Computing Riemann-Roch spaces for Algebraic Geometry codes

Elena Berardini
joint work with S. Abelard (Thales), A. Couvreur (Inria), G. Lecerf (LIX)

Télécom Paris, Institut polytechnique de Paris, France

Cyber-Crypto Seminar
12 October 2021

Table of Contents

I. Error Correcting and Algebraic Geometry Codes: long story short
II. Some recent applications of $A G$ codes
III. Computing Riemann-Roch spaces

What is an error correcting code?

A tool for transmitting and storing data.
Main feature: detection and correction of the errors that can occur during transmission/storage

What is an error correcting code?

A tool for transmitting and storing data.

Main feature: detection and correction of the errors that can occur during transmission/storage

A \mathbb{F}_{q}-vector subspace of \mathbb{F}_{q}^{n} (linear codes).
Three parameters:

- n, the length
- \mathbf{k}, the dimension
- d, the minimum distance

Rate of transmission: k / n
Detects up to $d-1$ errors
Corrects up to $\left\lfloor\frac{d-1}{2}\right\rfloor$ errors

What is an error correcting code?

A tool for transmitting and storing data.

Main feature: detection and correction of the errors that can occur during transmission/storage

A \mathbb{F}_{q}-vector subspace of \mathbb{F}_{q}^{n} (linear codes).
Three parameters:

- \mathbf{n}, the length
- \mathbf{k}, the dimension
- d, the minimum distance

Rate of transmission: k / n
Detects up to $d-1$ errors
Corrects up to $\left\lfloor\frac{d-1}{2}\right\rfloor$ errors

What is an error correcting code?

A tool for transmitting and storing data.

Main feature: detection and correction of the errors that can occur during transmission/storage

GOAL: to encode as much data as possible and to detect and correct as many errors as possible!

A \mathbb{F}_{q}-vector subspace of \mathbb{F}_{q}^{n} (linear codes).
Three parameters:

- n, the length
- \mathbf{k}, the dimension
- d, the minimum distance

Rate of transmission: k / n
Detects up to $d-1$ errors
Corrects up to $\left\lfloor\frac{d-1}{2}\right\rfloor$ errors

What is an error correcting code?

A tool for transmitting and storing data.

Main feature: detection and correction of the errors that can occur during transmission/storage

GOAL: to encode as much data as possible and to detect and correct as many errors as possible!

A \mathbb{F}_{q}-vector subspace of \mathbb{F}_{q}^{n} (linear codes).
Three parameters:

- \mathbf{n}, the length
- \mathbf{k}, the dimension
- d, the minimum distance

Rate of transmission: k / n
Detects up to $d-1$ errors Corrects up to $\left\lfloor\frac{d-1}{2}\right\rfloor$ errors
GOAL: to have \mathbf{k} and \mathbf{d} as big as possible!

What is an error correcting code?

A tool for transmitting and storing data.

Main feature: detection and correction of the errors that can occur during transmission/storage

GOAL: to encode as much data as possible and to detect and correct as many errors as possible!

A \mathbb{F}_{q}-vector subspace of \mathbb{F}_{q}^{n} (linear codes).

Three parameters:

- \mathbf{n}, the length
- \mathbf{k}, the dimension
- d, the minimum distance

Rate of transmission: k / n Detects up to $d-1$ errors Corrects up to $\left\lfloor\frac{d-1}{2}\right\rfloor$ errors
GOAL: to have \mathbf{k} and \mathbf{d} as big as possible!
Singleton Bound: $k+d \leqslant n+1$ \leadsto tradeoff between redundancy and capacity of errors-correction

Evaluation codes: from Reed-Solomon codes...

\checkmark Optimal parameters: $k+d=n+1$ (MDS codes)
\checkmark Efficient decoding algorithm (Berlekamp, 1968)
\checkmark Operations on data
\triangle Drawback: require $n \leq q$
...to Algebraic Geometry codes

...to Algebraic Geometry codes

Proposition

The parameters $[n, k, d]$ of $A G$ codes from curves satisfy

$$
k \geq \operatorname{deg} D+1-g \quad d \geq n-\operatorname{deg} D .
$$

...to Algebraic Geometry codes

Proposition

The parameters $[n, k, d]$ of $A G$ codes from curves satisfy

$$
k \geq \operatorname{deg} D+1-g \quad d \geq n-\operatorname{deg} D .
$$

AG codes satisfy $n+1-g \leq k+d \leq n+1$
$\rightsquigarrow A G$ codes from curves lie at distance g from optimality

A brief history of algebraic geometry codes
1981: Goppa introduces AG codes from smooth algebraic curves

A brief history of algebraic geometry codes

1981: Goppa introduces AG codes from smooth algebraic curves

1982: Tsfasman, Vlăduț and Zink use AG codes for beating the Gilbert-Varshamov bound

