Computing Riemann–Roch spaces for Algebraic Geometry codes

Elena Berardini

joint work with S. Abelard (Thales), A. Couvreur (Inria), G. Lecerf (LIX)

Télécom Paris, Institut polytechnique de Paris, France

Cyber–Crypto Seminar 12 October 2021

I. Error Correcting and Algebraic Geometry Codes: long story short

II. Some recent applications of AG codes

III. Computing Riemann-Roch spaces

A tool for transmitting and storing data.

Main feature: detection and correction of the errors that can occur during transmission/storage

A tool for transmitting and storing data.

Main feature: detection and correction of the errors that can occur during transmission/storage A \mathbb{F}_q -vector subspace of \mathbb{F}_q^n (linear codes).

Three parameters:

- ▶ n, the length
- **k**, the dimension

▶ **d**, the minimum distance Rate of transmission: k/nDetects up to d-1 errors Corrects up to $\lfloor \frac{d-1}{2} \rfloor$ errors

A tool for transmitting and storing data.

Main feature: detection and correction of the errors that can occur during transmission/storage

A \mathbb{F}_q -vector subspace of \mathbb{F}_q^n (linear codes).

Three parameters:

- ▶ n, the length
- k, the dimension

▶ **d**, the minimum distance Rate of transmission: k/nDetects up to d - 1 errors Corrects up to $\lfloor \frac{d-1}{2} \rfloor$ errors

A tool for transmitting and storing data.

Main feature: detection and correction of the errors that can occur during transmission/storage

GOAL: to encode as much data as possible and to detect and correct as many errors as possible!

A \mathbb{F}_q -vector subspace of \mathbb{F}_q^n (linear codes).

Three parameters:

- ▶ n, the length
- k, the dimension
- **d**, the minimum distance

Rate of transmission: k/nDetects up to d-1 errors Corrects up to $\lfloor \frac{d-1}{2} \rfloor$ errors

A tool for transmitting and storing data.

Main feature: detection and correction of the errors that can occur during transmission/storage

GOAL: to encode as much data as possible and to detect and correct as many errors as possible!

A \mathbb{F}_q -vector subspace of \mathbb{F}_q^n (linear codes).

Three parameters:

- ▶ n, the length
- k, the dimension
- **d**, the minimum distance

Rate of transmission: k/nDetects up to d-1 errors Corrects up to $\lfloor \frac{d-1}{2} \rfloor$ errors

GOAL: to have \mathbf{k} and \mathbf{d} as big as possible!

A tool for transmitting and storing data.

Main feature: detection and correction of the errors that can occur during transmission/storage

GOAL: to encode as much data as possible and to detect and correct as many errors as possible!

A \mathbb{F}_q -vector subspace of \mathbb{F}_q^n (linear codes).

Three parameters:

- n, the length
- k, the dimension
- **d**, the minimum distance

Rate of transmission: k/nDetects up to d-1 errors Corrects up to $\lfloor \frac{d-1}{2} \rfloor$ errors

GOAL: to have \mathbf{k} and \mathbf{d} as big as possible!

Singleton Bound: $k + d \le n + 1$ \rightsquigarrow tradeoff between redundancy and capacity of errors-correction Evaluation codes: from Reed-Solomon codes...

- ✓ Optimal parameters: k + d = n + 1 (MDS codes)
- ✓ Efficient decoding algorithm (Berlekamp, 1968)
- \checkmark Operations on data
- $\triangle Drawback:$ require $n \leq q$

...to Algebraic Geometry codes

...to Algebraic Geometry codes

Proposition

The parameters [n, k, d] of AG codes from curves satisfy

$$k \geq \deg D + 1 - g$$
 $d \geq n - \deg D$.

...to Algebraic Geometry codes

Proposition

The parameters [n, k, d] of AG codes from curves satisfy

$$k \geq \deg D + 1 - g$$
 $d \geq n - \deg D$.

