∈ L(D)

Notation:
I (H) =

∑
P∈C ordP(H)P (zeros of H with multiplicity)

I D > D ′ means D − D ′ =
∑

nPP with nP > 0 for every P

Description of L(D) for C : F (X ,Y ,Z) = 0 a plane projective curve.

Non-zero elements are of the form Gi

H where
I H satisfies (H) > D

I H satisfies (H) > A
I degGi = degH, Gi coprime with F and (Gi) > (H)− D

How do we handle singular points?

 the adjoint divisor A "encodes" the singular points of C with their
multiplicities

How do we handle divisors?

series expansions of multi-set
representations ((Pi)i ,mi)

routines on divisors
have negligible cost

17 / 25

Brill–Noether in a nutshell
Brill–Noether method NSC on H and G such that G/H ∈ L(D)

Notation:
I (H) =

∑
P∈C ordP(H)P (zeros of H with multiplicity)

I D > D ′ means D − D ′ =
∑

nPP with nP > 0 for every P

Description of L(D) for C : F (X ,Y ,Z) = 0 a plane projective curve.

Non-zero elements are of the form Gi

H where
I H satisfies (H) > D

I H satisfies (H) > A
I degGi = degH, Gi coprime with F and (Gi) > (H)− D

How do we handle singular points?

 the adjoint divisor A "encodes" the singular points of C with their
multiplicities

How do we handle divisors?

series expansions of multi-set
representations ((Pi)i ,mi)

routines on divisors
have negligible cost

17 / 25

Sketch of the algorithm

Input

C : F (X ,Y ,Z) = 0 a plane projective curve, D a smooth divisor.

Step 1: Compute the adjoint divisor A

Step 2: Compute a common denominator H

Step 3: Compute (H)− D

Step 4: Compute numerators Gi (similar to Step 2)

Output

A basis of the Riemann–Roch space L(D) in terms of H and the Gi .

18 / 25

Sketch of the algorithm

Input

C : F (X ,Y ,Z) = 0 a plane projective curve, D a smooth divisor.

Step 1: Compute the adjoint divisor A

Step 2: Compute a common denominator H

Step 3: Compute (H)− D X← Õ((δ2 + degD)2)

Step 4: Compute numerators Gi (similar to Step 2)

Output

A basis of the Riemann–Roch space L(D) in terms of H and the Gi .

18 / 25

Sketch of the algorithm

Input

C : F (X ,Y ,Z) = 0 a plane projective curve, D a smooth divisor.

Step 1: Compute the adjoint divisor A

Step 2: Compute a common denominator H

Step 3: Compute (H)− D X← Õ((δ2 + degD)2)

Step 4: Compute numerators Gi (similar to Step 2)

Output

A basis of the Riemann–Roch space L(D) in terms of H and the Gi .

18 / 25

The adjoint condition via Puiseux expansions
Let F ∈ K[x , y] be absolutely irreducible, monic in y and of degree dy in
y . The roots of F ∈ K((x))[y] in ∪e>1K((x1/e)) are its Puiseux
expansions ϕ0, . . . , ϕdy−1, so that F writes

F =

dy−1∏
i=1

(y − ϕi) =

dy−1∏
i=1

(y −
∞∑
j=n

βi,jx
j/ei).

Toy example: F = y2 − x3 F = (y − x3/2)(y + x3/2)

Fix ϕ0 of degree e0 and let ζ be a primitive e0-th root of unity. Then for
0 6 k < e0 we can construct other e0 PE by replacing x1/e0 by ζkx1/e0 .
These PE are all equivalent and represented by one

Rational Puiseux Expansion: a pair (X (t),Y (t)) = (γte ,
∞∑
j=n

βj t
j)

Toy example (continue): (X (t),Y (t)) = (t2, t3)

"RPE are often defined over an extension of K.
It is an algorithmic question of taking minimal extension of fields.

19 / 25

The adjoint divisor
The adjoint divisor is

A =
∑

P∈Sing(C)

−
∑
P|P

valP
(
dx

Fy

)
P

Using Rational−−−−−−−−−−−→
Puiseux expansions

valP
(
dx

Fy

)
= valt

(
ete−1

Fy (X (t),Y (t), 1)

)

Example

Consider C : y2 − x3 = 0, (0, 0) is the (only, non-ordinary) singular point

(X (t),Y (t)) = (t2, t3) valP
(
dx

Fy

)
= valt

(
2t
2t3

)
= −2

Computation: algorithms for Puiseux expansions of germs of curves9

 A computed with an expected number of Õ(δ3) field operations

9A. Poteaux and M. Weimann, Annales Herni Lebesgue, 2021
20 / 25

Sketch of the algorithm

Input

C : F (X ,Y ,Z) = 0 a plane projective curve, D a smooth divisor.

Step 1: Compute the adjoint divisor A X ← Õ(δ3)

Step 2: Compute H

Step 3: Compute (H)− D X ← Õ((δ2 + degD)2)

Step 4: Compute numerators Gi (similar to Step 2)

Output

A basis of the Riemann–Roch space L(D) in terms of H and the Gi .

21 / 25

Sketch of the algorithm

Input

C : F (X ,Y ,Z) = 0 a plane projective curve, D a smooth divisor.

Step 1: Compute the adjoint divisor A X ← Õ(δ3)

Step 2: Compute H

Step 3: Compute (H)− D X ← Õ((δ2 + degD)2)

Step 4: Compute numerators Gi (similar to Step 2)

Output

A basis of the Riemann–Roch space L(D) in terms of H and the Gi .

21 / 25

Finding a denominator in practice
Straightforward linear solving

Let d = degH.

