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Evaluation codes: from Reed–Solomon codes...

f ∈ Fq[X ]<k

RSk(x) := {(f (x1), f (x2), f (x3), . . . , f (xn)) | f ∈ Fq[X ]<k}

•
x3

•
x2

•
x1

•
xn

X Optimal parameters: k + d = n + 1 (MDS codes)
X Efficient decoding algorithm (Berlekamp, 1968)
X Operations on data
"Drawback: require n ≤ q

5 / 25



...to Algebraic Geometry codes

f ∈ L(D)

C((Pi )i ,D) := {(f (P1), f (P2), f (P3), . . . , f (Pn)) | f ∈ L(D)}

Riemann–Roch space

•
P3•

P2

•P1 •
Pn

Proposition

The parameters [n, k, d ] of AG codes from curves satisfy

k ≥ degD + 1− g d ≥ n − degD.

AG codes satisfy n + 1− g ≤ k + d ≤ n + 1

 AG codes from curves lie at distance g from optimality
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A brief history of algebraic geometry codes
1981: Goppa introduces AG codes from smooth algebraic curves

1982: Tsfasman, Vlăduţ and Zink use AG codes for beating the
Gilbert–Varshamov bound

XXc: different families of curves are studied to obtain optimal codes
↪→ only curves whose Riemann–Roch spaces are already known are used

XXIc: AG codes are used in new area of information theory
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A brief history of algebraic geometry codes
1981: Goppa introduces AG codes from smooth algebraic curves

1982: Tsfasman, Vlăduţ and Zink use AG codes for beating the
Gilbert–Varshamov bound

XXc: different families of curves are studied to obtain optimal codes
↪→ only curves whose Riemann–Roch spaces are already known are used

XXIc: AG codes are used in new area of information theory ...let’s see how!
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Cloud storage

I data is distributed over various
servers

I in case of server(s) failure data
needs to be reconstructed

I need to limit the bandwidth

Model: one symbol per server

How do we reconstruct one symbol from a small set of other symbols?

"Reed–Solomon codes  reconstructing one symbol requires k symbols
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Locally Recoverable Codes (LRCs)

Definition

A Locally Recoverable Code with locality ` is a code of length n such
that for every i ∈ {1, . . . , n} there exists at least one subset
Ji ∈ {1, . . . , n} not containing i with #Ji = ` and such that the
coordinate ci can be recovered from the coordinates cj for j ∈ Ji .

Singleton-type boud: k + d ≤ n − d k` e+ 2

AG codes enter the game:

I Barg, Tamo and Vlăduţ proposed constructions of LRC using curves
that are optimal (parameters reach the Singleton-type bound)

I extension of this approach to more curves and

I optimal exemples of LRC from (fibered)
"Yes, we can construct AG codes from surfaces...but this is another story!
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1IEEE Transactions on Information Theory, 2017
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Verifiable Computing

Please run program F

on input x for me

I want to quickly check

if your result is correct

Powerful Prover
(e.g. a server)

Weak Verifier
(e.g. a client)

outputs result y and
proof of correctness π

checks validity of π
for statement y = F (x)

y ,π

Proximity to a code C

Provers produces a word

◦ c ∈ C if the statement y = F (x) holds,

◦ c̃ is very far from C otherwise.
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checks validity of π
for statement y = F (x)

y ,π

Proximity to a code C

Provers produces a word

◦ c ∈ C if the statement y = F (x) holds,

◦ c̃ is very far from C otherwise.

Applications: cryptocurrencies, blockchain...