AG codes satisfy $n+1-g \leq k+d \leq n+1$

 \rightsquigarrow AG codes from curves lie at distance g from optimality

1981: Goppa introduces AG codes from smooth algebraic curves

1981: Goppa introduces AG codes from smooth algebraic curves

1982: Tsfasman, Vlăduț and Zink use AG codes for beating the Gilbert–Varshamov bound

1981: Goppa introduces AG codes from smooth algebraic curves

1982: Tsfasman, Vlăduț and Zink use AG codes for beating the Gilbert–Varshamov bound

XXc: different families of curves are studied to obtain optimal codes \hookrightarrow only curves whose Riemann-Roch spaces are already known are used

1981: Goppa introduces AG codes from smooth algebraic curves

1982: Tsfasman, Vlăduț and Zink use AG codes for beating the Gilbert–Varshamov bound

XXc: different families of curves are studied to obtain optimal codes \hookrightarrow only curves whose Riemann–Roch spaces are already known are used

XXIc: AG codes are used in new area of information theory

1981: Goppa introduces AG codes from smooth algebraic curves

1982: Tsfasman, Vlăduț and Zink use AG codes for beating the Gilbert–Varshamov bound

XXc: different families of curves are studied to obtain optimal codes
→ only curves whose Riemann–Roch spaces are already known are used

XXIc: AG codes are used in new area of information theory ...let's see how!

- data is distributed over various servers
- in case of server(s) failure data needs to be reconstructed
- need to limit the bandwidth

- data is distributed over various servers
- in case of server(s) failure data needs to be reconstructed
- need to limit the bandwidth

Model: one symbol per server

- data is distributed over various servers
- in case of server(s) failure data needs to be reconstructed
- need to limit the bandwidth

Model: one symbol per server

How do we reconstruct one symbol from a small set of other symbols?

- data is distributed over various servers
- in case of server(s) failure data needs to be reconstructed
- need to limit the bandwidth

Model: one symbol per server

 \bigwedge Reed–Solomon codes \rightsquigarrow reconstructing one symbol requires k symbols

Definition

A Locally Recoverable Code with locality ℓ is a code of length n such that for every $i \in \{1, ..., n\}$ there exists at least one subset $J_i \in \{1, ..., n\}$ not containing i with $\#J_i = \ell$ and such that the coordinate c_i can be recovered from the coordinates c_i for $j \in J_i$.

Definition

A Locally Recoverable Code with locality ℓ is a code of length n such that for every $i \in \{1, ..., n\}$ there exists at least one subset $J_i \in \{1, ..., n\}$ not containing i with $\#J_i = \ell$ and such that the coordinate c_i can be recovered from the coordinates c_i for $j \in J_i$.

Singleton-type boud: $k + d \le n - \lceil \frac{k}{\ell} \rceil + 2$

Definition

A Locally Recoverable Code with locality ℓ is a code of length n such that for every $i \in \{1, ..., n\}$ there exists at least one subset $J_i \in \{1, ..., n\}$ not containing i with $\#J_i = \ell$ and such that the coordinate c_i can be recovered from the coordinates c_i for $j \in J_i$.

Singleton-type boud: $k + d \le n - \lceil \frac{k}{\ell} \rceil + 2$

AG codes enter the game:

- Barg, Tamo and Vlăduț¹ proposed constructions of LRC using curves that are optimal (parameters reach the Singleton-type bound)
- extension of this approach to more curves and surfaces²
- optimal exemples of LRC from (fibered) surfaces³

¹IEEE Transactions on Information Theory, 2017

²Barg et al, Algebraic geometry for coding theory and cryptography, 2017

³Salgado, Varilly-Alvarado, Voloch, IEEE Transactions on Information Theory, 2021

Definition

A Locally Recoverable Code with locality ℓ is a code of length n such that for every $i \in \{1, ..., n\}$ there exists at least one subset $J_i \in \{1, ..., n\}$ not containing i with $\#J_i = \ell$ and such that the coordinate c_i can be recovered from the coordinates c_i for $j \in J_i$.