A brief history of algebraic geometry codes

1981: Goppa introduces AG codes from smooth algebraic curves
1982: Tsfasman, Vlăduț and Zink use AG codes for beating the Gilbert-Varshamov bound

$X X c$: different families of curves are studied to obtain optimal codes \hookrightarrow only curves whose Riemann-Roch spaces are already known are used

A brief history of algebraic geometry codes

1981: Goppa introduces AG codes from smooth algebraic curves
1982: Tsfasman, Vlăduț and Zink use AG codes for beating the Gilbert-Varshamov bound

$X X c$: different families of curves are studied to obtain optimal codes \hookrightarrow only curves whose Riemann-Roch spaces are already known are used

XXIc: AG codes are used in new area of information theory

A brief history of algebraic geometry codes

1981: Goppa introduces AG codes from smooth algebraic curves
1982: Tsfasman, Vlăduț and Zink use AG codes for beating the Gilbert-Varshamov bound

$X X c$: different families of curves are studied to obtain optimal codes \hookrightarrow only curves whose Riemann-Roch spaces are already known are used

XXIc: AG codes are used in new area of information theory ...let's see how!

- data is distributed over various servers
- in case of server(s) failure data needs to be reconstructed
- need to limit the bandwidth

- data is distributed over various servers
- in case of server(s) failure data needs to be reconstructed
- need to limit the bandwidth

Model: one symbol per server

Cloud storage

- data is distributed over various servers
- in case of server(s) failure data needs to be reconstructed
- need to limit the bandwidth

Model: one symbol per server
How do we reconstruct one symbol from a small set of other symbols?

Cloud storage

- data is distributed over various servers
- in case of server(s) failure data needs to be reconstructed
- need to limit the bandwidth

Model: one symbol per server
How do we reconstruct one symbol from a small set of other symbols?
\triangle Reed-Solomon codes \rightsquigarrow reconstructing one symbol requires k symbols

Locally Recoverable Codes (LRCs)

Definition

A Locally Recoverable Code with locality ℓ is a code of length n such that for every $i \in\{1, \ldots, n\}$ there exists at least one subset $J_{i} \in\{1, \ldots, n\}$ not containing i with $\# J_{i}=\ell$ and such that the coordinate c_{i} can be recovered from the coordinates c_{j} for $j \in J_{i}$.

Locally Recoverable Codes (LRCs)

Definition

A Locally Recoverable Code with locality ℓ is a code of length n such that for every $i \in\{1, \ldots, n\}$ there exists at least one subset $J_{i} \in\{1, \ldots, n\}$ not containing i with $\# J_{i}=\ell$ and such that the coordinate c_{i} can be recovered from the coordinates c_{j} for $j \in J_{i}$.

Singleton-type boud: $k+d \leq n-\left\lceil\frac{k}{\ell}\right\rceil+2$

Locally Recoverable Codes (LRCs)

Definition

A Locally Recoverable Code with locality ℓ is a code of length n such that for every $i \in\{1, \ldots, n\}$ there exists at least one subset $J_{i} \in\{1, \ldots, n\}$ not containing i with $\# J_{i}=\ell$ and such that the coordinate c_{i} can be recovered from the coordinates c_{j} for $j \in J_{i}$.

Singleton-type boud: $k+d \leq n-\left\lceil\frac{k}{\ell}\right\rceil+2$
AG codes enter the game:

- Barg, Tamo and Vlăduț ${ }^{1}$ proposed constructions of LRC using curves that are optimal (parameters reach the Singleton-type bound)
- extension of this approach to more curves and surfaces ${ }^{2}$
- optimal exemples of LRC from (fibered) surfaces ${ }^{3}$

[^0]
Locally Recoverable Codes (LRCs)

Definition

A Locally Recoverable Code with locality ℓ is a code of length n such that for every $i \in\{1, \ldots, n\}$ there exists at least one subset $J_{i} \in\{1, \ldots, n\}$ not containing i with $\# J_{i}=\ell$ and such that the coordinate c_{i} can be recovered from the coordinates c_{j} for $j \in J_{i}$.

Singleton-type boud: $k+d \leq n-\left\lceil\frac{k}{\ell}\right\rceil+2$
AG codes enter the game:

- Barg, Tamo and Vlăduț ${ }^{1}$ proposed constructions of LRC using curves that are optimal (parameters reach the Singleton-type bound)
- extension of this approach to more curves and surfaces ${ }^{2}$
- optimal exemples of LRC from (fibered) surfaces 3
\triangle Yes, we can construct AG codes from surfaces...but this is another story!

[^1]
Verifiable Computing

Powerful Prover

(e.g. a server)

Weak Verifier
(e.g. a client)

Verifiable Computing

Powerful Prover

(e.g. a server)
outputs result y and proof of correctness π

Weak Verifier

(e.g. a client)
checks validity of π for statement $y=F(x)$

Verifiable Computing

Applications: cryptocurrencies, blockchain...