Which codes can be used? AG codes seem a good option4

4S. Bordage and J. Nardi, preprint, 2020
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McEliece cryptosystem (1978)

◦ G , matrix of a [n, k, 2t + 1]-code

◦ A, decoding algorithm

◦ S , a k × k matrix

◦ P, a n × n matrix

Computes Ḡ = SGP
PubKey = (Ḡ , t), SecKey= (G ,P,S ,A)

Blocks his message into
vectors mi of length k
Randomly constructs e

a n-vector of weight t

Computes
yi = mi Ḡ + e

Receives yi

Computes yiP−1 = (mi Ḡ + e)P−1

= miSG + eP−1 = miSG + e′

Applies A to retrieve miSG

mi = miSG × G−1S−1
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Receives yi

Computes yiP−1 = (mi Ḡ + e)P−1
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McEliece cryptosystem for post-quantum cryptography

I security relies on
◦ computational hardness of

decoding a random code
◦ computational hardness of

distinguishing a structured code
from a random code

X Post-quantum

" Requires huge key sizes

Classic McEliece5, a cryptosystem using binary AG codes, is at the third
round of NIST’s Post-Quantum Cryptography Standardization Project.

5Berstein et al, NIST submission, 2017
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Riemann–Roch spaces: AG codes and beyond

Explicit construction of AG codes for

I Locally Recoverable Codes

I Verifiable Computing

I McEliece cryptosystem

 need of explicit computation of Riemann–Roch spaces

This can be also useful for...

I Group operations on Jacobians of curves

I Symbolic integration
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 need of explicit computation of Riemann–Roch spaces

This can be also useful for...

I Group operations on Jacobians of curves6

I Symbolic integration7

6K. Khuri-Makdisi, Mathematics of Computations, 2007
7J.H. Davenport, Intern. Symp. on Symbolic and Algebraic Manipulation, 1979
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Riemann–Roch space

Divisor on a curve C: D =
∑

P∈C nPP

D=P1 + P2 + P3−Z

P2

P1 Z

P3

The Riemann–Roch space L(D) is the
space of all functions G

H ∈ K(C) s. t.:
I if nP < 0 then P must be a zero

of G (of multiplicity > −nP)
I if nP > 0 then P can be a zero of

H (of multiplicity 6 nP)
I G/H has not other poles outside

the points P with nP > 0

Here: Z must be a zero of G , the Pi ’s can be
zeros of H

Riemann–Roch theorem  dimension of L(D) = degD + 1− g

where the degree of a divisor is degD =
∑

P nP
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Toy example

Take C = P1, P = [0 : 1] and Q = [1 : 1]. Set D = P − Q, then

f ∈ L(D) ⇐⇒


f has a zero of order at least 1 at Q
f can have a pole of order at most 1 at P
f has no other poles outside P

f = X−1
X is a solution

g = 0, degD = 0 Riemann–Roch−−−−−−−−−→
Theorem

dim L(D) = degD + 1− g = 1

→ f generates the solutions space

"no explicit method to compute a basis of L(D)
How do we handle the problem in general?
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Riemann-Roch problem: state of the art

Geometric methods: Arithmetic methods:
(Brill–Noether theory ∼1874) (Ideals in function fields)
• Goppa, Le Brigand–Risler (80’s)
• Huang–Ierardi (90’s)
• Khuri-Makdisi (2007)
• Le Gluher–Spaenlehauer (2018)
• Abelard–Couvreur–Lecerf (2020)

• Hensel–Landberg (1902)
• Coates (1970)
• Davenport (1981)
• Hess (2001)

Nodal/ordinary
curves:

Las Vegas algorithm computing L(D) in
Õ((δ2 + degD)

ω+1
2 ) field operations

Non-ordinary curves: "no explicit complexity exponent
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Nodal/ordinary
curves:

Las Vegas algorithm computing L(D) in
Õ((δ2 + degD)

ω+1
2 ) field operations8

Non-ordinary curves: "no explicit complexity exponent

8here 2 6 ω 6 3 is a feasible exponent for linear algebra (ω = 2.373)
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Brill–Noether in a nutshell
Brill–Noether method  NSC on H and G such that G/H ∈ L(D)

Notation:
I (H) =

∑
P∈C ordP(H)P (zeros of H with multiplicity)

I D > D ′ means D − D ′ =
∑

nPP with nP > 0 for every P

Description of L(D) for C : F (X ,Y ,Z ) = 0 a plane projective curve.