Singleton-type boud: $k + d \le n - \lceil \frac{k}{\ell} \rceil + 2$

AG codes enter the game:

- Barg, Tamo and Vlăduț¹ proposed constructions of LRC using curves that are optimal (parameters reach the Singleton-type bound)
- extension of this approach to more curves and <u>surfaces</u>²
- optimal exemples of LRC from (fibered) <u>surfaces</u>³

 $\underline{\wedge}$ Yes, we can construct AG codes from surfaces...but this is another story!

¹IEEE Transactions on Information Theory, 2017

²Barg et al, Algebraic geometry for coding theory and cryptography, 2017

³Salgado, Varilly-Alvarado, Voloch, IEEE Transactions on Information Theory, 2021

Powerful Prover (e.g. a server)

Powerful Prover (e.g. a server) outputs result *y* and

proof of correctness π

Applications: cryptocurrencies, blockchain...

Applications: cryptocurrencies, blockchain...

Which codes can be used? AG codes seem a good option⁴

⁴S. Bordage and J. Nardi, preprint, 2020

- G, matrix of a [n, k, 2t + 1]-code
- $\circ~\mathcal{A},$ decoding algorithm
- S, a $k \times k$ matrix
- P, a $n \times n$ matrix

Computes $\bar{G} = SGP$ PubKey = (\bar{G}, t) , SecKey= (G, P, S, A)

- G, matrix of a [n, k, 2t + 1]-code
- $\circ~\mathcal{A},$ decoding algorithm
- S, a $k \times k$ matrix
- P, a $n \times n$ matrix

Computes $\bar{G} = SGP$ PubKey = (\bar{G}, t) , SecKey= (G, P, S, A) Blocks his message into vectors m_i of length k Randomly constructs ea *n*-vector of weight t

- G, matrix of a [n, k, 2t + 1]-code
- $\circ~\mathcal{A},$ decoding algorithm
- S, a $k \times k$ matrix
- P, a $n \times n$ matrix

Computes $\bar{G} = SGP$ PubKey = (\bar{G}, t) , SecKey= (G, P, S, A) Blocks his message into vectors m_i of length k Randomly constructs ea *n*-vector of weight t

Computes $y_i = m_i \bar{G} + e$

Blocks his message into • G, matrix of a [n, k, 2t + 1]-code vectors m_i of length k $\circ \mathcal{A}$, decoding algorithm Randomly constructs e • S, a $k \times k$ matrix a *n*-vector of weight t • P. a $n \times n$ matrix Computes $\overline{G} = SGP$ PubKey = (\overline{G}, t) . SecKey = (G, P, S, A)Computes Receives y_i $v_i = m_i \bar{G} + e$ Computes $y_i P^{-1} = (m_i \overline{G} + e) P^{-1}$ $= m_i SG + eP^{-1} = m_i SG + e'$ Applies \mathcal{A} to retrieve $m_i SG$ $m_i = m_i SG \times G^{-1}S^{-1}$

Blocks his message into • G, matrix of a [n, k, 2t + 1]-code vectors m_i of length k $\circ \mathcal{A}$, decoding algorithm Randomly constructs e • S. a $k \times k$ matrix a *n*-vector of weight t • P. a $n \times n$ matrix Computes $\bar{G} = SGP$ PubKey = (\overline{G}, t) . SecKey = (G, P, S, A)Computes Receives y_i $v_i = m_i \bar{G} + e$ Computes $y_i P^{-1} = (m_i \overline{G} + e) P^{-1}$ $= m_i SG + eP^{-1} = m_i SG + e'$ Applies \mathcal{A} to retrieve $m_i SG$ $m_i = m_i SG \times G^{-1}S^{-1}$

 $McEliece\ cryptosystem\ for\ post-quantum\ cryptography$

security relies on

- computational hardness of decoding a random code
- computational hardness of distinguishing a structured code from a random code
- ✓ Post-quantum
- ▲ Requires huge key sizes

Classic McEliece⁵, a cryptosystem using binary AG codes, is at the third round of NIST's Post-Quantum Cryptography Standardization Project.