Verifiable Computing

Powerful Prover

(e.g. a server)
outputs result y and proof of correctness π

Weak Verifier
(e.g. a client)
$y, \pi \quad$ checks validity of π for statement $y=F(x)$

Provers produces a word

- $c \in C$ if the statement $y=F(x)$ holds,
- \tilde{c} is very far from C otherwise.

Applications: cryptocurrencies, blockchain...
Which codes can be used? AG codes seem a good option ${ }^{4}$
${ }^{4}$ S. Bordage and J. Nardi, preprint, 2020

McEliece cryptosystem (19「8)

McEliece cryptosystem (1978)

- G, matrix of a $[n, k, 2 t+1]$-code
- \mathcal{A}, decoding algorithm
- S, a $k \times k$ matrix
- P, a $n \times n$ matrix

Computes $\bar{G}=S G P$
PubKey $=(\bar{G}, t)$, SecKey $=(G, P, S, \mathcal{A})$

McEliece cryptosystem (1978)

- G, matrix of a $[n, k, 2 t+1]$-code
- \mathcal{A}, decoding algorithm
- S, a $k \times k$ matrix
- P, a $n \times n$ matrix

Blocks his message into vectors m_{i} of length k Randomly constructs e a n-vector of weight t

Computes $\bar{G}=S G P$
PubKey $=(\bar{G}, t)$, SecKey $=(G, P, S, \mathcal{A})$

McEliece cryptosystem (1978)

- G, matrix of a $[n, k, 2 t+1]$-code
- \mathcal{A}, decoding algorithm
- S, a $k \times k$ matrix
- P, a $n \times n$ matrix

Blocks his message into vectors m_{i} of length k Randomly constructs e a n-vector of weight t

Computes $\bar{G}=S G P$
PubKey $=(\bar{G}, t)$, SecKey $=(G, P, S, \mathcal{A})$
Computes

$$
y_{i}=m_{i} \bar{G}+e
$$

McEliece cryptosystem (1978)

- G, matrix of a $[n, k, 2 t+1]$-code
- \mathcal{A}, decoding algorithm
- S, a $k \times k$ matrix
- P, a $n \times n$ matrix

Blocks his message into vectors m_{i} of length k Randomly constructs e a n-vector of weight t

Computes $\bar{G}=S G P$
PubKey $=(\bar{G}, t)$, SecKey $=(G, P, S, \mathcal{A})$
Receives y_{i}
Computes

$$
y_{i}=m_{i} \bar{G}+e
$$

McEliece cryptosystem (1978)

- G, matrix of a $[n, k, 2 t+1]$-code
- \mathcal{A}, decoding algorithm
- S, a $k \times k$ matrix
- P, a $n \times n$ matrix

Blocks his message into vectors m_{i} of length k Randomly constructs e a n-vector of weight t

Computes $\bar{G}=S G P$
PubKey $=(\bar{G}, t)$, SecKey $=(G, P, S, \mathcal{A})$

Receives y_{i}

Computes

$$
y_{i}=m_{i} \bar{G}+e
$$

Computes $y_{i} P^{-1}=\left(m_{i} \bar{G}+e\right) P^{-1}$
$=m_{i} S G+e P^{-1}=m_{i} S G+e^{\prime}$
Applies \mathcal{A} to retrieve $m_{i} S G$

$$
m_{i}=m_{i} S G \times G^{-1} S^{-1}
$$

McEliece cryptosystem (1978)

- G, matrix of a $[n, k, 2 t+1]$-code
- \mathcal{A}, decoding algorithm
- S, a $k \times k$ matrix
- P, a $n \times n$ matrix

Blocks his message into vectors m_{i} of length k Randomly constructs e a n-vector of weight t

Computes $\bar{G}=S G P$
PubKey $=(\bar{G}, t)$, SecKey $=(G, P, S, \mathcal{A})$

Receives y_{i}

Computes

$$
y_{i}=m_{i} \bar{G}+e
$$

Computes $y_{i} P^{-1}=\left(m_{i} \bar{G}+e\right) P^{-1}$
$=m_{i} S G+e P^{-1}=m_{i} S G+e^{\prime}$
Applies \mathcal{A} to retrieve $m_{i} S G$

$$
m_{i}=m_{i} S G \times G^{-1} S^{-1}
$$

McEliece cryptosystem for post-quantum cryptography

- security relies on
- computational hardness of decoding a random code
- computational hardness of distinguishing a structured code from a random code
\checkmark Post-quantum
Requires huge key sizes

Classic McEliece ${ }^{5}$, a cryptosystem using binary AG codes, is at the third round of NIST's Post-Quantum Cryptography Standardization Project.