Non-zero elements are of the form Gi

H where
I

I

I

How do we handle singular points?

 the adjoint divisor A "encodes" the singular points of C with their
multiplicities

How do we handle divisors?

series expansions of multi-set
representations ((Pi )i ,mi )

 
routines on divisors
have negligible cost

17 / 25



Brill–Noether in a nutshell
Brill–Noether method  NSC on H and G such that G/H ∈ L(D)

Notation:
I (H) =

∑
P∈C ordP(H)P (zeros of H with multiplicity)

I D > D ′ means D − D ′ =
∑

nPP with nP > 0 for every P

Description of L(D) for C : F (X ,Y ,Z ) = 0 a plane projective curve.

Non-zero elements are of the form Gi

H where
I

I

I

How do we handle singular points?

 the adjoint divisor A "encodes" the singular points of C with their
multiplicities

How do we handle divisors?

series expansions of multi-set
representations ((Pi )i ,mi )

 
routines on divisors
have negligible cost

17 / 25



Brill–Noether in a nutshell
Brill–Noether method  NSC on H and G such that G/H ∈ L(D)

Notation:
I (H) =

∑
P∈C ordP(H)P (zeros of H with multiplicity)

I D > D ′ means D − D ′ =
∑

nPP with nP > 0 for every P

Description of L(D) for C : F (X ,Y ,Z ) = 0 a plane projective curve.

Non-zero elements are of the form Gi

H where
I H satisfies (H) > D

I H passes through all the singular points of C with ad hoc
multiplicities

I degGi = degH, Gi coprime with F and (Gi ) > (H)− D

How do we handle singular points?

 the adjoint divisor A "encodes" the singular points of C with their
multiplicities

How do we handle divisors?

series expansions of multi-set
representations ((Pi )i ,mi )

 
routines on divisors
have negligible cost

17 / 25



Brill–Noether in a nutshell
Brill–Noether method  NSC on H and G such that G/H ∈ L(D)

Notation:
I (H) =

∑
P∈C ordP(H)P (zeros of H with multiplicity)

I D > D ′ means D − D ′ =
∑

nPP with nP > 0 for every P

Description of L(D) for C : F (X ,Y ,Z ) = 0 a plane projective curve.

Non-zero elements are of the form Gi

H where
I H satisfies (H) > D

I H passes through all the singular points of C with ad hoc
multiplicities

I degGi = degH, Gi coprime with F and (Gi ) > (H)− D
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Sketch of the algorithm

Input

C : F (X ,Y ,Z ) = 0 a plane projective curve, D a smooth divisor.

Step 1: Compute the adjoint divisor A

Step 2: Compute a common denominator H

Step 3: Compute (H)− D

Step 4: Compute numerators Gi (similar to Step 2)

Output

A basis of the Riemann–Roch space L(D) in terms of H and the Gi .
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The adjoint condition via Puiseux expansions
Let F ∈ K[x , y ] be absolutely irreducible, monic in y and of degree dy in
y . The roots of F ∈ K((x))[y ] in ∪e>1K((x1/e)) are its Puiseux
expansions ϕ0, . . . , ϕdy−1, so that F writes

F =

dy−1∏
i=1

(y − ϕi ) =

dy−1∏
i=1

(y −
∞∑
j=n

βi,jx
j/ei ).