⁵Berstein et al, NIST submission, 2017

Riemann-Roch spaces: AG codes and beyond

Explicit construction of AG codes for

- Locally Recoverable Codes
- Verifiable Computing
- McEliece cryptosystem

 \rightsquigarrow need of explicit computation of Riemann–Roch spaces

Riemann-Roch spaces: AG codes and beyond

Explicit construction of AG codes for

- Locally Recoverable Codes
- Verifiable Computing
- McEliece cryptosystem

 \rightsquigarrow need of explicit computation of Riemann–Roch spaces

This can be also useful for...

- Group operations on Jacobians of curves⁶
- Symbolic integration⁷

⁶K. Khuri-Makdisi, Mathematics of Computations, 2007

⁷J.H. Davenport, Intern. Symp. on Symbolic and Algebraic Manipulation, 1979

Riemann-Roch space

Divisor on a curve $C: D = \sum_{P \in C} n_P P$

The **Riemann–Roch space** L(D) is the space of all functions $\frac{G}{H} \in \mathbb{K}(C)$ s. t.:

- if n_P < 0 then P must be a zero of G (of multiplicity ≥ −n_P)
- if n_P > 0 then P can be a zero of H (of multiplicity ≤ n_P)
- G/H has not other poles outside the points P with n_P > 0

Here: Z must be a zero of G, the P_i 's can be zeros of H

Riemann-Roch space

Divisor on a curve C: $D = \sum_{P \in C} n_P P$

The **Riemann–Roch space** L(D) is the space of all functions $\frac{G}{H} \in \mathbb{K}(\mathcal{C})$ s. t.:

- if n_P < 0 then P must be a zero of G (of multiplicity ≥ −n_P)
- If n_P > 0 then P can be a zero of H (of multiplicity ≤ n_P)
- G/H has not other poles outside the points P with n_P > 0

Here: Z must be a zero of G, the P_i 's can be zeros of H

Riemann–Roch theorem \rightsquigarrow dimension of $L(D) = \deg D + 1 - g$ where the degree of a divisor is deg $D = \sum_P n_P$

Toy example

Take $\mathcal{C} = \mathbb{P}^1$, P = [0:1] and Q = [1:1]. Set D = P - Q, then

$$f \in L(D) \iff \begin{cases} f \text{ has a zero of order at least 1 at } Q \\ f \text{ can have a pole of order at most 1 at } P \\ f \text{ has no other poles outside } P \end{cases}$$

Toy example

Take $\mathcal{C} = \mathbb{P}^1$, P = [0:1] and Q = [1:1]. Set D = P - Q, then

 $f \in L(D) \iff \begin{cases} f \text{ has a zero of order at least 1 at } Q \\ f \text{ can have a pole of order at most 1 at } P \\ f \text{ has no other poles outside } P \end{cases}$

 $f = \frac{X-1}{X}$ is a solution

$$g = 0, \deg D = 0 \xrightarrow[Theorem]{Riemann-Roch} \dim L(D) = \deg D + 1 - g = 1$$

 \rightarrow f generates the solutions space

Toy example

Take $\mathcal{C} = \mathbb{P}^1$, P = [0:1] and Q = [1:1]. Set D = P - Q, then

 $f \in L(D) \iff \begin{cases} f \text{ has a zero of order at least 1 at } Q \\ f \text{ can have a pole of order at most 1 at } P \\ f \text{ has no other poles outside } P \end{cases}$

 $f = \frac{X-1}{X}$ is a solution

$$\begin{split} g &= 0, \deg D = 0 \xrightarrow[\text{Theorem}]{\text{Riemann-Roch}} \dim L(D) = \deg D + 1 - g = 1 \\ & \rightarrow \text{f generates the solutions space} \end{split}$$

 $\underline{\land}$ no explicit method to compute a basis of L(D)How do we handle the problem in general?