[^2]
Riemann-Roch spaces: AG codes and beyond

Explicit construction of AG codes for

- Locally Recoverable Codes
- Verifiable Computing
- McEliece cryptosystem
\rightsquigarrow need of explicit computation of Riemann-Roch spaces

Riemann-Roch spaces: AG codes and beyond

Explicit construction of AG codes for

- Locally Recoverable Codes
- Verifiable Computing
- McEliece cryptosystem
\rightsquigarrow need of explicit computation of Riemann-Roch spaces
This can be also useful for...
- Group operations on Jacobians of curves ${ }^{6}$
- Symbolic integration ${ }^{7}$

[^3]
Riemann-Roch space

Divisor on a curve $\mathcal{C}: D=\sum_{P \in \mathcal{C}} n_{P} P$

The Riemann-Roch space $L(D)$ is the space of all functions $\frac{G}{H} \in \mathbb{K}(\mathcal{C})$ s. t.:

- if $n_{P}<0$ then P must be a zero of G (of multiplicity $\geqslant-n_{P}$)
- if $n_{P}>0$ then P can be a zero of H (of multiplicity $\leqslant n_{P}$)
- G / H has not other poles outside the points P with $n_{P}>0$

Here: Z must be a zero of G, the P_{i} 's can be zeros of H

Riemann-Roch space

Divisor on a curve $\mathcal{C}: D=\sum_{P \in \mathcal{C}} n_{P} P$

The Riemann-Roch space $L(D)$ is the space of all functions $\frac{G}{H} \in \mathbb{K}(\mathcal{C})$ s. t.:

- if $n_{P}<0$ then P must be a zero of G (of multiplicity $\geqslant-n_{P}$)
- if $n_{P}>0$ then P can be a zero of H (of multiplicity $\leqslant n_{P}$)
- G / H has not other poles outside the points P with $n_{P}>0$

Here: Z must be a zero of G, the P_{i} 's can be zeros of H

Riemann-Roch theorem \rightsquigarrow dimension of $L(D)=\operatorname{deg} D+1-g$ where the degree of a divisor is $\operatorname{deg} D=\sum_{P} n_{P}$

Toy example

Take $\mathcal{C}=\mathbb{P}^{1}, P=[0: 1]$ and $Q=[1: 1]$. Set $D=P-Q$, then
$f \in L(D) \Longleftrightarrow\left\{\begin{array}{l}\mathrm{f} \text { has a zero of order at least } 1 \text { at } Q \\ \mathrm{f} \text { can have a pole of order at most } 1 \text { at } P \\ \mathrm{f} \text { has no other poles outside } P\end{array}\right.$

Toy example

Take $\mathcal{C}=\mathbb{P}^{1}, P=[0: 1]$ and $Q=[1: 1]$. Set $D=P-Q$, then

$$
f \in L(D) \Longleftrightarrow\left\{\begin{array}{l}
\mathrm{f} \text { has a zero of order at least } 1 \text { at } Q \\
\mathrm{f} \text { can have a pole of order at most } 1 \text { at } P \\
\mathrm{f} \text { has no other poles outside } P
\end{array}\right.
$$

$$
f=\frac{x-1}{x} \text { is a solution }
$$

$$
\begin{aligned}
g=0, \operatorname{deg} D= & 0 \xrightarrow[\text { Theorem }]{\text { Riemann-Roch }} \operatorname{dim} L(D)=\operatorname{deg} D+1-g=1 \\
& \rightarrow \mathrm{f} \text { generates the solutions space }
\end{aligned}
$$

Toy example

Take $\mathcal{C}=\mathbb{P}^{1}, P=[0: 1]$ and $Q=[1: 1]$. Set $D=P-Q$, then

$$
\begin{aligned}
& f \in L(D) \Longleftrightarrow\left\{\begin{array}{l}
\mathrm{f} \text { has a zero of order at least } 1 \text { at } Q \\
\mathrm{f} \text { can have a pole of order at most } 1 \text { at } P \\
\mathrm{f} \text { has no other poles outside } P
\end{array}\right. \\
& \qquad f=\frac{x-1}{x} \text { is a solution } \\
& g=0, \operatorname{deg} D=0 \\
& \\
& \\
& \rightarrow \mathrm{f} \text { generates the solutions space }
\end{aligned}
$$

\triangle no explicit method to compute a basis of $L(D)$ How do we handle the problem in general?

Riemann-Roch problem: state of the art

Geometric methods:
(Brill-Noether theory ~1874)

- Goppa, Le Brigand-Risler (80's)
- Huang-lerardi (90's)
- Khuri-Makdisi (2007)
- Le Gluher-Spaenlehauer (2018)
- Abelard-Couvreur-Lecerf (2020)

Arithmetic methods: (Ideals in function fields)

- Hensel-Landberg (1902)
- Coates (1970)
- Davenport (1981)
- Hess (2001)

Riemann-Roch problem: state of the art

Geometric methods:

(Brill-Noether theory ~1874)

- Goppa, Le Brigand-Risler (80's)
- Huang-lerardi (90's)
- Khuri-Makdisi (2007)
- Le Gluher-Spaenlehauer (2018)
- Abelard-Couvreur-Lecerf (2020)

