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What is an error correcting code?

A tool for transmitting and storing
data.

Main feature: detection and correc-
tion of the errors that can occur
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2 c errors
GOAL: to have k and d as big as
possible!

Singleton Bound: k + d 6 n + 1
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Evaluation codes: from Reed–Solomon to AG codes

Reed-Solomon codes:

f ∈ Fq[X ]<k

RSk(x) := {(f (x1), f (x2), f (x3), . . . , f (xn)) | f ∈ Fq[X ]<k}

•
x3

•
x2

•
x1

•
xn

X Optimal parameters: k + d = n + 1 (MDS codes)
"Drawback: require n < q
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Evaluation codes: from Reed–Solomon to AG codes

 Algebraic geometry codes:

f ∈ L(D)

C((Pi )i ,D) := {(f (P1), f (P2), f (P3), . . . , f (Pn)) | f ∈ L(D)}

•
P3•

P2

•P1 •
Pn
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C((Pi )i ,D) := {(f (P1), f (P2), f (P3), . . . , f (Pn)) | f ∈ L(D)}

•
P3•

P2

•P1 •
Pn

(Some) Recent applications of AG codes:
I Locally Recoverable Codes1

I Interactive Oracle Proofs2

Explicit construction of AG codes need of explicit computation of L(D)

1A. Barg, I. Tamo and S. Vladuts, IEEE Transactions on Information Theory, 2017
2S. Bordage and J. Nardi, preprint, 2020
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Riemann–Roch space
Divisor on a curve C: D =

∑
P∈C nPP

D=P1 + P2 + P3−Z

P2

P1 Z

P3

The Riemann–Roch space L(D) is the
space of all functions G

H ∈ K(C) s. t.:
I if nP < 0 then P must be a zero

of G (of multiplicity > −nP)
I if nP > 0 then P can be a zero of

H (of multiplicity 6 nP)
I G/H has not other poles outside

the points P with nP > 0

Here: Z must be a zero of G , the Pi ’s can be
zeros of H

Riemann–Roch theorem  dimension of L(D)

"no explicit method to compute a basis of L(D)
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Riemann-Roch problem: state of the art

Geometric methods: Arithmetic methods:
(Brill–Noether theory ∼1874) (Ideals in function fields)
• Goppa, Le Brigand–Risler (80’s)
• Huang–Ierardi (90’s)
• Khuri-Makdisi (2007)
• Le Gluher–Spaenlehauer (2018)
• Abelard–Couvreur–Lecerf (2020)

• Hensel–Landberg (1902)
• Coates (1970)
• Davenport (1981)
• Hess (2001)

Nodal/ordinary
curves:

Las Vegas algorithm computing L(D) in
Õ((δ2 + degD+)

ω+1
2 ) field operations

Non-ordinary curves: "no explicit complexity exponent
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Nodal/ordinary
curves:

Las Vegas algorithm computing L(D) in
Õ((δ2 + degD+)

ω+1
2 ) field operations3

Non-ordinary curves: "no explicit complexity exponent

3here 2 6 ω 6 3 is a feasible exponent for linear algebra (ω = 2.373)
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Brill–Noether in a nutshell
Brill–Noether method  NSC on H and G such that G/H ∈ L(D)

Let C : F (X ,Y ,Z ) = 0 be a plane projective curve and D a smooth
divisor on it.
Notation: (H) = zeros of H with multiplicity
Description of L(D): non-zero elements are of the form Gi

H where

I H satisfies (H) > D

I H passes through all the singular points of C with ad hoc
multiplicities

I degGi = degH, Gi coprime with F and (Gi ) > (H)− D

How do we handle singular points?

 the adjunction divisor A "encodes" the singular points of C with their
multiplicities

How do we handle divisors?

series expansions of multi-set
representations ((Pi )i ,mi )

 
routines on divisors
have negligible cost
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Sketch of the algorithm

Input

C : F (X ,Y ,Z ) = 0 a plane projective curve, D a smooth divisor.