Riemann-Roch problem: state of the art

Geometric methods:

(Brill–Noether theory ${\sim}1874$)

- Goppa, Le Brigand-Risler (80's)
- Huang-lerardi (90's)
- Khuri-Makdisi (2007)
- Le Gluher-Spaenlehauer (2018)
- Abelard–Couvreur–Lecerf (2020)

Arithmetic methods:

(Ideals in function fields)

- Hensel-Landberg (1902)
- Coates (1970)
- Davenport (1981)
- Hess (2001)

Riemann-Roch problem: state of the art

Geometric methods:

(Brill–Noether theory ${\sim}1874)$

- Goppa, Le Brigand-Risler (80's)
- Huang-lerardi (90's)
- Khuri-Makdisi (2007)
- Le Gluher-Spaenlehauer (2018)
- Abelard–Couvreur–Lecerf (2020)

Arithmetic methods:

(Ideals in function fields)

- Hensel-Landberg (1902)
- Coates (1970)
- Davenport (1981)
- Hess (2001)

Nodal/ordinary curves: Non-ordinary curves: Las Vegas algorithm computing L(D) in $\tilde{O}((\delta^2 + \deg D)^{\frac{\omega+1}{2}})$ field operations⁸ Ano explicit complexity exponent

⁸here 2 $\leqslant \omega \leqslant$ 3 is a feasible exponent for linear algebra ($\omega =$ 2.373)

Brill-Noether in a nutshell Brill-Noether method \rightsquigarrow NSC on H and G such that $G/H \in L(D)$

Brill–Noether method \rightsquigarrow NSC on H and G such that $G/H \in L(D)$ Notation:

•
$$(H) = \sum_{P \in C} \operatorname{ord}_P(H)P$$
 (zeros of H with multiplicity)

•
$$D \ge D'$$
 means $D - D' = \sum n_P P$ with $n_P \ge 0$ for every P

Brill–Noether method \rightsquigarrow NSC on H and G such that $G/H \in L(D)$ Notation:

- $(H) = \sum_{P \in \mathcal{C}} \operatorname{ord}_P(H) P$ (zeros of H with multiplicity)
- $D \ge D'$ means $D D' = \sum n_P P$ with $n_P \ge 0$ for every P

Description of L(D) for C : F(X, Y, Z) = 0 a plane projective curve.

Non-zero elements are of the form $\frac{G_i}{H}$ where

- H satisfies $(H) \ge D$
- H passes through all the singular points of C with ad hoc multiplicities
- ▶ deg G_i = deg H, G_i coprime with F and $(G_i) \ge (H) D$

Brill–Noether method \rightsquigarrow NSC on H and G such that $G/H \in L(D)$ Notation:

- $(H) = \sum_{P \in \mathcal{C}} \operatorname{ord}_P(H)P$ (zeros of H with multiplicity)
- $D \ge D'$ means $D D' = \sum n_P P$ with $n_P \ge 0$ for every P

Description of L(D) for C : F(X, Y, Z) = 0 a plane projective curve.

Non-zero elements are of the form $\frac{G_i}{H}$ where

- H satisfies $(H) \ge D$
- H passes through all the singular points of C with ad hoc multiplicities
- ▶ deg G_i = deg H, G_i coprime with F and $(G_i) \ge (H) D$

How do we handle singular points?

Brill–Noether method \rightsquigarrow NSC on H and G such that $G/H \in L(D)$ Notation:

- $(H) = \sum_{P \in C} \operatorname{ord}_P(H)P$ (zeros of *H* with multiplicity)
- $D \ge D'$ means $D D' = \sum n_P P$ with $n_P \ge 0$ for every P

Description of L(D) for C : F(X, Y, Z) = 0 a plane projective curve.

Non-zero elements are of the form $\frac{G_i}{H}$ where

- H satisfies $(H) \ge D$
- H satisfies $(H) \ge A$ (we say that "H is adjoint to the curve")
- deg G_i = deg H, G_i coprime with F and $(G_i) \ge (H) D$

How do we handle singular points?