Condition (H) > A+ D+

 linear system with degA+ degD ∼ δ2 + degD equations

 Gaussian elimination costs

Õ((dδ + δ2 + degD)ω)

How big is d?

We proved that d =
⌈
(δ−1)(δ−2)+degD

δ

⌉
is enough

 Õ((δ2 + degD)ω) field operations

22 / 25

Finding a denominator in practice
Straightforward linear solving

Let d = degH.

Condition (H) > A+ D+

 linear system with degA+ degD ∼ δ2 + degD equations

 Gaussian elimination costs

Õ((dδ + δ2 + degD)ω)

How big is d?

We proved that d =
⌈
(δ−1)(δ−2)+degD

δ

⌉
is enough

 Õ((δ2 + degD)ω) field operations10

10again 2 6 ω 6 3 is a feasible exponent for linear algebra (ω = 2.373)
22 / 25

Second method: structured linear algebra

valt(H(X (t),Y (t), 1) > valt
(

ete−1

Fy (X (t),Y (t), 1)

)
 space of polynomials H(x , y) satisfying these conditions is a
K[x]-module

 computing a basis11 costs Õ((δ2 + degD)ω)

Same complexity exponent but...
Benefits:
I bases with smaller representation size in general
I better complexity bound for algebraically closed fields
I possibility of future improvements

11C.-P. Jeannerod, V. Neiger, É. Schost and G. Villard, Journal of Symbolic
Computation, 2017

23 / 25

Sketch of the algorithm

Input

C : F (X ,Y ,Z) = 0 a plane projective curve, D a smooth divisor.

Step 1: Compute the adjoint divisor A X ← Õ(δ3)

Step 2: Compute H X ← Õ((δ2 + degD)ω)

Step 3: Compute (H)− D X ← Õ((δ2 + degD)2)

Step 4: Compute numerators Gi (similar to Step 2)

Output

A basis of the Riemann–Roch space L(D) in terms of H and the Gi .

Theorem (Abelard, B., Couvreur, Lecerf)

Las Vegas algorithm computing L(D) in Õ((δ2 + degD)ω) field
operations

24 / 25

Sketch of the algorithm
Input

C : F (X ,Y ,Z) = 0 a plane projective curve, D a smooth divisor.

Step 1: Compute the adjoint divisor A X ← Õ(δ3)

Step 2: Compute H X ← Õ((δ2 + degD)ω)

Step 3: Compute (H)− D X ← Õ((δ2 + degD)2)

Step 4: Compute numerators Gi X ← Õ((δ2 + degD)ω)

Output

A basis of the Riemann–Roch space L(D) in terms of H and the Gi .

Theorem (Abelard, B., Couvreur, Lecerf)

Las Vegas algorithm computing L(D) in Õ((δ2 + degD)ω) field
operations12

12with 2 6 ω 6 3 is a feasible exponent for linear algebra (ω = 2.373)
24 / 25

Future questions about R–R spaces and AG codes
Computing Riemann–Roch spaces of curves.

� Implementation including fast structured linear algebra.
� Computing Riemann–Roch spaces of non-ordinary curves in “small”

positive characteristic (in progress with A. Couvreur and G. Lecerf)
� Improving the complexity in the non-ordinary case (sub–quadratic?)

AG codes in higher dimension.

� Computing Riemann–Roch spaces of surfaces
 explicit construction of (good) AG codes from surfaces.

Rank metric codes.

� Can we use curves and/or Riemann–Roch spaces to construct good
codes in the rank metric?

Thank you for your attention!
Questions?
elena.berardini@telecom-paris.fr

25 / 25

Future questions about R–R spaces and AG codes
Computing Riemann–Roch spaces of curves.

� Implementation including fast structured linear algebra.
� Computing Riemann–Roch spaces of non-ordinary curves in “small”

positive characteristic (in progress with A. Couvreur and G. Lecerf)
� Improving the complexity in the non-ordinary case (sub–quadratic?)

AG codes in higher dimension.

� Computing Riemann–Roch spaces of surfaces
 explicit construction of (good) AG codes from surfaces.

Rank metric codes.

� Can we use curves and/or Riemann–Roch spaces to construct good
codes in the rank metric?

Thank you for your attention!
Questions?
elena.berardini@telecom-paris.fr

25 / 25

Future questions about R–R spaces and AG codes
Computing Riemann–Roch spaces of curves.

� Implementation including fast structured linear algebra.
� Computing Riemann–Roch spaces of non-ordinary curves in “small”

positive characteristic (in progress with A. Couvreur and G. Lecerf)
� Improving the complexity in the non-ordinary case (sub–quadratic?)

AG codes in higher dimension.

� Computing Riemann–Roch spaces of surfaces
 explicit construction of (good) AG codes from surfaces.

Rank metric codes.

� Can we use curves and/or Riemann–Roch spaces to construct good
codes in the rank metric?

Thank you for your attention!
Questions?
elena.berardini@telecom-paris.fr

25 / 25

Future questions about R–R spaces and AG codes
Computing Riemann–Roch spaces of curves.

� Implementation including fast structured linear algebra.
� Computing Riemann–Roch spaces of non-ordinary curves in “small”

positive characteristic (in progress with A. Couvreur and G. Lecerf)
� Improving the complexity in the non-ordinary case (sub–quadratic?)

AG codes in higher dimension.

� Computing Riemann–Roch spaces of surfaces
 explicit construction of (good) AG codes from surfaces.

Rank metric codes.

� Can we use curves and/or Riemann–Roch spaces to construct good
codes in the rank metric?

Thank you for your attention!
Questions?
elena.berardini@telecom-paris.fr

25 / 25

	Error Correcting and Algebraic Geometry Codes: long story short
	Some recent applications of AG codes
	Computing Riemann–Roch spaces