Arithmetic methods:

(Ideals in function fields)

- Hensel-Landberg (1902)
- Coates (1970)
- Davenport (1981)
- Hess (2001)

Nodal/ordinary
curves:
Non-ordinary curves:
Las Vegas algorithm computing $L(D)$ in $\tilde{\mathcal{O}}\left(\left(\delta^{2}+\operatorname{deg} D\right)^{\frac{\omega+1}{2}}\right)$ field operations ${ }^{8}$ ©no explicit complexity exponent

${ }^{8}$ here $2 \leqslant \omega \leqslant 3$ is a feasible exponent for linear algebra $(\omega=2.373)$

Brill-Noether in a nutshell

Brill-Noether method \rightsquigarrow NSC on H and G such that $G / H \in L(D)$

Brill-Noether in a nutshell

Brill-Noether method \rightsquigarrow NSC on H and G such that $G / H \in L(D)$
Notation:

- $(H)=\sum_{P \in \mathcal{C}} \operatorname{ord}_{P}(H) P$ (zeros of H with multiplicity)
- $D \geqslant D^{\prime}$ means $D-D^{\prime}=\sum n_{P} P$ with $n_{P} \geqslant 0$ for every P

Brill-Noether in a nutshell

Brill-Noether method \rightsquigarrow NSC on H and G such that $G / H \in L(D)$
Notation:

- $(H)=\sum_{P \in \mathcal{C}} \operatorname{ord}_{P}(H) P$ (zeros of H with multiplicity)
- $D \geqslant D^{\prime}$ means $D-D^{\prime}=\sum n_{P} P$ with $n_{P} \geqslant 0$ for every P

Description of $L(D)$ for $\mathcal{C}: F(X, Y, Z)=0$ a plane projective curve.

Non-zero elements are of the form $\frac{G_{i}}{H}$ where

- H satisfies $(H) \geqslant D$
- H passes through all the singular points of \mathcal{C} with ad hoc multiplicities
- $\operatorname{deg} G_{i}=\operatorname{deg} H, G_{i}$ coprime with F and $\left(G_{i}\right) \geqslant(H)-D$

Brill-Noether in a nutshell

Brill-Noether method \rightsquigarrow NSC on H and G such that $G / H \in L(D)$
Notation:

- $(H)=\sum_{P \in \mathcal{C}} \operatorname{ord}_{P}(H) P$ (zeros of H with multiplicity)
- $D \geqslant D^{\prime}$ means $D-D^{\prime}=\sum n_{P} P$ with $n_{P} \geqslant 0$ for every P

Description of $L(D)$ for $\mathcal{C}: F(X, Y, Z)=0$ a plane projective curve.

Non-zero elements are of the form $\frac{G_{i}}{H}$ where

- H satisfies $(H) \geqslant D$
- H passes through all the singular points of \mathcal{C} with ad hoc multiplicities
- $\operatorname{deg} G_{i}=\operatorname{deg} H, G_{i}$ coprime with F and $\left(G_{i}\right) \geqslant(H)-D$

How do we handle singular points?

Brill-Noether in a nutshell

Brill-Noether method \rightsquigarrow NSC on H and G such that $G / H \in L(D)$
Notation:

- $(H)=\sum_{P \in \mathcal{C}} \operatorname{ord}_{P}(H) P$ (zeros of H with multiplicity)
- $D \geqslant D^{\prime}$ means $D-D^{\prime}=\sum n_{P} P$ with $n_{P} \geqslant 0$ for every P

Description of $L(D)$ for $\mathcal{C}: F(X, Y, Z)=0$ a plane projective curve.

Non-zero elements are of the form $\frac{G_{i}}{H}$ where

- H satisfies $(H) \geqslant D$
- H satisfies $(H) \geqslant \mathcal{A}$ (we say that " H is adjoint to the curve")
- $\operatorname{deg} G_{i}=\operatorname{deg} H, G_{i}$ coprime with F and $\left(G_{i}\right) \geqslant(H)-D$

How do we handle singular points?
\rightsquigarrow the adjoint divisor \mathcal{A} "encodes" the singular points of \mathcal{C} with their multiplicities

Brill-Noether in a nutshell

Brill-Noether method \rightsquigarrow NSC on H and G such that $G / H \in L(D)$
Notation:

- $(H)=\sum_{P \in \mathcal{C}} \operatorname{ord}_{P}(H) P$ (zeros of H with multiplicity)
- $D \geqslant D^{\prime}$ means $D-D^{\prime}=\sum n_{P} P$ with $n_{P} \geqslant 0$ for every P

Description of $L(D)$ for $\mathcal{C}: F(X, Y, Z)=0$ a plane projective curve.