 \rightsquigarrow the adjoint divisor ${\cal A}$ "encodes" the singular points of ${\cal C}$ with their multiplicities

Brill–Noether method \rightsquigarrow NSC on H and G such that $G/H \in L(D)$ Notation:

- $(H) = \sum_{P \in \mathcal{C}} \operatorname{ord}_P(H)P$ (zeros of H with multiplicity)
- $D \ge D'$ means $D D' = \sum n_P P$ with $n_P \ge 0$ for every P

Description of L(D) for C : F(X, Y, Z) = 0 a plane projective curve.

Non-zero elements are of the form $\frac{G_i}{H}$ where

- H satisfies $(H) \ge D$
- H satisfies $(H) \ge A$
- deg G_i = deg H, G_i coprime with F and $(G_i) \ge (H) D$

How do we handle singular points?

 \rightsquigarrow the adjoint divisor ${\cal A}$ "encodes" the singular points of ${\cal C}$ with their multiplicities

How do we handle divisors?

Brill–Noether method \rightsquigarrow NSC on H and G such that $G/H \in L(D)$ Notation:

- $(H) = \sum_{P \in \mathcal{C}} \operatorname{ord}_P(H)P$ (zeros of H with multiplicity)
- $D \ge D'$ means $D D' = \sum n_P P$ with $n_P \ge 0$ for every P

Description of L(D) for C : F(X, Y, Z) = 0 a plane projective curve.

Non-zero elements are of the form $\frac{G_i}{H}$ where

- H satisfies $(H) \ge D$
- H satisfies $(H) \ge A$
- deg G_i = deg H, G_i coprime with F and $(G_i) \ge (H) D$

How do we handle singular points?

 \rightsquigarrow the adjoint divisor ${\cal A}$ "encodes" the singular points of ${\cal C}$ with their multiplicities

How do we handle divisors?

series expansions of multi-set routines on divisors representations $((P_i)_i, m_i)$ $\xrightarrow{}$ have negligible cost

Input

C: F(X, Y, Z) = 0 a plane projective curve, D a smooth divisor.

- **Step 1:** Compute the adjoint divisor \mathcal{A}
- **Step 2:** Compute a common denominator *H*
- **Step 3:** Compute (H) D
- **Step 4:** Compute numerators *G_i* (similar to Step 2)

Output

Input

C: F(X, Y, Z) = 0 a plane projective curve, D a smooth divisor.

- **Step 1:** Compute the adjoint divisor \mathcal{A}
- **Step 2:** Compute a common denominator *H*
- **Step 3:** Compute $(H) D \checkmark \leftarrow \tilde{O}((\delta^2 + \deg D)^2)$
- **Step 4:** Compute numerators *G_i* (similar to Step 2)

Output

Input

C: F(X, Y, Z) = 0 a plane projective curve, D a smooth divisor.

- **Step 1:** Compute the adjoint divisor \mathcal{A}
- **Step 2:** Compute a common denominator *H*
- **Step 3:** Compute $(H) D \checkmark \leftarrow \tilde{O}((\delta^2 + \deg D)^2)$
- **Step 4:** Compute numerators *G_i* (similar to Step 2)

Output

The adjoint condition via Puiseux expansions

Let $F \in \mathbb{K}[x, y]$ be absolutely irreducible, monic in y and of degree d_y in y. The roots of $F \in \mathbb{K}((x))[y]$ in $\bigcup_{e \ge 1} \overline{\mathbb{K}}((x^{1/e}))$ are its Puiseux expansions $\varphi_0, \ldots, \varphi_{d_y-1}$, so that F writes

$$F = \prod_{i=1}^{d_y-1} (y - \varphi_i) = \prod_{i=1}^{d_y-1} (y - \sum_{j=n}^{\infty} \beta_{i,j} x^{j/e_i}).$$

Toy example: $F = y^2 - x^3 \rightsquigarrow F = (y - x^{3/2})(y + x^{3/2})$

Fix φ_0 of degree e_0 and let ζ be a primitive e_0 -th root of unity. Then for $0 \leq k < e_0$ we can construct other e_0 PE by replacing x^{1/e_0} by $\zeta^k x^{1/e_0}$. These PE are all equivalent and represented by one

Rational Puiseux Expansion: a pair $(X(t), Y(t)) = (\gamma t^e, \sum_{j=n}^{\infty} \beta_j t^j)$

Toy example (continue): $\rightsquigarrow (X(t), Y(t)) = (t^2, t^3)$

 $\underline{\wedge}$ RPE are often defined over an extension of \mathbb{K} . It is an algorithmic question of taking minimal extension of fields.