Toy example: F = y2 − x3  F = (y − x3/2)(y + x3/2)

Fix ϕ0 of degree e0 and let ζ be a primitive e0-th root of unity. Then for
0 6 k < e0 we can construct other e0 PE by replacing x1/e0 by ζkx1/e0 .
These PE are all equivalent and represented by one

Rational Puiseux Expansion: a pair (X (t),Y (t)) = (γte ,
∞∑
j=n

βj t
j)

Toy example (continue):  (X (t),Y (t)) = (t2, t3)

"RPE are often defined over an extension of K.
It is an algorithmic question of taking minimal extension of fields.
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The adjoint divisor
The adjoint divisor is

A =
∑

P∈Sing(C)

−
∑
P|P

valP
(
dx

Fy

)
P

Using Rational−−−−−−−−−−−→
Puiseux expansions

valP
(
dx

Fy

)
= valt

(
ete−1

Fy (X (t),Y (t), 1)

)

Example

Consider C : y2 − x3 = 0, (0, 0) is the (only, non-ordinary) singular point

(X (t),Y (t)) = (t2, t3) valP
(
dx

Fy

)
= valt

(
2t
2t3

)
= −2

Computation: algorithms for Puiseux expansions of germs of curves9

 A computed with an expected number of Õ(δ3) field operations

9A. Poteaux and M. Weimann, Annales Herni Lebesgue, 2021
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Sketch of the algorithm

Input

C : F (X ,Y ,Z ) = 0 a plane projective curve, D a smooth divisor.

Step 1: Compute the adjoint divisor A X ← Õ(δ3)

Step 2: Compute H

Step 3: Compute (H)− D X ← Õ((δ2 + degD)2)

Step 4: Compute numerators Gi (similar to Step 2)

Output

A basis of the Riemann–Roch space L(D) in terms of H and the Gi .
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Finding a denominator in practice
Straightforward linear solving

Let d = degH.

Condition (H) > A+ D+

 linear system with degA+ degD ∼ δ2 + degD equations

 Gaussian elimination costs

Õ((dδ + δ2 + degD)ω)

How big is d?

We proved that d =
⌈
(δ−1)(δ−2)+degD

δ

⌉
is enough

 Õ((δ2 + degD)ω) field operations
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10again 2 6 ω 6 3 is a feasible exponent for linear algebra (ω = 2.373)
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Second method: structured linear algebra

valt(H(X (t),Y (t), 1) > valt
(

ete−1

Fy (X (t),Y (t), 1)

)
 space of polynomials H(x , y) satisfying these conditions is a
K[x ]-module

 computing a basis11 costs Õ((δ2 + degD)ω)

Same complexity exponent but...
Benefits:
I bases with smaller representation size in general
I better complexity bound for algebraically closed fields
I possibility of future improvements

11C.-P. Jeannerod, V. Neiger, É. Schost and G. Villard, Journal of Symbolic
Computation, 2017
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Sketch of the algorithm

Input

C : F (X ,Y ,Z ) = 0 a plane projective curve, D a smooth divisor.

Step 1: Compute the adjoint divisor A X ← Õ(δ3)

Step 2: Compute H X ← Õ((δ2 + degD)ω)

Step 3: Compute (H)− D X ← Õ((δ2 + degD)2)

Step 4: Compute numerators Gi (similar to Step 2)

Output

A basis of the Riemann–Roch space L(D) in terms of H and the Gi .

Theorem (Abelard, B., Couvreur, Lecerf)

Las Vegas algorithm computing L(D) in Õ((δ2 + degD)ω) field
operations
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Future questions about R–R spaces and AG codes
Computing Riemann–Roch spaces of curves.

� Implementation including fast structured linear algebra.
� Computing Riemann–Roch spaces of non-ordinary curves in “small”

positive characteristic (in progress with A. Couvreur and G. Lecerf)
� Improving the complexity in the non-ordinary case (sub–quadratic?)

AG codes in higher dimension.

� Computing Riemann–Roch spaces of surfaces
 explicit construction of (good) AG codes from surfaces.

Rank metric codes.

� Can we use curves and/or Riemann–Roch spaces to construct good
codes in the rank metric?

Thank you for your attention!
Questions?
elena.berardini@telecom-paris.fr
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