Step 1: Compute the adjoint divisor A

Step 2: Compute a common denominator H

Step 3: Compute (H)− D

Step 4: Compute numerators Gi (similar to Step 2)

Output

A basis of the Riemann–Roch space L(D).
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Non-ordinary curves: an explicit complexity exponent

Adjoint divisor: representation in terms of the Puiseux expansions
(X (t),Y (t)) in the neighborhoods of the singular points

 fast algorithms for Puiseux series expansions of germs of curves4

Conditions
(H) > A+ D

and
(Gi ) > (H)−D:

 linear system
or

valt(H(X (t),Y (X )) sufficiently large
 K [t]-module structure

 structured linear algebra algorithm5

Theorem (Abelard, B., Couvreur, Lecerf )

Las Vegas algorithm computing L(D) in Õ((δ2 + degD+)
ω) field

operations.

4A. Poteaux and M. Weimann, Annales Henri Lebesgue, 2021
5C.-P. Jeannerod, V. Neiger, E. Schost and G. Villard, Journal of Symbolic

Computation, 2017
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From curves to surfaces

Curves Surfaces
Divisors sum of points sum of curves

Riemann-Roch spaces of surfaces are again spaces of functions
 same construction of codes from curves holds for codes from surfaces!

Why codes from surfaces?

Number of rational points: O(q2) / surface VS O(q) / curve
 construction of codes of same length on smaller finite fields

Applications: codes from surfaces provided optimal Local Recoverable
Codes (for Distributed Storage Systems)

Mathematical interest: new mathematical questions arise from the
study of AG codes from surfaces
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From curves to surfaces

Curves Surfaces
Divisors sum of points sum of curves

Riemann-Roch spaces of surfaces are again spaces of functions
 same construction of codes from curves holds for codes from surfaces!

Why codes from surfaces?

Number of rational points: O(q2) / surface VS O(q) / curve
 construction of codes of same length on smaller finite fields

Applications: codes from surfaces provided optimal Local Recoverable
Codes 7 (for Distributed Storage Systems)

Mathematical interest: new mathematical questions arise from the
study of AG codes from surfaces

7C. Salgado, A. Várilly-Alvarado and J. F. Voloch, preprint 2019
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Study of AG codes from surfaces

The length of the codes

n = number of rational points on the surface

The dimension of the codes

Riemann–Roch theorem for surfaces  dimension of the code
"still does not give an effective method to compute a basis of L(D)!

The minimum distance of the codes

We can prove that

d > n − max
f∈L(D)\{0}

k∑
i=1

#Ci (Fq)

where the Ci are irreducible curves on the surface.
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Algebraic geometry tools enter the game

Bounding k :
I Can be done using intersection theory on surfaces.

Bounding #C(Fq):
I Different bounds already exist and can be used in this context.
I More precise upper bounds for #C(Fq) for curves on surfaces will

lead to more precise lower bounds for the minimum distance.

The bound on the minimum distance
depends on invariant of the surface

We get hints on which surfaces
are more suitable for AG codes
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Examples of results on the minimum distance

I Abelian surfaces8 without irreducible curves of genus π 6 `:

d(X ,D) > n −
√

D2

2`
(q + 1− Tr(X ) + (`− 1)b2√qc)

 better bound for big `!

I Fibered surfaces9 on a base curve B:

d(X ,D) > d∗(X ,D) + δ(B),

where δ(B) := q + 1+ gBb2
√
qc −#B(Fq) > 0.

 better bound if B has few rational points!

8Y. Aubry, E. Berardini, F. Herbaut and M. Perret, Finite Fields Appl. 70, 2021
9Y. Aubry, E. Berardini, F. Herbaut and M. Perret, Contemp. Maths. 770, 2021
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What’s next?
AG codes from curves.

� Implementation including fast structured linear algebra.
� Computing Riemann–Roch spaces of non-ordinary curves in “small”

positive characteristic (in progress with A. Couvreur and G. Lecerf)
� Improving the complexity in the non-ordinary case

( sub-quadratic?)

AG codes in higher dimension.

� Use algebraic geometry methods to study codes from 3-folds.
� Compute Riemann–Roch spaces of surfaces  explicit construction

of (good) AG codes from surfaces.
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GV2DB OQJ XQF OQJF

2GG4DGT QD!*
Questions?

elena.berardini@telecom-paris.fr

*Thank you for your attention!
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