The adjoint divisor

The adjoint divisor is

$$\mathcal{A} = \sum_{P \in \operatorname{Sing}(\mathcal{C})} - \sum_{\mathcal{P}|P} \operatorname{val}_{\mathcal{P}} \left(\frac{dx}{F_y} \right) \mathcal{P}$$

$$\xrightarrow{\text{Using Rational}} \operatorname{val}_{\mathcal{P}} \left(\frac{dx}{F_y} \right) = \operatorname{val}_t \left(\frac{et^{e-1}}{F_y(X(t), Y(t), 1)} \right)$$

Example

Consider $C: y^2 - x^3 = 0$, (0,0) is the (only, non-ordinary) singular point

$$(X(t), Y(t)) = (t^2, t^3) \rightsquigarrow \operatorname{val}_{\mathcal{P}} \left(\frac{dx}{F_y}\right) = \operatorname{val}_t \left(\frac{2t}{2t^3}\right) = -2$$

Computation: algorithms for Puiseux expansions of germs of curves⁹ $\rightsquigarrow \mathcal{A}$ computed with an expected number of $\tilde{O}(\delta^3)$ field operations

⁹A. Poteaux and M. Weimann, Annales Herni Lebesgue, 2021

Input

C: F(X, Y, Z) = 0 a plane projective curve, D a smooth divisor.

- **Step 1:** Compute the adjoint divisor $\mathcal{A} \checkmark \leftarrow \tilde{O}(\delta^3)$
- Step 2: Compute H
- **Step 3:** Compute $(H) D \checkmark \leftarrow \tilde{O}((\delta^2 + \deg D)^2)$
- **Step 4:** Compute numerators *G_i* (similar to Step 2)

Output

Input

C: F(X, Y, Z) = 0 a plane projective curve, D a smooth divisor.

- **Step 1:** Compute the adjoint divisor $\mathcal{A} \checkmark \leftarrow \tilde{O}(\delta^3)$
- Step 2: Compute H
- **Step 3:** Compute $(H) D \checkmark \leftarrow \tilde{O}((\delta^2 + \deg D)^2)$
- **Step 4:** Compute numerators *G_i* (similar to Step 2)

Output

Finding a denominator in practice Straightforward linear solving

Let $d = \deg H$.

Condition $(H) \ge A + D_+$

 \rightsquigarrow linear system with $\deg \mathcal{A} + \deg D \sim \delta^2 + \deg D$ equations

 \rightsquigarrow Gaussian elimination costs

 $\tilde{O}((d\delta + \delta^2 + \deg D)^{\omega})$

Finding a denominator in practice Straightforward linear solving

Let $d = \deg H$.

Condition $(H) \ge A + D_+$

 \rightsquigarrow linear system with $\deg \mathcal{A} + \deg D \sim \delta^2 + \deg D$ equations

 \rightsquigarrow Gaussian elimination costs

$$ilde{O}((d\delta + \delta^2 + \deg D)^\omega)$$

How big is d?

We proved that $d = \left\lceil \frac{(\delta-1)(\delta-2) + \deg D}{\delta} \right\rceil$ is enough $\rightsquigarrow \tilde{O}((\delta^2 + \deg D)^{\omega})$ field operations¹⁰

 $^{10}{\rm again}~2\leqslant\omega\leqslant3$ is a feasible exponent for linear algebra ($\omega=2.373)$

Second method: structured linear algebra

$$\operatorname{val}_t(H(X(t), Y(t), 1) \ge \operatorname{val}_t\left(\frac{et^{e-1}}{F_y(X(t), Y(t), 1)}\right)$$

 \leadsto space of polynomials H(x,y) satisfying these conditions is a $\mathbb{K}[x]\text{-module}$

 \rightsquigarrow computing a basis¹¹ costs $ilde{O}((\delta^2 + \deg D)^\omega)$

Same complexity exponent but...