Non-zero elements are of the form $\frac{G_{i}}{H}$ where

- H satisfies $(H) \geqslant D$
- H satisfies $(H) \geqslant \mathcal{A}$
- $\operatorname{deg} G_{i}=\operatorname{deg} H, G_{i}$ coprime with F and $\left(G_{i}\right) \geqslant(H)-D$

How do we handle singular points?
\rightsquigarrow the adjoint divisor \mathcal{A} "encodes" the singular points of \mathcal{C} with their multiplicities

How do we handle divisors?

Brill-Noether in a nutshell

Brill-Noether method \rightsquigarrow NSC on H and G such that $G / H \in L(D)$
Notation:

- $(H)=\sum_{P \in \mathcal{C}} \operatorname{ord}_{P}(H) P$ (zeros of H with multiplicity)
- $D \geqslant D^{\prime}$ means $D-D^{\prime}=\sum n_{P} P$ with $n_{P} \geqslant 0$ for every P

```
Description of L(D) for C : F(X,Y,Z )=0 a plane projective curve.
```

Non-zero elements are of the form $\frac{G_{i}}{H}$ where

- H satisfies $(H) \geqslant D$
- H satisfies $(H) \geqslant \mathcal{A}$
- $\operatorname{deg} G_{i}=\operatorname{deg} H, G_{i}$ coprime with F and $\left(G_{i}\right) \geqslant(H)-D$

How do we handle singular points?
\rightsquigarrow the adjoint divisor \mathcal{A} "encodes" the singular points of \mathcal{C} with their multiplicities

How do we handle divisors?
series expansions of multi-set representations $\left(\left(P_{i}\right)_{i}, m_{i}\right)$
routines on divisors
$\rightsquigarrow \quad$ have negligible cost

Sketch of the algorithm

Input
$\mathcal{C}: F(X, Y, Z)=0$ a plane projective curve, D a smooth divisor.
Step 1: Compute the adjoint divisor \mathcal{A}
Step 2: Compute a common denominator H
Step 3: Compute (H) - D
Step 4: Compute numerators G_{i} (similar to Step 2)

Output

A basis of the Riemann-Roch space $L(D)$ in terms of H and the G_{i}.

Sketch of the algorithm

Input

$\mathcal{C}: F(X, Y, Z)=0$ a plane projective curve, D a smooth divisor.
Step 1: Compute the adjoint divisor \mathcal{A}
Step 2: Compute a common denominator H
Step 3: Compute $(H)-D \checkmark \leftarrow \tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D\right)^{2}\right)$
Step 4: Compute numerators G_{i} (similar to Step 2)

Output

A basis of the Riemann-Roch space $L(D)$ in terms of H and the G_{i}.

Sketch of the algorithm

Input

$\mathcal{C}: F(X, Y, Z)=0$ a plane projective curve, D a smooth divisor.
Step 1: Compute the adjoint divisor \mathcal{A}
Step 2: Compute a common denominator H
Step 3: Compute $(H)-D \checkmark \leftarrow \tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D\right)^{2}\right)$
Step 4: Compute numerators G_{i} (similar to Step 2)

Output

A basis of the Riemann-Roch space $L(D)$ in terms of H and the G_{i}.

The adjoint condition via Puiseux expansions

Let $F \in \mathbb{K}[x, y]$ be absolutely irreducible, monic in y and of degree d_{y} in y. The roots of $F \in \mathbb{K}((x))[y]$ in $\cup_{e \geqslant 1} \overline{\mathbb{K}}\left(\left(x^{1 / e}\right)\right)$ are its Puiseux expansions $\varphi_{0}, \ldots, \varphi_{d_{y}-1}$, so that F writes

$$
F=\prod_{i=1}^{d_{y}-1}\left(y-\varphi_{i}\right)=\prod_{i=1}^{d_{y}-1}\left(y-\sum_{j=n}^{\infty} \beta_{i, j} x^{j / e_{i}}\right)
$$

Toy example: $F=y^{2}-x^{3} \rightsquigarrow F=\left(y-x^{3 / 2}\right)\left(y+x^{3 / 2}\right)$
Fix φ_{0} of degree e_{0} and let ζ be a primitive e_{0}-th root of unity. Then for $0 \leqslant k<e_{0}$ we can construct other e_{0} PE by replacing $x^{1 / e_{0}}$ by $\zeta^{k} x^{1 / e_{0}}$.
These PE are all equivalent and represented by one

$$
\text { Rational Puiseux Expansion: a pair }(X(t), Y(t))=\left(\gamma t^{e}, \sum_{j=n}^{\infty} \beta_{j} t^{j}\right)
$$

Toy example (continue): $\rightsquigarrow(X(t), Y(t))=\left(t^{2}, t^{3}\right)$
$\triangle R P E$ are often defined over an extension of \mathbb{K}.
It is an algorithmic question of taking minimal extension of fields.

The adjoint divisor

The adjoint divisor is

$$
\begin{gathered}
\mathcal{A}=\sum_{P \in \operatorname{Sing}(\mathcal{C})}-\sum_{\mathcal{P} \mid P} \operatorname{val}_{\mathcal{P}}\left(\frac{d x}{F_{y}}\right) \mathcal{P} \\
\xrightarrow[\text { Puiseux expansions }]{\text { Using Rational }} \operatorname{val}_{\mathcal{P}}\left(\frac{d x}{F_{y}}\right)=\operatorname{val}_{t}\left(\frac{e t^{e-1}}{F_{y}(X(t), Y(t), 1)}\right)
\end{gathered}
$$

Example

Consider \mathcal{C} : $y^{2}-x^{3}=0,(0,0)$ is the (only, non-ordinary) singular point

$$
(X(t), Y(t))=\left(t^{2}, t^{3}\right) \rightsquigarrow \operatorname{val}_{\mathcal{P}}\left(\frac{d x}{F_{y}}\right)=\operatorname{val}_{t}\left(\frac{2 t}{2 t^{3}}\right)=-2
$$

Computation: algorithms for Puiseux expansions of germs of curves ${ }^{9}$ $\rightsquigarrow \mathcal{A}$ computed with an expected number of $\tilde{O}\left(\delta^{3}\right)$ field operations

Sketch of the algorithm

Input

$\mathcal{C}: F(X, Y, Z)=0$ a plane projective curve, D a smooth divisor.
Step 1: Compute the adjoint divisor $\mathcal{A} \checkmark \leftarrow \tilde{O}\left(\delta^{3}\right)$
Step 2: Compute H
Step 3: Compute $(H)-D \checkmark \leftarrow \tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D\right)^{2}\right)$
Step 4: Compute numerators G_{i} (similar to Step 2)

Output

A basis of the Riemann-Roch space $L(D)$ in terms of H and the G_{i}.

Sketch of the algorithm

Input

$\mathcal{C}: F(X, Y, Z)=0$ a plane projective curve, D a smooth divisor.
Step 1: Compute the adjoint divisor $\mathcal{A} \checkmark \leftarrow \tilde{O}\left(\delta^{3}\right)$
Step 2: Compute H
Step 3: Compute $(H)-D \checkmark \leftarrow \tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D\right)^{2}\right)$
Step 4: Compute numerators G_{i} (similar to Step 2)

Output

A basis of the Riemann-Roch space $L(D)$ in terms of H and the G_{i}.

Finding a denominator in practice
Straightforward linear solving
Let $d=\operatorname{deg} H$.

$$
\text { Condition }(H) \geqslant \mathcal{A}+D_{+}
$$

\rightsquigarrow linear system with $\operatorname{deg} \mathcal{A}+\operatorname{deg} D \sim \delta^{2}+\operatorname{deg} D$ equations
\rightsquigarrow Gaussian elimination costs

$$
\tilde{O}\left(\left(d \delta+\delta^{2}+\operatorname{deg} D\right)^{\omega}\right)
$$

Finding a denominator in practice

Straightforward linear solving
Let $d=\operatorname{deg} H$.

$$
\text { Condition }(H) \geqslant \mathcal{A}+D_{+}
$$

\rightsquigarrow linear system with $\operatorname{deg} \mathcal{A}+\operatorname{deg} D \sim \delta^{2}+\operatorname{deg} D$ equations
\rightsquigarrow Gaussian elimination costs

$$
\tilde{O}\left(\left(d \delta+\delta^{2}+\operatorname{deg} D\right)^{\omega}\right)
$$

How big is d ?

We proved that $d=\left\lceil\frac{(\delta-1)(\delta-2)+\operatorname{deg} D}{\delta}\right\rceil$ is enough
$\rightsquigarrow \tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D\right)^{\omega}\right)$ field operations ${ }^{10}$
${ }^{10}$ again $2 \leqslant \omega \leqslant 3$ is a feasible exponent for linear algebra ($\omega=2.373$)

Second method: structured linear algebra

$$
\operatorname{val}_{t}\left(H(X(t), Y(t), 1) \geqslant \operatorname{val}_{t}\left(\frac{e t^{e-1}}{F_{y}(X(t), Y(t), 1)}\right)\right.
$$

\rightsquigarrow space of polynomials $H(x, y)$ satisfying these conditions is a $\mathbb{K}[x]$-module
\rightsquigarrow computing a basis ${ }^{11}$ costs $\tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D\right)^{\omega}\right)$
Same complexity exponent but...

Benefits:

- bases with smaller representation size in general
- better complexity bound for algebraically closed fields
- possibility of future improvements

[^4]
Sketch of the algorithm

Input

$\mathcal{C}: F(X, Y, Z)=0$ a plane projective curve, D a smooth divisor.
Step 1: Compute the adjoint divisor $\mathcal{A} \checkmark \leftarrow \tilde{O}\left(\delta^{3}\right)$
Step 2: Compute $H \checkmark \leftarrow \tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D\right)^{\omega}\right)$
Step 3: Compute $(H)-D \checkmark \leftarrow \tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D\right)^{2}\right)$
Step 4: Compute numerators G_{i} (similar to Step 2)

Output

A basis of the Riemann-Roch space $L(D)$ in terms of H and the G_{i}.