Benefits:

- bases with smaller representation size in general
- better complexity bound for algebraically closed fields
- possibility of future improvements

 $^{^{11}\}text{C.-P.}$ Jeannerod, V. Neiger, É. Schost and G. Villard, Journal of Symbolic Computation, 2017

Input

C: F(X, Y, Z) = 0 a plane projective curve, D a smooth divisor.

- **Step 1:** Compute the adjoint divisor $\mathcal{A} \checkmark \leftarrow \tilde{O}(\delta^3)$
- **Step 2:** Compute $H \checkmark \leftarrow \tilde{O}((\delta^2 + \deg D)^{\omega})$
- **Step 3:** Compute $(H) D \checkmark \leftarrow \tilde{O}((\delta^2 + \deg D)^2)$
- **Step 4:** Compute numerators *G_i* (similar to Step 2)

Output

Input

C: F(X, Y, Z) = 0 a plane projective curve, D a smooth divisor.

- **Step 1:** Compute the adjoint divisor $\mathcal{A} \checkmark \leftarrow \tilde{O}(\delta^3)$
- **Step 2:** Compute $H \checkmark \leftarrow \tilde{O}((\delta^2 + \deg D)^{\omega})$
- **Step 3:** Compute $(H) D \checkmark \leftarrow \tilde{O}((\delta^2 + \deg D)^2)$
- **Step 4:** Compute numerators $G_i \checkmark \leftarrow \tilde{O}((\delta^2 + \deg D)^{\omega})$

Output

A basis of the Riemann–Roch space L(D) in terms of H and the G_i .

Theorem (Abelard, B., Couvreur, Lecerf)

Las Vegas algorithm computing L(D) in $\tilde{O}((\delta^2 + \deg D)^{\omega})$ field operations¹²

 $^{12} {\rm with}~ 2 \leqslant \omega \leqslant 3$ is a feasible exponent for linear algebra ($\omega = 2.373)$

Computing Riemann–Roch spaces of curves.

- Implementation including fast structured linear algebra.
- Computing Riemann–Roch spaces of non-ordinary curves in "small" positive characteristic (in progress with A. Couvreur and G. Lecerf)
- Improving the complexity in the non-ordinary case (sub-quadratic?)

Computing Riemann–Roch spaces of curves.

- Implementation including fast structured linear algebra.
- Computing Riemann–Roch spaces of non-ordinary curves in "small" positive characteristic (in progress with A. Couvreur and G. Lecerf)
- Improving the complexity in the non-ordinary case (sub-quadratic?)

AG codes in higher dimension.

- Computing Riemann–Roch spaces of surfaces
 - \rightsquigarrow explicit construction of (good) AG codes from surfaces.

Computing Riemann-Roch spaces of curves.

- Implementation including fast structured linear algebra.
- Computing Riemann–Roch spaces of non-ordinary curves in "small" positive characteristic (in progress with A. Couvreur and G. Lecerf)
- Improving the complexity in the non-ordinary case (sub-quadratic?)

AG codes in higher dimension.

Computing Riemann–Roch spaces of surfaces
 ~> explicit construction of (good) AG codes from surfaces.

Rank metric codes.

◊ Can we use curves and/or Riemann-Roch spaces to construct good codes in the rank metric?

Computing Riemann-Roch spaces of curves.

- Implementation including fast structured linear algebra.
- Computing Riemann–Roch spaces of non-ordinary curves in "small" positive characteristic (in progress with A. Couvreur and G. Lecerf)
- Improving the complexity in the non-ordinary case (sub-quadratic?)

AG codes in higher dimension.

Computing Riemann–Roch spaces of surfaces
 ~> explicit construction of (good) AG codes from surfaces.

Rank metric codes.

Can we use curves and/or Riemann-Roch spaces to construct good
 codes in the rank metric?

Thank you for your attention!

Questions? elena.berardini@telecom-paris.fr