Sketch of the algorithm

Input

$\mathcal{C}: F(X, Y, Z)=0$ a plane projective curve, D a smooth divisor.
Step 1: Compute the adjoint divisor $\mathcal{A} \checkmark \leftarrow \tilde{O}\left(\delta^{3}\right)$
Step 2: Compute $H \checkmark \leftarrow \tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D\right)^{\omega}\right)$
Step 3: Compute $(H)-D \checkmark \leftarrow \tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D\right)^{2}\right)$
Step 4: Compute numerators $G_{i} \checkmark \leftarrow \tilde{O}\left(\left(\delta^{2}+\operatorname{deg} D\right)^{\omega}\right)$

Output

A basis of the Riemann-Roch space $L(D)$ in terms of H and the G_{i}.

Theorem (Abelard, B., Couvreur, Lecerf)

Las Vegas algorithm computing $L(D)$ in $\tilde{\mathcal{O}}\left(\left(\delta^{2}+\operatorname{deg} D\right)^{\omega}\right)$ field operations ${ }^{12}$

[^5]
Future questions about $R-R$ spaces and $A G$ codes

Computing Riemann-Roch spaces of curves.
\diamond Implementation including fast structured linear algebra.
\diamond Computing Riemann-Roch spaces of non-ordinary curves in "small" positive characteristic (in progress with A. Couvreur and G. Lecerf)
\diamond Improving the complexity in the non-ordinary case (sub-quadratic?)

Future questions about $R-R$ spaces and $A G$ codes

Computing Riemann-Roch spaces of curves.

\diamond Implementation including fast structured linear algebra.
\diamond Computing Riemann-Roch spaces of non-ordinary curves in "small" positive characteristic (in progress with A. Couvreur and G. Lecerf)
\diamond Improving the complexity in the non-ordinary case (sub-quadratic?)
AG codes in higher dimension.
\diamond Computing Riemann-Roch spaces of surfaces \rightsquigarrow explicit construction of (good) AG codes from surfaces.

Future questions about $R-R$ spaces and $A G$ codes

Computing Riemann-Roch spaces of curves.

\diamond Implementation including fast structured linear algebra.
\diamond Computing Riemann-Roch spaces of non-ordinary curves in "small" positive characteristic (in progress with A. Couvreur and G. Lecerf)
\diamond Improving the complexity in the non-ordinary case (sub-quadratic?)
AG codes in higher dimension.
\diamond Computing Riemann-Roch spaces of surfaces \rightsquigarrow explicit construction of (good) AG codes from surfaces.
Rank metric codes.
\diamond Can we use curves and/or Riemann-Roch spaces to construct good codes in the rank metric?

Future questions about $R-R$ spaces and $A G$ codes

Computing Riemann-Roch spaces of curves.

\diamond Implementation including fast structured linear algebra.
\diamond Computing Riemann-Roch spaces of non-ordinary curves in "small" positive characteristic (in progress with A. Couvreur and G. Lecerf)
\diamond Improving the complexity in the non-ordinary case (sub-quadratic?)
AG codes in higher dimension.
\diamond Computing Riemann-Roch spaces of surfaces \rightsquigarrow explicit construction of (good) AG codes from surfaces.
Rank metric codes.
\diamond Can we use curves and/or Riemann-Roch spaces to construct good codes in the rank metric?

Thank you for your attention!

Questions? elena.berardini@telecom-paris.fr

[^0]: ${ }^{1}$ IEEE Transactions on Information Theory, 2017
 ${ }^{2}$ Barg et al, Algebraic geometry for coding theory and cryptography, 2017
 ${ }^{3}$ Salgado, Varilly-Alvarado, Voloch, IEEE Transactions on Information Theory, 2021

[^1]: ${ }^{1}$ IEEE Transactions on Information Theory, 2017
 ${ }^{2}$ Barg et al, Algebraic geometry for coding theory and cryptography, 2017
 ${ }^{3}$ Salgado, Varilly-Alvarado, Voloch, IEEE Transactions on Information Theory, 2021

[^2]: ${ }^{5}$ Berstein et al, NIST submission, 2017

[^3]: ${ }^{6}$ K. Khuri-Makdisi, Mathematics of Computations, 2007
 7 J.H. Davenport, Intern. Symp. on Symbolic and Algebraic Manipulation, 1979

[^4]: ${ }^{11}$ C.-P. Jeannerod, V. Neiger, É. Schost and G. Villard, Journal of Symbolic Computation, 2017

[^5]: ${ }^{12}$ with $2 \leqslant \omega \leqslant 3$ is a feasible exponent for linear algebra ($\omega=2.373$)

